Linear Calibration Example 1
conc:=(5.1 17.0 25,5 34.0 425 51.O)T calibration standards, ppm
T:=(781 432 314 188 145 8.7)T transmittance, as percentages

Although the calibration measurements are recorded as transmittances, Beer's Law specifies that the
concentration of analyte is linearly proportional to the absorbance. Thus, we must first calculate the absorbance of
the cabliration standards.

A :=-log

%) AT =[01073 03645 05031 0.7258 08386 1.0605] calculate absorbances

Always check a plot of the calibration data to make sure it looks okay.
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A linear fit seems reasonable for this data. Let's obtain the least-squares estimates of slope and intercept.
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b0 :=intercept(conc, A) b0 = 4.9876+10 b1 :=dlope(conc, A) b1 = 0.0204

Now we can calculate a point estimate of the analyte concentration for the "unknown"

T
T,:=356 yy'=-log FL(J) y,=04486 absorbance of the unknown
Yu— bo . . . .
Xy'= X = 21.7559 point estimate of analyte concentration, in ppm
b

A confidence interval for the analyte concentration can be obtained by assuming homogeneous noise on the
calibration measurements.

First calculate the standard deviation of the residuals

fit :=b_ -conc+ by res:=A — fit resT:[—1.6182°10_ 0.0129 -0.0218 0.0277 —0.0329 0.0157]

’ —>
Sres'= %-Zre's2 Sreg=0.0262  an estimate of the homogeneous noise
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xx ‘=9:Var(conc)  xbar:=mean(conc) A few other things we need.

Now we are ready to calculate the standard error of our point estimate.

., :=S£s L (xu—xbar>2

b, 6 Syx

se, = 14085



If the calibration measurements are normally distributed, so is our point estimate. Thus, we can use t-tables to
calculate a confidence interval.

t:=qt(.975,4) t=27764 4 degrees of freedom, 95% confidence

tse, = 3.9107 width of the confidence interval

Thus, the analyte concentration in the "unknown" is 21.8 £ 3.9 ppm (95% CL)



