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Abstract 
This paper introduces a new econometric method to identify factors influencing the disparities 

within the distribution of a positive random variable, focusing on US wages between 1986 and 

2015. I relate the conditional Lorenz curve to the conditional quantile function to additively 

decompose the conditional Gini index. Moreover, this paper presents a technique to disentangle 

temporal changes in the distribution. The analysis shows that despite reduced impacts of race 

and gender on wages, persistent disparities require ongoing intervention, while higher 

education, especially college degrees, significantly reduces wage inequality. 
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1 Introduction 

Since the 1980s, increasing attention has been given to economic inequality in the US. 1 

Complex interactions of sociodemographic factors, individual attributes, and their returns 

shape income and wage distributions. Recognizing that these characteristics and 

endowments are interconnected is crucial, and their combined influence on economic 

inequality is complex and elusive. Advanced statistical methods are essential to unravel this 

complexity and accurately measure their impact on inequality. Despite extensive research 

on economic disparities through income or wage distribution estimates, a substantial 

knowledge gap persists in understanding how inequality measures respond to these 

multifaceted influencing factors. 

In this study, I present a new econometric method to evaluate the impact of various 

factors on the disparities within the distribution of a positive random variable, explicitly 

focusing on wages. This method decomposes the conditional Gini index by utilizing 

conditional quantile regressions and the relationship between the Lorenz curve and quantile 

function, allowing for precise identification and quantification of influential factors on 

inequality. 2 I demonstrate this methodology with data from the Ongoing Rotation Group 

(ORG) of the Current Population Survey (CPS) for 1986 and 2015, introducing an approach 

to decompose wage distribution changes using counterfactual scenarios based on estimated 

conditional Gini coefficients. 

Building on seminal contributions by Oaxaca (1973) and Blinder (1973), recent research 

has moved beyond classical labor models to analyze wage inequality throughout the entire 

 
1 See Levy and Murnane (1992), Katz (1999), Autor et al. (2008) , Guvenen et al. (2014), and Abel and Deitz (2019) for a 

review of the literature. 
2 The Gini coefficient, ranging from 0 ("perfect equality") to 1 ("perfect inequality"), is preferred for its simplicity and 

comparability cross populations. It avoids parametric assumptions, unlike measures like the Atkinson Index or Theil and 

Generalized Entropy measures, which depend on societal inequality aversion parameters. For further details on modern 

inequality measurements, see Hufe et al. (2020). 
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distribution. 3 This shift is first exemplified by Buchinsky (1994) using quantile regression 

to demonstrate a stronger impact of education on higher earners' wages 4. More recently, 

Bayer and Charles (2018) find significant earnings improvements for college-educated black 

men at higher income percentiles, indicating significant positional gains within this group. 

Advancements in modeling the entire wage distribution, notably by Machado and Mata 

(2005), have deepened our understanding of the factors shaping wage distribution. 5 They 

developed a counterfactual decomposition technique using conditional quantile regression 

to estimate marginal (log) wage distributions, aligned with a conditional distribution derived 

from these regressions. 6  Their work enables constructing counterfactual scenarios to 

compare marginal wage distributions and explore wage differentials across various 

quantiles, assessing the dynamics of the entire wage distribution. 

Traditional inequality analysis methods, like kernel density estimates, focusing on 

isolated quantiles, or quantile-based ratios, can miss intricate dynamics in wage 

distributions. My proposed method overcomes this by analyzing all distribution quantiles 

and linking the conditional quantile function with the conditional Lorenz curve. 7  This 

 
3 The classical model inspired literature focusing on average wage differences, accounting for individual and institutional 

characteristics, as exemplified by Katz and Murphy (1992), Bound and Johnson (1992), Blau and Kahn (1996), and Card 

and Lemieux (2001). For a review of many of the decomposition methods, refer to Fortin et al. (2011). 
4 Angrist et al. (2006) observed comparable results in a recent US subsample, echoed by Arellano and Bonhomme (2017) 

in the UK context. 
5  DiNardo et al. (1996) pioneered wage distribution modeling by developing an estimation procedure to analyze 

counterfactual (log) wage distributions using kernel density methods on weighted samples. 
6 Recently, Firpo, Fortin, and Lemieux (2009) introduced unconditional quantile regressions, which estimates the impact 

of covariates on unconditional quantiles. Using weighted samples, Firpo, Fortin, and Lemieux (2018) extend this approach 

by proposing a decomposition method that examines changes across the entire unconditional distribution. 
7 A conditional quantile function estimates percentile values in data subgroups under specific conditions, like median 

earnings for college graduates. This function is integral to conditional quantile regression, which uses predictor variables 

to predict these quantiles, providing insights into varying relationships across a distribution. Alternatively, unconditional 

quantile methods, such as those proposed by Firpo,et al. (2009), capture the total effect of covariate changes on the entire 

wage distribution. When their assumptions hold, they offer valuable insights into inequality trends. However, policy 

discussions often focus on within-group disparities, where conditional quantile regression better isolates how covariates 

shape inequality among similar workers. 
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comprehensive approach evaluates the entire wage distribution, linking (log) wage 

determinants directly to inequality through the conditional Gini index, thus offering a precise 

inequality measure without relying on density modeling. 

I employ CPS ORG hourly wage data from 1986 and 2015 to exemplify my methodology 

and contrast it with the approach of Machado and Mata (2005), hereafter referred to as MM. 

My model, which includes a range of individual, job-related, and demographic factors, 

uncovers several key findings. 8 The manufacturing sector shifted to increase wages by 2015; 

race and gender impacts on wages, though lessened, still demand action; and crucially, 

higher education, particularly college degrees, noticeably reduces wage inequality, reflected 

in a decreased conditional Gini index, highlighting the importance of college education in 

addressing wage disparities. 

I implement the MM method alongside my proposed technique to showcase the 

advantages of the later. My method reveals a notable decrease in lower-end wage inequality, 

almost balancing the higher-end increase, and elucidates wage inequality shifts over time. 

My approach highlights the substantial effects of unionization, manufacturing, and 

urbanization on wage levels, reflecting economic changes. It also shows that higher 

education, particularly college degrees, significantly impacts reducing inequality. This 

method surpasses MM by offering a comprehensive analysis of wage dynamics across 

income levels and socio-economic factors, especially emphasizing the pivotal role of 

education in mitigating wage disparities. 

The structure of this paper unfolds as follows. Section 2 establishing the theoretical link 

between the conditional Lorenz curve and the conditional Gini index; Section 3 detailing the 

proposed estimation method; Section 4 offers an account of the US hourly wage data 

employed in this analysis; Section 5 discussing the empirical application and insights of the 

method; and Section 6 concludes. 

