

Carlos Hurtado churtado@richmond.edu

Robins School of Business University of Richmond

Sep 16, 2019

On the Agenda

Random Variables

2 Expected Value, Variance, and Standard Deviation

3 Binomial Probability Distribution

C. Hurtado (UR)

Discrete Probability

Random Variables

- Random variable: Is a numerical description of the outcome of an experiment
- Discrete random variable: Is a random variable that may assume either a finite number of values or an infinite sequence of values

Continuous random variable: Is a random variable that may assume any numerical value in an interval or collection of intervals

Example: Discrete Random Variables

- An accountant taking CPA examination
- ▶ The examination has four parts
- ▶ Random variable *x* = Number of parts of the CPA examination passed

▶ x may assume the finite number of values 0,1,2,3 or 4

Example: Discrete Random Variables

- Cars arriving at a toll booth
- Random variable x = number of cars arriving in one day
- > x may assume the finite number of values $0, 1, 2, \cdots$
- We can count the customers arriving, but there is no finite upper limit on the number that might arrive

Experiment	Random Variable (x)	Possible values for the random variable	Туре
Inspect a shipment of 50 radios	Number of defective radios	0,1,2, 350	Discrete with finite values
Operate a restaurant for one day	Number of customers	0,1,2,3	Discrete with infinite values
Fill a soft drink can (max = 12.1 ounces)	Number of ounces	0 ≤ <i>x</i> ≤ 12.1	Continuous
Operate a bank	Time between customer arrivals in minutes	<i>x</i> ≥ 0	Continuous

The probability distribution for a random variable describes how probabilities are distributed over the values of the random variable

 We can describe a discrete probability distribution with a table, graph, or formula

Two types of discrete probability distributions:

- First type: uses the rules of assigning probabilities to experimental outcomes to determine probabilities for each value of the random variable
- Second type: uses a special mathematical formula to compute the probabilities for each value of the random variable

- ► The probability distribution is defined by a probability function, denoted by f(x), that provides the probability for each value of the random variable
- ► The required conditions for a discrete probability function are:

 $f(x) \geq 0$

and

$$\sum f(x) = 1$$

- There are three methods for assigning probabilities to random variables:
 - Classical method
 - Subjective method
 - Relative frequency method

The use of the relative frequency method to develop discrete probability distributions leads to what is called an empirical discrete distribution

Example: Discrete Probability Distributions

DiCarlo Motors

Using past data on daily car sales for 300 days, a tabular representation of the probability distribution for sales was developed

Number of cars sold	Number of days	×	f(x)
0	54	0	.18
1	117	1	.39
2	72	2	.24
3	42	3	.14
4	12	4	.04
5	3	5	.01
Total	300		1.00

Example: Discrete Probability Distributions

DiCarlo Motors

Graphical representation of Probability Distribution.

- In addition to tables and graphs, a formula that gives the probability function, f(x), for every value of x is often used to describe the probability distributions
- Some of the discrete probability distributions specified by formulas are:
 - Discrete uniform distribution
 - Binomial distribution

- The discrete uniform probability distribution is the simplest example of a discrete probability distribution given by a formula
- The discrete uniform probability function is

$$f(x) = \frac{1}{n}$$

where: n = the number of values the random variable may assume

The values of the random variable are equally likely

Random Variables

C. Hurtado (UR)

Discrete Probability

Expected Value

- The expected value, or mean, of a random variable is a measure of its central location
- The expected value is a weighted average of the values the random variable may assume: The weights are the probabilities
- The expected value does not have to be a value the random variable can assume

$$E(x) = \mu = \sum xf(x)$$

Variance and Standard Deviation

- The variance summarizes the variability in the values of a random variable
- The variance is a weighted average of the squared deviations of a random variable from its mean. The weights are the probabilities.

$$Var(x) = \sigma^2 = \sum (x - \mu)^2 f(x)$$

The standard deviation, σ, is defined as the positive square root of the variance

Example: Expected Value

x	f(x)	xf(x)
0	.18	.00
1	.39	.39
2	.24	.48
3	.14	.42
4	.04	.16
5	.01	.05
	1.00	1.50

X	х-μ	(x - μ) ²	f(x)	$(x - \mu)^2 f(x)$
0			.18	
1			.39	
2			.24	
3			.14	
4			.04	
5			.01	
			1.00	

