Linear Calibration Example 2

conc $:=\left(\begin{array}{llll}0 & 6.1 & 11.2 & 19.4\end{array}\right)^{\mathrm{T}} \quad$ current $:=\left(\begin{array}{llll}0.003 & 0.134 & 0.259 & 0.398\end{array}\right)^{\mathrm{T}}$

Let's look at a plot of the calibration measurements.

OOO trace 1

Looks reasonably linear! Let's calculate the least-squares estimates of the slope and intercept of a best-fit line.
b_{0} := intercept(conc, current) $\quad \mathrm{b}_{0}=0.0101$
$\mathrm{b}_{1}:=\operatorname{slope}($ conc, current $) \quad \mathrm{b}_{1}=0.0205$

We need to calculate the residuals and a few other items

$$
\begin{array}{lllll}
\text { fit }:=\mathrm{b}_{1} \cdot \operatorname{conc}+\mathrm{b}_{0} & \text { res }:=\text { current }- \text { fit } & \mathrm{res}^{\mathrm{T}}=\left[\begin{array}{llll}
-7.0698 \cdot 10^{-3} & -1.3476 \cdot 10^{-3} & 0.0189 & -0.0105
\end{array}\right] \quad \text { residuals } \\
\mathrm{s}_{\text {res }}:=\sqrt{\frac{1}{2} \cdot\left\ulcorner\overrightarrow{\mathrm{res}^{2}}\right.} & \mathrm{s}_{\text {res }}=0.0161 & \mathrm{~S}_{\mathrm{xx}}:=3 \cdot \operatorname{Var}(\operatorname{conc}) & \mathrm{S}_{\mathrm{xx}}=202.2875 & \mathrm{xbar}:=\operatorname{mean}(\text { conc })
\end{array}
$$

Now we can calculate a confidence interval for the analyte concentration in the "unknown"
$\mathrm{y}_{\mathrm{u}}:=0.175$ signal from the "unknown" sample, in microamps
$\mathrm{x}_{\mathrm{u}}:=\frac{\mathrm{y}_{\mathrm{u}}-\mathrm{b}_{0}}{\mathrm{~b}_{1}} \quad \mathrm{x}_{\mathrm{u}}=8.0307 \quad$ point estimate of analyte concentration, in ppb
$\mathrm{se}_{\mathrm{u}}:=\frac{\mathrm{s}_{\text {res }}}{\mathrm{b}_{1}} \cdot \sqrt{1+\frac{1}{4}+\frac{\left(\mathrm{x}_{\mathrm{u}}-\mathrm{xbar}\right)^{2}}{\mathrm{~S}_{\mathrm{xx}}}} \quad \mathrm{se}_{\mathrm{u}}=0.8797 \quad$ std error of point estimate, in ppb
$\mathrm{t}:=\mathrm{qt}(.975,2) \quad \mathrm{t}=4.3027 \quad \mathrm{t} \cdot \mathrm{se}_{\mathrm{u}}=3.7852 \quad$ width of 95% confidence interval

The concentration of arsenic in the sample is $8.0 \pm 3.8 \mathrm{ppb}(95 \% \mathrm{CL})$.

This confidence interval assumes homogeneous noise in the calibration measurements, and that the measurements are normally distributed.