 
8 The model also incorporates state and industry fixed effects, essential for capturing macroeconomic shifts, sectoral 

changes, and global trends such as trade liberalization and technological advancements. 
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2 Conditional Lorenz Curve and Gini Index 

The Lorenz curve is a powerful instrument for illustrating the inequality present in the 

distribution of a positive random variable. In the context of wage inequality, it represents 

the cumulative share of wages against the cumulative percentage of earners, from the lowest 

to the highest. Adhering to the framework in Koenker (2005), I define the Lorenz curve as: 

𝐿𝐿(𝜏𝜏) =
∫ 𝑄𝑄𝑌𝑌(𝑡𝑡)𝑑𝑑𝑡𝑡𝜏𝜏
0

∫ 𝑄𝑄𝑌𝑌(𝑡𝑡)𝑑𝑑𝑡𝑡1
0

=
1
𝜇𝜇
�𝑄𝑄𝑌𝑌(𝑡𝑡)𝑑𝑑𝑡𝑡
𝜏𝜏

0

, (1) 

 

where 𝑌𝑌 is a continuous and positive random variable with a cumulative density function 

𝐹𝐹𝑌𝑌(𝑦𝑦), quantile function denoted as 𝑄𝑄𝑌𝑌(𝑡𝑡) = inf{𝑦𝑦:𝐹𝐹𝑌𝑌(𝑦𝑦) ≥ 𝑡𝑡} = 𝐹𝐹−1(𝑡𝑡), with 𝑦𝑦𝜏𝜏 = 𝑄𝑄𝑌𝑌(𝜏𝜏) 

and mean 𝜇𝜇 satisfying 0 < 𝜇𝜇 < ∞. As show in Appendix A, the application of a monotonic 

transformation, denoted ℎ(·) , which satisfies ℎ(𝑌𝑌) ≥ 0  and 0 < µℎ < ∞ , where µℎ =

𝐸𝐸[ℎ(𝑦𝑦)], culminates in a Lorenz curve of the transformed variable as given by 

𝐿𝐿ℎ(𝜏𝜏) =
1
𝜇𝜇ℎ
�𝑄𝑄ℎ(𝑌𝑌)(𝑡𝑡)𝑑𝑑𝑡𝑡
𝜏𝜏

0

=
𝜏𝜏𝐸𝐸[ℎ(𝑦𝑦)|ℎ(𝑦𝑦) ≤ ℎ(𝑦𝑦𝜏𝜏)]

𝜇𝜇ℎ
. (2) 

 

Drawing upon the fact that 0 ≤ 𝐸𝐸[ℎ(𝑦𝑦)|ℎ(𝑦𝑦) ≤ ℎ(𝑦𝑦𝜏𝜏)] ≤ 𝐸𝐸[ℎ(𝑦𝑦)] = µℎ, and considering 𝜏𝜏 ∈

(0,1), it is clear that the Lorenz curve of the transformed variable lies between zero and one. 

Let us consider 𝑄𝑄ℎ(𝑌𝑌)(𝑡𝑡|𝑥𝑥), with 𝑡𝑡 ∈ (0,1), to represent the t-th conditional quantile of the 

distribution of ℎ(𝑌𝑌), given a vector of covariates denoted by 𝑥𝑥 ∈ 𝑅𝑅𝑃𝑃. I propose modeling this 

conditional quantile function as a linear combination of the covariates, illustrated as: 

𝑄𝑄ℎ(𝑌𝑌)(𝑡𝑡|𝑥𝑥) = 𝑥𝑥𝑇𝑇𝛽𝛽(𝑡𝑡) = �𝑥𝑥𝑗𝑗

𝑃𝑃

𝑗𝑗=1

𝛽𝛽𝑗𝑗(𝑡𝑡), (3) 
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where each 𝛽𝛽𝑗𝑗(𝑡𝑡) is the coefficient aligned with 𝑗𝑗-th covariate at the t-th quantile. Next, let 

𝜆𝜆ℎ(𝜏𝜏) ∈ 𝑅𝑅𝑃𝑃  be a vector where its 𝑗𝑗 -th element is defined as 𝜆𝜆ℎ,𝑗𝑗(𝜏𝜏) = 1
𝜏𝜏 ∫ 𝛽𝛽𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡𝜏𝜏

0 , 

representing, in essence, the mean of the 𝑗𝑗-th coefficient within the interval (0, 𝜏𝜏) 9. From 

equations (2) and (3), the conditional Lorenz curve of the transformed variable is expressed 

as: 

Lh(𝜏𝜏|𝑥𝑥) =
1
𝜇𝜇ℎ
�𝑄𝑄ℎ(𝑌𝑌)(𝑡𝑡|𝑥𝑥)𝑑𝑑𝑡𝑡
𝜏𝜏

0

=
1
𝜇𝜇ℎ
�𝑥𝑥𝑗𝑗 �𝛽𝛽𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡

𝜏𝜏

0

𝑃𝑃

𝑗𝑗=1

=
𝜏𝜏𝑥𝑥𝑇𝑇𝜆𝜆ℎ(𝜏𝜏)

𝜇𝜇ℎ
. (4) 

 

By comparing equations (2) and (4), it becomes clear that 𝐸𝐸�ℎ(𝑦𝑦)|𝑥𝑥 ∧ �ℎ(𝑦𝑦) ≤ ℎ(𝑦𝑦𝜏𝜏)�� 

equates to 𝑥𝑥𝑇𝑇𝜆𝜆ℎ(𝜏𝜏). By taking the limit when 𝜏𝜏 goes to one, I deduce that 𝐸𝐸[ℎ(𝑦𝑦)|𝑥𝑥] is given 

by 𝑥𝑥𝑇𝑇𝜆𝜆ℎ(1) = 𝑥𝑥𝑇𝑇 ∫ 𝛽𝛽(𝑡𝑡)𝑑𝑑𝑡𝑡1
0 , provided that the integral exists for each characteristic 𝑗𝑗. 

The Gini coefficient, derived from the Lorenz curve, summarizes the distribution 

disparity of a positive random variable. Its relationship with the Lorenz curve is: 

𝐺𝐺 = 1 − 2�𝐿𝐿(τ)
1

0

𝑑𝑑τ, (5) 

 

where 𝐺𝐺 represents the Gini index; this index quantifies the degree of deviation of a given 

random variable's Lorenz curve from the line that indicates perfect equality.10  

I compute the conditional Gini coefficient, considering a vector of covariates, by 

integrating the conditional Lorenz curve described in Equation (4), into the Gini index's 

definition:  

 
9 This convention implies that ∫ 𝛽𝛽𝑗𝑗

𝜏𝜏
0 (𝑡𝑡)𝑑𝑑𝑡𝑡 = 𝜏𝜏𝜆𝜆ℎ,𝑗𝑗(𝜏𝜏), and 𝜆𝜆ℎ(𝜏𝜏) = 1

𝜏𝜏
�∫ 𝛽𝛽1(𝑡𝑡)𝑑𝑑𝑡𝑡𝜏𝜏
0 ,⋯ ,∫ 𝛽𝛽𝑃𝑃(𝑡𝑡)𝑑𝑑𝑡𝑡𝜏𝜏

0 � = 1
𝜏𝜏 ∫ 𝛽𝛽(𝑡𝑡)𝑑𝑑𝑡𝑡𝜏𝜏

0 . 

10 The line of perfect equitability is the Lorenz curve of a degenerate random variable 𝛿𝛿𝜇𝜇 , which only takes the single value 

𝜇𝜇. 
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𝐺𝐺ℎ(𝑥𝑥) = 1 − 2�𝐿𝐿ℎ(𝜏𝜏|𝑥𝑥)𝑑𝑑𝜏𝜏
1

0

 

= 1−
1
𝜇𝜇ℎ
�𝑥𝑥𝑗𝑗 ��2𝛽𝛽𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡

𝜏𝜏

0

𝑑𝑑𝜏𝜏
1

0

𝑃𝑃

𝑗𝑗=1

, (6) 
 

 

where 𝑥𝑥 ∈ 𝑅𝑅𝑃𝑃. This Equation (6) constitutes an additive decomposition of the conditional 

Gini index. This analytical tool is invaluable in scrutinizing the progression of variations in 

the distribution of ℎ(𝑌𝑌) , contingent on the factor endowments and sociodemographic 

characteristics, 𝑥𝑥𝑗𝑗 , as well as the returns (prices) associated with these endowments and 

characteristics, 1
𝜇𝜇ℎ
∫ ∫ 2𝛽𝛽𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡𝜏𝜏

0 𝑑𝑑𝜏𝜏1
0  . 