X	х-μ	(x - μ) ²	f(x)	$(x - \mu)^2 f(x)$
0	0 - 1.5 = - 1.5		.18	
1	1 – 1.5 =5		.39	
2	2 – 1.5 = .5		.24	
3	3 - 1.5 = 1.5		.14	
4	4 - 1.5 = 2.5		.04	
5	5 - 1.5 = 3.5		.01	
			1.00	

x	х-μ	(x - μ) ²	f(x)	$(x - \mu)^2 f(x)$
0	0 - 1.5 = - 1.5	2.25	.18	
1	1 – 1.5 =5	.25	.39	
2	2 – 1.5 = .5	.25	.24	
3	3 - 1.5 = 1.5	2.25	.14	
4	4 - 1.5 = 2.5	6.25	.04	
5	5 - 1.5 = 3.5	12.25	.01	
			1.00	

DiCarlo Motors

x	x - μ	(x - μ) ²	f(x)	$(x - \mu)^2 f(x)$
0	0 - 1.5 = - 1.5	2.25	.18	2.25 (.18)=.4050
1	1 – 1.5 =5	.25	.39	.0975
2	2 – 1.5 = .5	.25	.24	.0600
3	3 - 1.5 = 1.5	2.25	.14	.3150
4	4 - 1.5 = 2.5	6.25	.04	.2500
5	5 - 1.5 = 3.5	12.25	.01	.1225
			1.00	1.2500

Note: Variance of daily sales = $\sigma^2 = 1.25$. Hence, Standard deviation of daily sales = $\sigma = 1.118$ cars!

C. Hurtado (UR)

Discrete Probability

16 / 26

1 Random Variables

C. Hurtado (UR)

Discrete Probability

▶ Four Properties of a Binomial Experiment

- 1. The experiment consists of a sequence of n identical trials
- 2. Two outcomes, success and failure, are possible on each trial
- 3. The probability of a success, denoted by p, and failure, denoted by 1 p, does not change from trial to trial
- 4. The trials are independent

Our interest is in the <u>number of successes</u> occurring in the *n* trials

▶ We let *x* denote the number of successes occurring in the *n* trials

What would be the sample space?

Binomial Probability Function

$$f(x) = \frac{n!}{x!(n-x)!}p^{x}(1-p)^{n-x}$$

where

- x = the number of successes
- p = the probability of a success on one trial
- n = number of trials

f(x) = the probability of x successes in n trials

$$n! = n \times (n-1) \times (n-2) \times \cdots 2 \times 1$$

Looking at the Binomial Probability Function before Carlos explains it

- Martin Clothing store:
- The store manager wants to determine the purchase decisions of next three customers who enter the clothing store
- On the basis of past experience, the store manager estimates the probability that any one customer will make a purchase is .30
- What is the probability that two of the next three customers will make a purchase?

► Martin Clothing store:

Use S to denote success (a purchase)

Use F to denote failure (no purchase)

- We are interested in experimental outcomes involving two successes in the three trials
 - What is the probability of the first two customers buying and the third customer not buying?

Denote by A=(S,S,F) this event, then

$$P(A) = p \times p \times (1-p)$$

With a .30 probability of a customer buying on any one trial, then,

$$P(A) = 0.3 \times 0.3 \times 0.7 = 0.063$$

- ► Martin Clothing store:
- Two other experimental outcomes result in two success and one failure.
- The probabilities for all three experimental outcomes involving two successes follow

Experimental Outcome	Probability
(S,S,F)	0.063
(S,F,S)	0.063
(F,S,S)	0.063

► Martin Clothing store:

Using the probability function

Let:
$$p = 0.3$$
, $n = 3$, and $x = 2$

$$f(x) = \frac{n!}{x!(n-x)!}p^{x}(1-p)^{n-x}$$

Then

$$f(2) = \frac{3!}{2!(3-2)!} 0.3^2 (0.7)^1 = 0.189$$

► Martin Clothing store:

Discrete Probability

Expected Value and Variance for Binomial Distribution

• Expected Value:
$$E(x) = \mu = np$$

• Variance:
$$Var(x) = \sigma^2 = np(1-p)$$

Standard Deviation: $sigma = \sqrt{np(1-p)}$

Example: Martin Clothing store

• Expected Value:
$$E(x) = 3 \times 0.3 = 0.9$$

• Variance:
$$Var(x) = 3 \times 0.3 \times 0.7 = 0.63$$

Standard Deviation:
$$\sigma = \sqrt{0.63} = 0.79$$