

Interval Estimation

Carlos Hurtado churtado@richmond.edu

Robins School of Business University of Richmond

Oct 2, 2019

C. Hurtado (UR)

Interval Estimation

On the Agenda

- 1 Population Mean: σ Known
- **2** Population Mean: σ Unknown
- **3** Determining the Sample Size
- Population Proportion

On the Agenda

1 Population Mean: σ Known

2) Population Mean: σ Unknown

- 3 Determining the Sample Size
- 4 Population Proportion

- A point estimator cannot be expected to provide the exact value of the population parameter
- An interval estimate can be computed by adding and subtracting a margin of error to the point estimate:

Point Estimate + / - Margin of Error

The purpose of an interval estimate is to provide information about how close the point estimate is to the value of the parameter

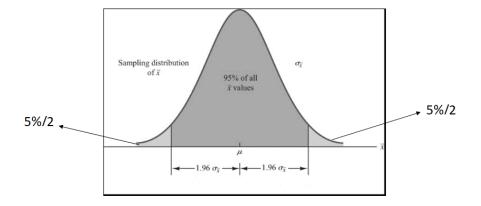
- To develop an interval estimate of a population mean, the margin of error must be computed using either
 - the population standard deviation σ , or
 - the sample standard deviation s

- σ is rarely known exactly, but often a good estimate can be obtained based on historical data
- We refer to such cases as the σ known case

- Let's assume we want 95% confidence that the value of the sample mean is within the margin of error
- By the central limit theorem, \bar{x} has a normal distribution
- We want to find a critical value (cv) such that:

$$P(|ar{x}-\mu|\leq cv)=95\%$$

This cv will give us the margin of error



• Interval estimate of μ

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

where:

- \bar{x} is the sample mean
- $1-\alpha$ is the confidence level

 $z_{\alpha/2}$ is the z value providing an area of $\alpha/2$ in the lower tail of the standard normal distribution

 σ is the population standard deviation

n is the sample size

- Adequate Sample Size
 - In most applications, a sample size of $n \ge 30$ is adequate
 - If the population distribution is highly skewed or contains outliers, a sample size of 50 or more is recommended

On the Agenda

1) Population Mean: σ Known

2 Population Mean: σ Unknown

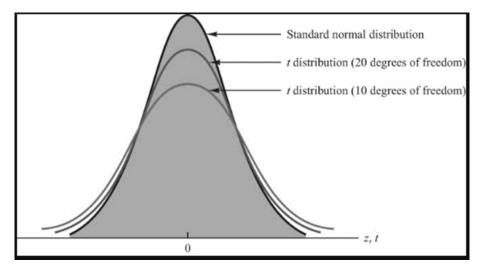
- 3 Determining the Sample Size
- 4 Population Proportion

 \blacktriangleright In many cases, the population standard deviation σ is unknown

- \blacktriangleright We use the sample standard deviation s to estimate σ
- This is the σ unknown case

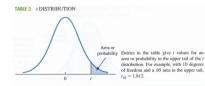
▶ In this case, the interval estimate for μ is based on the *t* distribution

- ► The <u>t distribution</u> is a family of similar probability distributions
- A specific t distribution depends on a parameter known as the degrees of freedom
- Degrees of freedom refer to the number of independent pieces of information that go into the computation of s
- As the degrees of freedom increase, the difference between the t distribution and the standard normal probability distribution becomes smaller and smaller



▶ For more than 100 degrees of freedom, the standard normal z value provides a good approximation to the t value

▶ The standard normal z values can be found in the infinite degrees row (labeled ∞) of the t distribution table



Degrees of Freedom						
	.20	.10	.05	.025	.01	.005
1 1	1.376	3.078	6.314	12.706	31.821	63.656
2	1.061	1.886	2.920	4,303	6.965	9.925
3	.978	1.638	2.353	3.182	4.541	5.841
4	.941	1.533	2.132	2.776	3.747	4.604
5	.920	1.476	2.015	2.571	3.365	4.032
6	.906	1.440	1.943	2.447	3.143	3.707
7	.896	1.415	1.895	2.365	2.998	3.499
8	.889	1.397	1.860	2.306	2.896	3.355
9	.883	1.383	1.833	2.262	2.821	3.250
10	.879	1.372	1.812	2.228	2.764	3.169
11	.876	1.363	1.796	2.201	2.718	3.106
12	.873	1.356	1.782	2.179	2.681	3.055
13	.870	1.350	1.771	2.160	2.650	3.012
14	.868	1.345	1.761	2.145	2.624	2.977
15	.866	1.341	1.753	2.131	2.602	2.947
16	.865	1.337	1.746	2.120	2.583	2.921
17	.863	1.333	1.740	2.110	2.567	2.898
18	.862	1.330	1.734	2.101	2.552	2.878
19	.861	1.328	1.729	2.093	2.539	2.861
20	.860	1.325	1.725	2.086	2.528	2.845
21	.859	1.323	1.721	2.080	2.518	2.831
22	.858	1.321	1.717	2.074	2.508	2.819
23	.858	1.319	1.714	2.069	2.500	2.807
24	.857	1.318	1.711	2.064	2.492	2.797
25	.856	1.316	1.708	2.060	2.485	2.787
26	.856	1.315	1.706	2.056	2.479	2.779
27	.855	1.314	1.703	2.052	2.473	2.771
28	.855	1.313	1.701	2.048	2.467	2.763
29	.854	1.311	1.699	2.045	2.462	2.756