Notice that the coefficient can be reformulated by partitioning the interval (0,1) into 𝑛𝑛 

equally spaced sub-intervals: 

𝐺𝐺 = 1 −� 2 � 𝐿𝐿(𝜏𝜏)𝑑𝑑𝜏𝜏

𝜏𝜏𝑖𝑖+1

𝜏𝜏𝑖𝑖

𝑛𝑛−1

𝑖𝑖=0

, (7) 

 

where  𝜏𝜏𝑖𝑖 = 𝑖𝑖
𝑛𝑛

, for 𝑖𝑖 = 0,⋯ ,𝑛𝑛 − 1 . By definition, 𝜏𝜏𝑖𝑖+1 − 𝜏𝜏𝑖𝑖 = 1
𝑛𝑛

, and noting that the area 

beneath the line of perfect equitability can be expressed in terms of rectangles and triangles, 

it becomes evident that 

𝐺𝐺 = 2 ���
𝑖𝑖
𝑛𝑛2

+
1

2𝑛𝑛2
− � 𝐿𝐿(𝜏𝜏)𝑑𝑑𝜏𝜏

𝜏𝜏𝑖𝑖+1

𝜏𝜏𝑖𝑖

�
𝑛𝑛−1

𝑖𝑖=0

�. (8) 

 

This connection offers a direct numerical approximation of the Gini coefficient, making it a 

flexible tool in inequality analysis. 
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Equation (8) uniquely identifies sub-intervals significantly affecting the Gini index, 

spotlighting quantiles mainly increasing distribution inequality. Combining equations (6) 

and (8), the coefficient, given a vector of covariates, is redefined as: 

𝐺𝐺ℎ(𝑥𝑥) = 1 −��𝑥𝑥𝑗𝑗
1
𝜇𝜇ℎ

� �2𝛽𝛽𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡
𝜏𝜏

0

𝑑𝑑𝜏𝜏

𝜏𝜏𝑖𝑖+1

𝜏𝜏𝑖𝑖

𝑃𝑃

𝑗𝑗=1

𝑛𝑛−1

𝑖𝑖=0

 

= 2 ���
𝑖𝑖
𝑛𝑛2

+
1

2𝑛𝑛2
−�𝑥𝑥𝑗𝑗

1
𝜇𝜇ℎ

� �𝛽𝛽𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡
𝜏𝜏

0

𝑑𝑑𝜏𝜏

𝜏𝜏𝑖𝑖+1

𝜏𝜏𝑖𝑖

𝑃𝑃

𝑗𝑗=1

�
𝑛𝑛−1

𝑖𝑖=0

�. (9) 
 

 

Equation (9) decomposes the conditional coefficient additively in terms of both endowments 

and characteristics, 𝑥𝑥𝑗𝑗 , and the key sub-intervals influencing distribution inequality. This 

approach enhances our understanding of factors behind income or wealth disparities in 

diverse economic contexts. 

 

2.1 Impact of Individual Characteristics on the Conditional Gini Index 

I use Equation (6) to compute the variation in the conditional Gini index, resulting from a 

small positive change in a characteristic 𝑗𝑗 from 𝑥𝑥𝑗𝑗  to 𝑥𝑥𝑗𝑗′: 

Δ𝐺𝐺ℎ(𝑥𝑥)
Δ𝑥𝑥𝑗𝑗

=
𝐺𝐺ℎ�𝑥𝑥𝑗𝑗′,𝑥𝑥−𝑗𝑗� − 𝐺𝐺ℎ(𝑥𝑥𝑗𝑗 ,𝑥𝑥−𝑗𝑗)

𝑥𝑥𝑗𝑗′ − 𝑥𝑥𝑗𝑗
= −

1
𝜇𝜇ℎ
��2𝛽𝛽𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡

𝜏𝜏

0

𝑑𝑑𝜏𝜏
1

0

≝ −
Π𝑗𝑗
𝜇𝜇ℎ

, (10) 

 

where 𝑥𝑥 = �𝑥𝑥𝑗𝑗 , 𝑥𝑥−𝑗𝑗� = ( 𝑥𝑥1,⋯ , 𝑥𝑥𝑗𝑗 ,⋯ , 𝑥𝑥𝑝𝑝) ∈ 𝑅𝑅𝑃𝑃 . I assume µℎ > 0 , which indicates that the 

direction of the change in the Gini coefficient exclusively relies on the sign of  

Π𝑗𝑗 = �� 2𝛽𝛽𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡
𝜏𝜏

0

𝑑𝑑𝜏𝜏
1

0

. 
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A negative Π𝑗𝑗  indicates that a marginal positive change in covariate 𝑗𝑗 leads to an increase in 

the conditional Gini index, suggesting heightened inequality in the distribution of ℎ(𝑌𝑌) . 

Conversely, a positive shift in covariate 𝑗𝑗  with a positive Π𝑗𝑗  results in a decrease in the 

inequality found in the distribution of ℎ(𝑌𝑌). 

Furthermore, µℎ serves as a scaling parameter that normalizes the Lorenz curve and the 

Gini coefficient within the range of zero to one. Consequently, the magnitude of Π𝑗𝑗 indicates 

the extent of change in the Gini index following an adjustment in covariate 𝑗𝑗. Larger absolute 

values of Π𝑗𝑗 correspond with more pronounced shifts in the absolute Gini coefficient. I label 

the absolute value of Π𝑗𝑗
𝜇𝜇ℎ

 as the impact of covariate 𝑗𝑗 on the distribution of ℎ(𝑌𝑌). Under this 

premise, certain covariates exert a more substantial impact on the distribution of ℎ(𝑌𝑌) 

compared to others. 

 

2.2 Temporal Changes in the Distribution of h(Y) 

I explore the complexities of the distribution of ℎ(𝑌𝑌) to assess how various factors influence 

distributional changes over time. This decomposition helps distinguish effects from shifts in 

individual traits versus changes in returns to these attributes. Similar decomposition 

analyses appear in prior research: DiNardo et al. (1996) use kernel density estimates on 

reweighted samples for counterfactual wage distributions, Firpo, Fortin, and Lemieux 

(2018), hereafter FFL, apply unconditional quantile regressions to decompose wage changes 

across the entire distribution, and MM develop a technique using conditional quantile 

regression. In all scenarios, including mine, the decomposition broadens the Oaxaca (1973) 

method, initially forged to investigate counterfactual disparities in average earnings. 

I aim to explore changes in the distribution of ℎ(𝑌𝑌) across two years, denoted by 𝛹𝛹 ∈

{0,1}, through two counterfactual scenarios. First, I assess the inequality in the distribution 

of ℎ(𝑌𝑌) for 𝛹𝛹 = 1, using the distribution of covariates in year 𝛹𝛹 = 0. Second, I evaluate the 

disparity in the distribution of ℎ(𝑌𝑌) in year 𝛹𝛹 = 1, assuming only one covariate follows the 
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distribution in year 𝛹𝛹 = 0 . This approach helps understand the impacts on ℎ(𝑌𝑌)  due to 

changes in covariates and their returns. 

Let us model the conditional quantile function in year 𝛹𝛹 as 

𝑄𝑄ℎ(𝑌𝑌)(𝑡𝑡|𝑥𝑥;𝛹𝛹) = 𝑥𝑥𝑇𝑇 𝛽𝛽𝛹𝛹(𝑡𝑡), (11) 
 

where 𝛽𝛽𝛹𝛹(𝑡𝑡) represents the coefficients of the covariates in year 𝛹𝛹 at quantile 𝑡𝑡, and 𝑥𝑥 is a 

vector of covariates. Now, let 𝑋𝑋(𝛹𝛹) denote an 𝑁𝑁𝛹𝛹 × 𝑃𝑃 matrix of data on these covariates in 

year 𝛹𝛹 with 𝑁𝑁𝛹𝛹  denoting the number of observations and 𝑃𝑃 the number of covariates. Also, 

denote by 𝑋𝑋�𝑗𝑗(𝛹𝛹)  the average of column 𝑗𝑗  of the matrix 𝑋𝑋(𝛹𝛹) . Using the additive 

decomposition of the Gini coefficient, Equation (6), I propose an estimate for the conditional 

Gini index in year 𝛹𝛹: 

𝐺𝐺�ℎ𝛹𝛹 = 1 −�𝑋𝑋�𝑗𝑗(𝛹𝛹)
𝑃𝑃

𝑗𝑗=1

Π�𝑗𝑗𝛹𝛹

�̂�𝜇ℎ𝛹𝛹
, (12) 

 

where �̂�𝜇ℎΨ and Π�ℎΨ are the respective estimates for µℎ and 𝛱𝛱𝑗𝑗  in year 𝛹𝛹. 

Assuming for simplicity that changes in covariates don't modify their returns, despite 

potential general equilibrium effects, I estimate the conditional Gini index for year 𝛹𝛹 = 1 

with covariate distribution from year 𝛹𝛹 = 0 as follows: 11  

𝐺𝐺�ℎ1�𝑋𝑋(0)� = 1 −�𝑋𝑋�𝑗𝑗(0)
𝑃𝑃

𝑗𝑗=1

Π�𝑗𝑗1

�̂�𝜇ℎ1
. (13) 

 

For this discussion, let 𝐺𝐺ℎΨ denote the Gini index computed from a sample in year Ψ. I 

calculate changes in the Gini coefficient to capture shifts in the distribution of ℎ(𝑌𝑌): 

 
11 This assumption is inherent in the Oaxaca (1973) decomposition and present in DiNardo et al. (1996) and MM. 
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𝐺𝐺ℎ1 − 𝐺𝐺ℎ0 = 𝐺𝐺�ℎ1 − 𝐺𝐺�ℎ0 + residual 
= 𝐺𝐺�ℎ1 − 𝐺𝐺�ℎ1�𝑋𝑋(0)������������

change in covariates

+ 𝐺𝐺�ℎ1�𝑋𝑋(0)� − 𝐺𝐺�ℎ0�����������
change in returns

+ residual. (14) 

 

The change in the distribution tied to shifts in individual characteristics is measured by 𝐺𝐺�ℎ1 −

𝐺𝐺�ℎ1�𝑋𝑋(0)�, where returns remain constant and only the covariates vary. On the other hand, 

the shift in the distribution of ℎ(𝑌𝑌) triggered by changes in returns to individual traits is 

encapsulated by 𝐺𝐺�ℎ1�𝑋𝑋(0)� − 𝐺𝐺�ℎ0, where covariates stay the same and only returns change. 

I define 𝑋𝑋−𝑗𝑗1 (0) = �𝑋𝑋�1(1),⋯ ,𝑋𝑋�𝑗𝑗(0),⋯ ,𝑋𝑋�𝑃𝑃(1)�  as a vector in 𝑅𝑅𝑃𝑃 , where the 𝑗𝑗 -th entry 

represents the average of characteristic 𝑗𝑗  in year 𝛹𝛹 = 0 , while all other entries are the 

averages of the respective covariates in year 𝛹𝛹 = 1 . To pinpoint the effect of a single 

covariate changing from year 𝛹𝛹 = 0 to 𝛹𝛹 = 1, I introduce the impact on the change in the 

distribution of ℎ(𝑌𝑌): 

𝐺𝐺�ℎ1 − 𝐺𝐺�ℎ1 �𝑋𝑋−𝑗𝑗1 (0)� = −�𝑋𝑋�𝑗𝑗(1) − 𝑋𝑋�𝑗𝑗(0)�
Π�𝑗𝑗1

�̂�𝜇ℎ1
. (15) 

 

The Equation assumes a particular sequence of changes from 𝛹𝛹 = 0  to 𝛹𝛹 = 1 , which is 

arbitrary. Exploring what would occur at 𝛹𝛹 = 0 with covariates of 𝛹𝛹 = 1 offers alternate 

insights into the effects of changes in characteristics and their returns. 
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2.2.1 Alternative Methods 

I also apply the MM method to understand changes in the distribution of ℎ(𝑌𝑌), estimating 

the entire distribution to identify factors influencing temporal shifts.12 First, I model the 

conditional quantile of ℎ(𝑌𝑌) in year Ψ as given by equation (11): 

𝑄𝑄ℎ(𝑌𝑌)(𝑡𝑡|𝑥𝑥;𝛹𝛹) = 𝑥𝑥𝑇𝑇 𝛽𝛽𝛹𝛹(𝑡𝑡). 

Second, I employ the following steps to estimate the implied marginal densities: 

1. Generate a random sample of size 𝑚𝑚  from a uniform random variable on 

[0,1]: 𝑢𝑢1,⋯ ,𝑢𝑢𝑚𝑚 

2. Estimate 𝑄𝑄ℎ(𝑌𝑌)(𝑡𝑡|𝑥𝑥;𝛹𝛹) yielding 𝑚𝑚 estimates �̂�𝛽Ψ(𝑢𝑢𝑖𝑖). 

3. Generate a random sample of size 𝑚𝑚 with replacement from 𝑋𝑋(𝛹𝛹), the 𝑁𝑁𝛹𝛹 × 𝑃𝑃 matrix 

of data on covariates, denoted by{𝑥𝑥𝑖𝑖∗(𝛹𝛹)}𝑖𝑖=1𝑚𝑚 . 

4. Generate a random sample of ℎ(𝑌𝑌) that is consistent with the conditional distribution 
defined by the model: �𝜂𝜂𝑖𝑖∗(𝛹𝛹) ≝ 𝑥𝑥𝑖𝑖∗(𝛹𝛹)𝑇𝑇�̂�𝛽Ψ(𝑢𝑢𝑖𝑖)�𝑖𝑖=1

𝑚𝑚
. 

For generating a random sample from the marginal distribution of ℎ(𝑌𝑌) as it would have 

been in Ψ = 1 —assuming all covariates had been as in Ψ = 0—I use 𝑋𝑋(0) in the third step 

above, assuming covariate changes do not modify their returns. 

To construct a counterfactual where only one covariate, 𝑥𝑥𝑖𝑖(1), is distributed as in year 

Ψ = 0, I introduce additional steps based on the method by MM. The authors defined a 

partition of the covariate 𝑥𝑥𝑖𝑖(1)  in 𝐽𝐽  classes, 𝐶𝐶𝑗𝑗(1) , with relative frequencies 𝑓𝑓𝑗𝑗(·) , for 𝑗𝑗 =

1,⋯  , 𝐽𝐽, and propose the following: 

1. Generate {𝜂𝜂𝑖𝑖∗(1)}𝑖𝑖=1𝑚𝑚 , a random sample of ℎ(𝑌𝑌), with size 𝑚𝑚, that is consistent with 

 
12 This method uses the probability integral transformation theorem, which states that if 𝑈𝑈 is uniformly distributed on [0,1], 

then 𝐹𝐹−1(𝑈𝑈) follows the distribution 𝐹𝐹. 
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the conditional distribution defined by the model. 