C. Hurtado (UR)

Interval Estimation

 \blacktriangleright Interval estimate of μ

$$ar{x} \pm t_{lpha/2} rac{s}{\sqrt{n}}$$

where:

- \bar{x} is the sample mean
- $1-\alpha$ is the confidence level

 $t_{\alpha/2}$ is the t value providing an area of $\alpha/2$ in the upper tail of the t distribution with n-1 degrees of freedom

s is the sample standard deviation

n is the sample size

How I feel using the z table

How I feel using the t table

C. Hurtado (UR)

Example: Population Mean and σ Unknown

- Credit card debt for the population of US households
- ▶ The credit card balances of a sample of 70 households provided:
 - a mean credit card debt of \$9,312
 - with a sample standard deviation of \$4,007

What is the 95% confidence interval estimate of the mean credit card debt for the population of US households?

Example: Population Mean and σ Unknown

- ▶ At 95% confidence, $\alpha = 5\%$, and $\alpha/2 = 2.5\%$
- ▶ We need the $t_{0.025}$ with n 1 = 69 degrees of freedom

Degrees	Area in Upper Tail								
of Freedom	.20	.10	.05	.025	.01	.005			
1	1.376	3.078	6.314	12.706	31.821	63.656			
2	1.061	1.886	2.920	4.303	6.965	9.925			
3	.978	1.638	2.353	3.182	4.541	5.841			
4	.941	1.533	2.132	2.776	3.747	4.604			
5	.920	1.476	2.015	2.571	3.365	4.032			
6	.906	1.440	1.943	2.447	3.143	3.707			
7	.896	1.415	1.895	2.365	2.998	3.499			
8	.889	1.397	1.860	2.306	2.896	3.355			
9	.883	1.383	1.833	2.262	2.821	3.250			
				8	8	8			
60	.848	1.296	1.671	2.000	2.390	2.660			
61	.848	1.296	1.670	2.000	2.389	2.659			
62	.847	1.295	1.670	1.999	2.388	2.657			
63	.847	1.295	1.669	1.998	2.387	2.656			
64	.847	1.295	1.669	1.998	2.386	2.655			
65	.847	1.295	1.669	1.997	2.385	2.654			
66	.847	1.295	1.668	1.997	2.384	2.652			
67	.847	1.294	1.668	1.996	2.383	2.651			
68	.847	1.294	1.668	1.995	2.382	2.650			
69	.847	1.294	1.667	1.995	2.382	2.649			
	1	1	1	1	3	1			
90	.846	1.291	1.662	1.987	2.368	2.632			
91	.846	1.291	1.662	1.986	2.368	2.631			
92	.846	1.291	1.662	1.986	2.368	2.630			
93	.846	1.291	1.661	1.986	2.367	2.630			
94	.845	1.291	1.661	1.986	2.367	2.629			
95	.845	1.291	1.661	1.985	2.366	2.629			
96	.845	1.290	1.661	1.985	2.366	2.628			
97	.845	1.290	1.661	1.985	2.365	2.627			
98	.845	1.290	1.661	1.984	2.365	2.627			
99	.845	1.290	1.660	1.984	2.364	2.626			
100	.845	1.290	1.660	1.984	2.364	2.626			
90	.842	1.282	1.645	1.960	2.326	2.576			

C. Hurtado (UR)

Example: Population Mean and σ Unknown

▶ The 95% confidence interval for the mean credit card debt is

$$\bar{x} \pm t_{0.025} \frac{s}{\sqrt{n}}$$

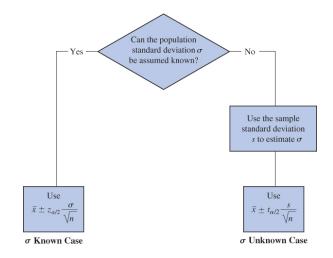
or

$$9,312 \pm 1.995 \frac{4,007}{\sqrt{n}} = 9,312 \pm 955$$

▶ In other words: We are 95% confident that the mean credit card debt for the population of US households is between \$8357 and \$10267

- Adequate Sample Size
 - In most applications, a sample size of $n \ge 30$ is adequate
 - If the population distribution is highly skewed or contains outliers, a sample size of 50 or more is recommended

Summary



On the Agenda

- 1) Population Mean: σ Known
- 2) Population Mean: σ Unknown
- **3** Determining the Sample Size
 - 4 Population Proportion

Determining the Sample Size

- Let E denote the desired margin of error
- E is the amount added to and subtracted from the point estimate to obtain an interval estimate
- ▶ If a desired margin of error is selected prior to sampling
 - We can determine the sample size necessary to satisfy E!