2. Take the first class, 𝐶𝐶1(1), and select all elements of {𝜂𝜂𝑖𝑖∗(1)}𝑖𝑖=1𝑚𝑚  that are generated using 

this class, 𝐼𝐼1 = {𝑖𝑖|𝑥𝑥𝑖𝑖(1) ∈ 𝐶𝐶1(1)}, that is {𝜂𝜂𝑖𝑖∗(1)}𝑖𝑖∈𝐼𝐼1 . Generate a random sample of size 

𝑚𝑚 × 𝑓𝑓1(0) with replacement from {𝜂𝜂𝑖𝑖∗(1)}𝑖𝑖∈𝐼𝐼1 . 

3. Repeat step 2 for 𝑗𝑗 = 2,⋯ , 𝐽𝐽. 

These approaches enable me to decompose changes in the density of ℎ(𝑌𝑌) based on these 

generated samples. 

Let 𝑓𝑓�𝜂𝜂(Ψ)� be an estimator of the marginal density of an observed sample of ℎ(𝑌𝑌) in 

year Ψ, and 𝑓𝑓�𝜂𝜂∗(Ψ)� an estimator of the density of ℎ(𝑌𝑌) based on the generated sample 

{𝜂𝜂𝑖𝑖∗(Ψ)}𝑖𝑖=1𝑚𝑚 . I denote 𝑓𝑓(𝜂𝜂∗(1);𝑋𝑋(0)) as an estimate of the counterfactual density in Ψ = 1 if 

the covariates had been distributed as in Ψ = 0. Similarly, 𝑓𝑓(𝜂𝜂∗(1); 𝑥𝑥𝑖𝑖(0)) is an estimate of 

the density in Ψ = 1 if only the 𝑖𝑖-th covariate is distributed as in Ψ = 0. For a summary 

statistic 𝛼𝛼(⋅) (e.g., a quantile or scale measure), the decomposition of changes in 𝛼𝛼 can be 

written as: 

𝛼𝛼�𝑓𝑓(𝜂𝜂(1))� − 𝛼𝛼�𝑓𝑓(𝜂𝜂(0))� =       �𝑓𝑓(𝜂𝜂∗(1))� − 𝛼𝛼 �𝑓𝑓�𝜂𝜂∗(1);𝑋𝑋(0)�������������������������
change in covariates

 (16) 

                                                       + 𝛼𝛼 �𝑓𝑓(𝜂𝜂∗(1);𝑋𝑋(0))� − 𝛼𝛼 �𝑓𝑓�𝜂𝜂∗(0)�������������������������
change in returns

 
(17) 

+ residual (18) 
 

Likewise, the individual contribution of a covariate is: 

𝛼𝛼�𝑓𝑓(𝜂𝜂∗(1))� − 𝛼𝛼�𝑓𝑓�𝜂𝜂∗(1)�; 𝑥𝑥𝑖𝑖(0)�. (19) 
 

This approach estimates the full distribution to pinpoint factors influencing shifts in specific 

quantiles, unlike the proposed method, which assesses inequality across the whole 

distribution directly. 
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Another approach to decomposing distributional changes is the method proposed by 

FFL, which relies on Recentered Influence Function (RIF) regressions to estimate the effect 

of covariates on unconditional quantiles or other statistics, such as the Gini index. FFL 

provides insights into how changes in returns and covariates (they call those changes in 

composition and structure) shape inequality over time without estimating the conditional 

distribution. 13 Appendix F deeply explains the FFL method, its scope and limitations. 

 

3 Estimation Procedure 

In the previous section, I measure the impacts and decompose the temporal changes in the 

distribution of ℎ(𝑌𝑌)  by estimatingΠ𝑗𝑗 = ∫ ∫ 2𝛽𝛽𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡𝜏𝜏
0 𝑑𝑑𝜏𝜏1

0  as detailed in Equation (6). A 

straightforward estimate would be Π�𝑗𝑗 = ∫ ∫ 2𝛽𝛽�𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡𝜏𝜏
0 𝑑𝑑𝜏𝜏1

0 , where 𝛽𝛽�𝑗𝑗 represents the 

estimated quantile regression coefficient. 

To clarify the estimation approach, I consider 𝑄𝑄ℎ(𝑌𝑌)(𝑡𝑡|𝑥𝑥)  for 𝑡𝑡 ∈  (0,1)  to be the 𝑡𝑡 -th 

conditional quantile function of ℎ(𝑌𝑌), given a vector of covariates 𝑥𝑥 ∈  𝑅𝑅𝑃𝑃. I posit that the 

conditional quantile function can be model as: 

𝑄𝑄ℎ(𝑌𝑌)(𝑡𝑡|𝑥𝑥)  =  𝑥𝑥𝑇𝑇𝛽𝛽(𝑡𝑡), (20) 
 

Here, 𝛽𝛽(𝑡𝑡) is a vector in 𝑅𝑅𝑃𝑃, with its entries being the quantile regression coefficients. From 

Koenker and Bassett (1978), we know that the quantile regression estimates exist and 

minimize a weighted sum of absolute residuals.  

My goal is to estimate the impact using quantile regression coefficients estimates: 

 
13 An essential distinction between the FFL method and my proposed approach is that the RIF transformation depends on 

the entire wage distribution and the distributions of covariates through its effects on wages, making it sensitive to changes 

in the distribution of characteristics. See Appendix F for details. 
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Π�𝑗𝑗 = ��2𝛽𝛽�𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡
𝜏𝜏

0

𝑑𝑑𝜏𝜏
1

0

= � � �2𝛽𝛽�𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡
𝜏𝜏

0

𝑑𝑑𝜏𝜏

𝜏𝜏𝑖𝑖+1

𝜏𝜏𝑖𝑖

𝑛𝑛−1

𝑖𝑖=0

. (21) 

 

One method to determine the double integrals in Equation (21) is to perform a numerical 

computation on a grid for evaluations of �̂�𝛽𝑗𝑗(𝑡𝑡) . However, a challenge emerges when 

extending one-dimensional integration methods to multiple dimensions: the required 

function evaluations increase exponentially. For instance, using 𝑚𝑚 evaluation points would 

require estimations proportional to 𝑚𝑚2. 

To simplify calculations, I suggest deriving a smooth approximation for �̂�𝛽𝑗𝑗(𝑡𝑡) using a 

known functional form with an identifiable antiderivative. This allows for analytical 

calculation of Π�𝑗𝑗 using the functional form, keeping the number of function evaluations to 𝑚𝑚, 

in line with the initial set of evaluation points.14 

I use orthogonal polynomials to approximate these continuous functions. 15  This 

technique produces a singular polynomial of order 𝐾𝐾  that minimizes the squared error 

between the smoothing polynomial and the observed function values. One limitation when 

using orthogonal polynomials to compute Π𝑗𝑗 is the need to define the polynomial's order, 𝐾𝐾. 

However, a notable advantage is the ease of computation for Π𝑗𝑗's estimate. I can determine 

the double integrals of Equation (21) in a single step. 