Determining the Sample Size

Margin of Error

$$E = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Necessary Sample Size

$$n = \left(\frac{\sigma z_{\alpha/2}}{E}\right)^2$$

Determining the Sample Size

- \blacktriangleright The Necessary Sample Size equation requires a value for the population standard deviation σ
- If σ is unknown, a preliminary or planning value for s can be used in the equation
 - 1. Use the estimate of the population standard deviation computed in a previous study
 - 2. Use a pilot study to select a preliminary study and use the sample standard deviation from the study
 - 3. Use judgment or a "best guess" for the value of σ

On the Agenda

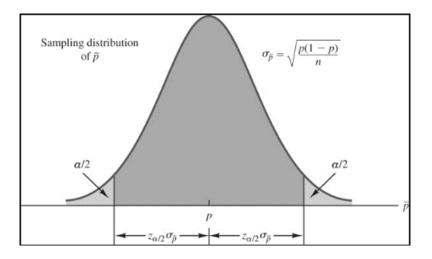
- 1) Population Mean: σ Known
- 2 Population Mean: σ Unknown
- 3 Determining the Sample Size
- Population Proportion

▶ The general form of an interval estimate of a population proportion is:

$\bar{p}\pm E$

- ► The sampling distribution of p̄ plays a key role in computing the margin of error for this interval estimate
- ► The sampling distribution of p̄ can be approximated by a normal distribution whenever np ≥ 5 and n(1-p) ≥ 5

Population Proportion



Interval Estimation

Population Proportion

▶ The unbiased estimator of p is \bar{p} , hence

$$ar{p} \pm z_{lpha/2} \sqrt{rac{ar{p}(1-ar{p})}{n}}$$

where:

- \bar{p} is the sample estimator of the proportion
- $1-\alpha$ is the confidence level

 $z_{\alpha/2}$ is the z value providing an area of $\alpha/2$ in the lower tail of the standard normal probability distribution

n is the sample size

Sample Size and Population Proportion

Margin of Error

$$E = z_{\alpha/2} \sqrt{\frac{\bar{p}(1-\bar{p})}{n}}$$

Solving for the necessary sample size n, we get

$$n = \left(\frac{z_{\alpha/2}}{E}\right)^2 \bar{p}(1-\bar{p})$$

• However, \bar{p} will not be known until after we have selected the sample.

▶ We will use the planning value p^* for \bar{p}

Sample Size and Population Proportion

Necessary Sample Size

$$n = \left(\frac{z_{\alpha/2}}{E}\right)^2 p^*(1-p^*)$$

▶ The planning value *p*^{*} can be chosen by

- 1. Using the sample proportion from a previous sample of the same or similar units, or
- 2. Selecting a preliminary sample and using the sample proportion from this sample
- 3. Using judgment or a "best guess" for a p^* value
- 4. Otherwise, using $p^* = 0.5$

- Survey of women golfers
- A national survey of 900 women golfers was conducted to learn how women golfers view their treatment at golf courses in United States
- The survey found that 396 of the women golfers were satisfied with their treatment at golf courses
- What is the 95% confidence interval for the proportion of women golfers satisfied with their treatment at golf courses?

Survey of women golfers

$$\bar{p} \pm z_{\alpha/2} \sqrt{rac{\bar{p}(1-\bar{p})}{n}}$$

where: n = 900, $\bar{p} = 396/900 = 0.44$, and $z_{\alpha/2} = 1.96$

The 95% confidence interval is:

$$0.44 \pm 1.96 \sqrt{rac{0.44(1-0.44)}{900}} = 0.44 \pm 0.0324$$

Survey results enable us to state with 95% confidence that between 40.76% and 47.24% of all women golfers are satisfied

- Survey of women golfers
- ► Suppose the survey director wants to estimate the population proportion with a margin of error of 0.025 at 95% confidence
- How large a sample size is needed to meet the required precision?
- Note: A previous sample of similar units yielded 0.44 for the sample proportion

Survey of women golfers

$$E = z_{\alpha/2} \sqrt{\frac{p^*(1-p^*)}{n}} = 0.025$$

▶ At the 95% confidence, $z_{0.0125} = 1.96$. We know that $p^* = 0.44$

$$n = \left(\frac{z_{\alpha/2}}{E}\right)^2 p^*(1-p^*) = \left(\frac{1.96}{0.025}\right)^2 0.44(0.56) = 1,514.5$$

A sample of 1,515 is needed to reach a desired precision of ± 0.025 at 95% confidence