I assume that �̂�𝛽𝑗𝑗(𝑡𝑡) is continuous over the interval [0,1]. As Judd (1998) describes, I can 

approximate this function using orthogonal polynomials on this interval. 16  Several 

 
14 Several smoothing techniques for continuous functions exist. Splines, a well-known technique, approximate functions 

with polynomials segments that joint at knots. However, estimating 𝛱𝛱𝑗𝑗  using splines is challenging due to the need for 

selecting knots and the requirement for multiple piecewise integrations based on these knots. 
15 A weighting function, 𝑤𝑤(𝑥𝑥), defined on [𝑎𝑎, 𝑏𝑏], is positive almost everywhere and has a finite integral on [𝑎𝑎, 𝑏𝑏]. Given a 

weighting function, the inner product between the polynomials 𝑓𝑓  and 𝑔𝑔  is ⟨𝑓𝑓,𝑔𝑔⟩  = ∫ 𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥)𝑤𝑤(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎  . A family of 

polynomials {𝑝𝑝𝑛𝑛(𝑥𝑥)} is orthogonal relative to 𝑤𝑤(𝑥𝑥) if and only if ⟨𝑝𝑝𝑚𝑚, 𝑝𝑝𝑛𝑛⟩ = 0 for all 𝑚𝑚 ≠ 𝑛𝑛. 
16 The Weierstrass Approximation Theorem allows for uniform approximation of �̂�𝛽𝑗𝑗(𝑡𝑡) over [0,1] to any precision with 

these polynomials. 
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orthogonal polynomial families, like Legendre, Chebyshev, Laguerre, and Hermite, vary in 

their weighting functions and domains. For bounded domain functions, the simplest 

weighting function is 𝑤𝑤(𝑥𝑥) = 1, matching Legendre polynomials. Therefore, for simplicity, I 

use Legendre polynomials to approximate �̂�𝛽𝑗𝑗(𝑡𝑡) on [0,1]. 

I derive the least-square approximation of �̂�𝛽𝑗𝑗(𝑡𝑡) using a polynomial of order 𝐾𝐾 on [0,1].17 

Specifically, let 𝛽𝛽�𝑗𝑗,𝐾𝐾(𝑡𝑡) represent a polynomial described as: 

𝛽𝛽�𝑗𝑗,𝐾𝐾(𝑡𝑡) = 𝛼𝛼0,𝑗𝑗𝑝𝑝0(𝑡𝑡) + 𝛼𝛼1,𝑗𝑗𝑝𝑝1(𝑡𝑡) + ⋯+ 𝛼𝛼𝐾𝐾,𝑗𝑗𝑝𝑝𝐾𝐾(𝑡𝑡). 

Here, {𝑝𝑝𝑘𝑘}𝑘𝑘=0𝐾𝐾  denotes the first 𝐾𝐾 + 1 Legendre polynomials. The objective is to minimize the 

sum of the squared errors between �̂�𝛽𝑗𝑗(𝑡𝑡) and 𝛽𝛽�𝑗𝑗,𝐾𝐾(𝑡𝑡), defined by 

𝑒𝑒�𝛼𝛼0,𝑗𝑗 ,⋯ ,𝛼𝛼𝐾𝐾,𝑗𝑗� = ���̂�𝛽𝑗𝑗(𝑡𝑡) − 𝛽𝛽�𝑗𝑗,𝐾𝐾(𝑡𝑡)�
2
𝑑𝑑𝑡𝑡

1

0

. 

For a given 𝐾𝐾, I define 

𝛽𝛽 �� 𝑗𝑗,𝐾𝐾(𝑡𝑡) = 𝑎𝑎𝑎𝑎𝑔𝑔𝑚𝑚𝑖𝑖𝑛𝑛
𝛼𝛼0,𝑗𝑗,⋯,𝛼𝛼𝐾𝐾,𝑗𝑗

 𝑒𝑒�𝛼𝛼0,𝑗𝑗 ,⋯ ,𝛼𝛼𝐾𝐾,𝑗𝑗�; 

the polynomial 𝛽𝛽 �� 𝑗𝑗,𝐾𝐾(𝑡𝑡)  is a smoothed approximation of �̂�𝛽𝑗𝑗(𝑡𝑡)  based on 𝐾𝐾 + 1  known 

polynomials. One of the major benefits of this approximation is its closed-form 

antiderivatives, which streamline computation. By leveraging this smoothed approximation, 

I can efficiently determine the influence of the 𝑗𝑗 -th covariate on the inequality of the 

distribution of ℎ(𝑌𝑌), as described in Equation (21). 18 

I use bootstrapping to assess the significance of Π�𝑗𝑗 and establish its confidence intervals. 

The process involves 𝑁𝑁 observations resampled ℝ times with replacement. Each iteration 

 
17 Appendix B provides details of the approximation process. 
18 Appendix C features robustness tests confirming the proposed method's high accuracy and precision across various 

polynomial orders. 
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estimates the quantile regression coefficients, �̂�𝛽(𝑡𝑡) , and their smooth polynomial 

approximations, 𝛽𝛽 �� 𝑗𝑗,𝐾𝐾(𝑡𝑡) , from the resampled data. Using this smooth approximation, I 

compute an estimate of Π�𝑗𝑗  based on Equation (21). I compute the point estimate for the 

impacts, 𝛱𝛱𝑗𝑗 , by averaging these ℝ estimates. The 95% bootstrap confidence intervals are 

constructed using the 2.5-th and 97.5-th quantiles from these estimates. 19 

 

4 Hourly Wage Series From the CPS ORG 

In this study, I scrutinize data from the CPS to analyze the shifts in wage distribution in the 

US from 1980 to 2015. Since 1979, the CPS ORG has actively engaged workers in a 

comprehensive survey, collecting detailed earnings data. This data facilitates the accurate 

estimation of hourly wages, which can be derived directly from reported hourly earnings or 

calculated by dividing weekly earnings by the corresponding hours worked per week.  

Nevertheless, the task of utilizing the ORG data comes with its set of challenges, as 

highlighted by Acemoglu and Autor (2011).20 To ensure I overcome all these challenges, I 

utilize programs available under the GNU General Public License created by the Center for 

Economic and Policy Research (CEPR). This resource integrates data from the National 

Bureau of Economic Research Annual Earnings Files with the CPS basic monthly files, 

establishing a consistent wage series utilizing the data from the CPS ORG.21  

 
19 The accuracy of my estimation hinges on precisely modeling the conditional quantile function, especially the linearity 

assumption. For a large sample, as detailed in Bantli and Hallin (1999) and Koenker (2005), we know that �̂�𝛽𝑛𝑛(𝑡𝑡) → 𝛽𝛽(𝑡𝑡), 

and therefore 𝛱𝛱�𝑗𝑗 ≈ 𝛱𝛱𝑗𝑗 . Appendix C confirms the estimation's accuracy across different polynomial orders. 
20To ensure consistency in hourly wage data across years, I adjust for the CPS's methodological changes over three decades. 

These include modifications in top coding weekly earnings, categorizing overtime, tips, and commissions for hourly 

workers, and variations in reporting 'usual weekly hours.' 
21 My development of a consistent hourly wage series from 1980 to 2015 owes much to the CEPR programs. For details, see 

Schmitt (2003) on the series and Acemoglu and Autor (2011) for the methodology. A replication package is available at 

https://doi.org/10.7910/DVN/HJEVTW and my website. 

https://doi.org/10.7910/DVN/HJEVTW
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For the final sample, I adjust wages to 2020's monetary value using the Consumer Price 

Index issued by the Bureau of Labor Statistics. 22 I focus on hourly workers aged 16 to 65, 

earning $1 to $100 (in 1979 dollars). Following Acemoglu and Autor (2011), I calculate 

potential experience by subtracting the number of years of education from individuals' ages 

and deducting five additional years to account for elementary schooling. Finally, I include 

indicators for female, nonwhite and unionized workers and maintain uniform classifications 

for twenty industries, including a consistent category for manufacturing employees. 

In this study, I meticulously categorize educational attainment, recognizing its crucial 

impact on earnings as established by seminal works in economics. I draw upon the insights 

of Card (1999), Autor, et al. (2003), Goldin and Katz (2007), and Acemoglu and Autor (2011), 

all of whom underscore education's pivotal role in shaping labor market outcomes and 

highlight its position as a key determinant of earnings and employment opportunities. 

I include various education levels in my analysis, from non-school attendees to bachelor’s 

degree holders and above. Specifically, I include the associate degree category to 

acknowledge its proven positive impact on earnings. Recent studies, including those by 

Jepsen et al. (2014), Bahr et al. (2015), Stevens et al. (2019), and Grosz (2020), emphasize 

the significant earnings benefits of community college programs, validating the inclusion of 

associate degrees for a comprehensive wage impact assessment. 

My analysis covers a large sample of around 165,000 workers annually from 1980 to 

2015. Table 1 presents summary statistics for men and women, highlighting the gender wage 

gap. Men's average real wages remained steady at $24.4 (3.2), while women experienced a 

systematic wage increase, reducing the gender wage gap over the years. The table shows 

rising educational attainment for both genders, with women surpassing men in average 

education levels. Additionally, Table 1 reveals a decline in unionization and manufacturing 

employment, alongside an increase in nonwhite workers' participation during this period. 

 
22 I use the seasonally adjusted US city average index for all items (Series Id: CUSR0000SA0). 
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5 Sources of Wage Inequality in the US 

Building on the relationship between the conditional Gini coefficient and conditional 

quantile regression, I employ the comprehensive hourly wage data from the CPS ORG for my 

empirical application. I set ℎ(⋅) as the natural logarithm and choose 1986 (Ψ = 0) as the 

start year, marking the beginning of growing wage inequality in the US during the early 

1980s. The analysis extends to 2015 ( Ψ = 1) , covering three decades of rising wage 

disparity. 

I model the conditional quantile function of the logarithm of wages as: 

𝑄𝑄ln𝑤𝑤𝑖𝑖𝑖𝑖𝑗𝑗�𝑡𝑡|𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗;Ψ� = 𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑇𝑇 𝛽𝛽Ψ(𝑡𝑡) + 𝜂𝜂𝑖𝑖(𝑡𝑡) + 𝛾𝛾𝑗𝑗(𝑡𝑡) + 𝜀𝜀𝑖𝑖𝑖𝑖𝑗𝑗(𝑡𝑡) (22) 
 

Here, 𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗 represents the characteristic for individual 𝑖𝑖, in state 𝑠𝑠, working in industry 𝑗𝑗. This 

vector encompasses job-related attributes such as unionization status, public sector 

employment, manufacturing job, and part-time work status. Demographic attributes include 

indicators for nonwhite, female, and marital status. Additional controls cover a quadratic in 

potential experience, urban living indicators, education categories, decade-based experience 

indicators, and their interactions with education classes. Finally, 𝜂𝜂𝑖𝑖(𝑡𝑡) and 𝛾𝛾𝑗𝑗(𝑡𝑡) are state 

and industry fixed effects, respectively. 

In my model, I include independent variables as robust controls to account for 

macroeconomic and structural changes. The industry fixed effects capture the shift from 

manufacturing-heavy sectors to service- and tech-oriented sectors (Blum, 2008). 

Furthermore, job-related attributes and state fixed effects capture international trade 

impacts and regional disturbances, including the 'China shock' (Autor et al., 2013) and other 

nuances of trade liberalization (Chongvilaivan and Hur, 2011). Urban living and education 

indicators underline the influence of technological advances on wages, showing how 

technology benefits specific regions and skill sets (Hühne and Herzer, 2017). 
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Figure 1 displays the quantile regression coefficients estimated of Equation (22) for a 

grid of 69 equally spaced points over the (0,1) interval 23. In each panel, the solid line 

corresponds to the estimates in 1986, while the dashed line depicts those from 2015. In each 

case, the shaded regions around the lines correspond to the 95% confidence interval 

obtained by computing a Huber sandwich estimate using a local estimate of the sparsity. 

Figure 1 offers a comprehensive view of the factors that affect wages in 1986 and 2015 

across the entire distribution. Starting with union status, the positive wage premium 

associated with union membership was more pronounced in 1986 across all quantiles but 

has reduced by 2015. For public sector employees, there is a premium for lower wage 

workers, and a penalty for upper wage employees, and these premium and penalty remains 

similar in magnitude for both 1986 and 2015.  

Figure 1 depicts the evolving impact of manufacturing jobs on wages across three 

decades. Initially, in 1986, manufacturing jobs negatively affected wages, but by 2015, they 

became a positive determinant for wages across most quantiles, with diminishing impact at 

the highest income levels. This transition from negative to positive impact reflects the 

evolving role of the manufacturing sector in wage dynamics, likely due to structural changes, 

economic shifts, and external factors like the 'China shock' and trade agreements, which 

contributed to a more productive manufacturing sector in the US over this period. 

Looking at demographic factors, nonwhite and women workers both show wage 

penalties, with the latter having a slightly more pronounced difference, especially in higher 

quantiles. Notably, this disparity has narrowed for both groups over the 30-year span, 

indicating progress, albeit limited, in wage equality. Moreover, married workers enjoy a 

wage premium, particularly in 1986 in the lower end of the distribution. However, the 

advantage at the lower wages diminishes by 2015. 

Figure 1 underscores a shift in the urban wage premium between 1986 and 2015. In 

1986, the figure shows an evident urban wage premium, especially prominent in the middle 

 
23 The 69 equally spaced points create a grid that has constant step of around 1.4%. 
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to higher quantiles. However, by 2015 this premium appears to diminish, suggesting a 

decrease in the urban wage advantage. This trend complements the findings of De la Roca 

and Puga (2017), emphasizing the dynamic nature of knowledge spillover in urban 

environments and its potential impact on wages over time. 

Figure 1 shows different wage trends from 1986 to 2015 across education levels. In 1986, 

high school and some college-educated individuals had higher wages in lower quantiles than 

their 2015 peers, indicating better pay for less advanced degrees. Associate degree earners 

had similar wages in both years, with the 2015 cohort slightly ahead in higher earnings. 

Notably, college graduates in 2015 consistently outearned their 1986 counterparts, 

highlighting the growing value of higher education, particularly for top earners, reflecting 

changing labor market dynamics over three decades. 

 

5.1 Impact of Individual Characteristics 

I implement the procedure described in section 3 to estimate the sources of wage inequality 

in the US. I choose the order of the polynomial approximation to be 7 for 1985 (𝛹𝛹 = 0) and 

2015 (𝛹𝛹 = 1). 24 Additionally, I set 1,000 bootstrap repetitions for estimation, compute �̂�𝜇𝑙𝑙𝑛𝑛 

as the weighted average of the logarithm of 2020 real wages, and estimate Π�𝑗𝑗 from Equation 

(20) for both years to assess the impact estimate Π
�𝑗𝑗
𝜇𝜇�𝑙𝑙𝑙𝑙

. 

Table 2 shows estimation results for selected covariates. As discussed in section 2.1, 

given a small positive change in covariate 𝑗𝑗 , a positive sign of Π�𝑗𝑗  is associated with a 

reduction in inequality of the (log) wage distribution. Each cell in Table 2 shows the impact 

estimation and its 95% bootstrap confidence interval, with columns representing different 

years. Notably, all covariates in Table 2 are binary, except potential experience, an important 

consideration when thinking about small positive changes. 

 
24 Appendix C confirms that the results are robust to the choice of the polynomial order. 
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Evaluating the results in Table 2, one can discern the relative impacts of various factors 

on wage inequality between 1986 and 2015. Unionization consistently decreased wage 

disparities; a rising proportion of unionized workers led to notable wage gap reductions, 

although its influence waned over time, pointing to evolving workplace dynamics and the 

role of unions. Public sector employment had a marginal positive effect in 1986, but this 

effect disappeared by 2015. In contrast, the manufacturing sector, initially worsening wage 

inequality in 1986, began to mitigate it by 2015. 

Table 2 shows that potential experience has a modest but steady role in reducing wage 

disparities. Marital status steadily helps narrow the wage gap, while urban residency's 

impact on inequality slightly diminished over time. Race and gender factors, although 

negative, have seen reduced adverse impacts. However, their ongoing effects highlight the 

necessity for persistent interventions. 

Higher education levels, particularly college education, have a significant impact on 

reducing wage inequality. An increase in college-educated workers notably lowers the 

conditional Gini index, more so than high school education, reflecting the premium on college 

education in wage determination. The results in Table 2 not only highlight the variables 

impacting wage inequality in the US during the study period but also reveal the changing 

magnitude and direction of these impacts. Some factors actively reduce the wage gap, while 

others highlight ongoing areas for intervention. The next subsection explores these temporal 

shifts in wage distribution. 

 

5.2 Temporal Changes in the Distribution of (Log) Wages 

In this subsection, I explore wage distribution changes over time, contrasting my method 

with the MM algorithm. I split the interval (0,1) into four sub-intervals (Q1, Q2, Q3, Q4) and 

use a seventh-degree polynomial approximation, alongside a repetition count of 1,000. For 

the MM method, I follow the guidelines from subsection 2.2.1, setting 𝑚𝑚 to 4,500 and using 
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𝛼𝛼(⋅)  as the quantile statistic. This comparison aims to highlight the advantages of my 

proposed approach. 

Table 3a presents MM decomposition results for wage data from 1986 and 2015, showing 

quantiles from the 1st to the 99th percentile of the estimated log-transformed wage 

distributions, capturing a wide spectrum of the wage distribution. The third column 

specifically reports the changes in these quantiles, including both point estimates and 95% 

bootstrap confidence intervals derived from 1,000 bootstrap samples. 

Column 3 of Table 3a reflects overall wage changes from 1986 to 2015, revealing the MM 

method's limitations in capturing nuanced inequality changes. It shows significant wage 

increases at the distribution's extremes, with 30.5% growth at the lowest quantile and 29% 

at the highest. However, the MM method's focus on discrete quantiles falls short in providing 

a complete picture of inequality changes across the wage spectrum, as indicated by the 

marginal increase in the Gini coefficient from 11.04 to 11.09. 

Columns 4 to 6 of Table 3a dissect the total wage distribution changes into three parts: 

covariate changes (Equation 16), variations in returns (Equation 17), and a residual 

component (Equation 18). This breakdown analyzes the factors affecting wage changes at 

different income levels. However, interpreting these results in terms of inequality is complex. 

The analysis shows mixed outcomes, with some quantiles experiencing positive effects and 

others negative, making it difficult to ascertain a clear overall impact on wage inequality. 

The analysis reveals contrasting effects of covariates on wages across income levels. 

Changes in covariates have little effect on wages at lower percentiles (1st and 10th), but 

significantly increase wages at the 25th percentile and above, benefiting higher-income 

individuals. The impact of returns on characteristics varies: positive at both distribution 

ends, indicating the value of certain attributes or skills, but negative at the median, implying 

average earners benefit less or other factors are at play. 

Finally, Columns 7 to 15 in Table 3a indicate varied wage impacts of individual covariates 

across income levels. Unionization negatively affects higher wage percentiles (75th and 
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90th), while manufacturing shows minimal impact. Nonwhite workers experience wage 

disadvantages across a broad range (10th to 90th percentiles), and women's wage impact is 

mixed, with disadvantages at higher wages but gains at the lowest quantile. Urban living 

significantly impacts only the 90th percentile. Crucially, higher education, particularly 

college degrees, positively affects wages across most percentiles, underscoring its role in 

wage growth. 

Table 3b provides a detailed breakdown of the shifts in the wage distribution, employing 

the additive decomposition approach to the Gini index as outlined in Equation (14). The 

format of this table mirrors that of Table 3a, where each cell offers two pieces of information: 

the initial entry denotes the point estimate, while the subsequent entry indicates the 95% 

bootstrap confidence intervals derived from 1,000 bootstrap samples. Within the context of 

this table, a negative point estimate suggests a decrease in the Gini coefficient, signaling a 

decline in wage inequality. Hence, any negative figures within the table can be interpreted as 

factors contributing to a more equitable wage distribution.25 

Table 3b analyzes wage inequality changes from 1986 to 2015 across quartiles. It reveals 

decreased inequality for lower wage earners (Q1 and Q2), with a significant reduction in Q1. 

Conversely, the top earners (Q4) experienced increased inequality, indicating growing 

disparities at higher income levels. The proposed method's advantage is evident, as it shows 

a significant decrease in inequality at the lower end, almost balancing the increase at the 

higher end, thus providing a clearer understanding of how wage inequality has evolved over 

time. 

Table 3b shows the effects of covariates and the associated returns on wage inequality. 

Covariates have no significant impact in the lowest quartile (Q1) but are influential in the 

second to fourth quartiles (Q2-Q4), affecting middle to upper income brackets. There is a 

consistent, significant increase in wage inequality across all quartiles due to changes in 

returns to certain characteristics, more so in the higher wage quartiles (Q3 and Q4). This 

 
25 Tables F.1 and F.2 in Appendix F present the results obtained by using the FFL method. 
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indicates that certain skills or attributes are increasingly valuable, especially in the higher 

wage sectors, leading to a widening wage gap.26 

Table 3b reveals that unionization and manufacturing significantly impact wage 

inequality across all quartiles, with changes in these characteristics leading to increased 

disparities. This reflects broader economic shifts, including the decline in unionized jobs and 

the transformation of manufacturing due to globalization and automation. These changes 

result in divergent wage outcomes, with higher-skilled workers benefiting while those with 

fewer skills may face stagnation. My methodology, unlike the MM method, precisely isolates 

these changes in returns, offering a clearer understanding of how these sectors contribute to 

growing wage disparities. 

Regarding demographics, the analysis separates the impact of race and gender. Table 3b 

shows that racial disparities, represented by the Nonwhite variable in Column 9, contribute 

to increasing wage inequality consistently across all quartiles, suggesting that wages are 

diverging along racial lines. However, the gender factor, analyzed through the Women 

variable in Column 10, does not manifest a significant effect on wage inequality, indicating 

that gender by itself may not be a dominant factor in wage disparity within the scope of this 

analysis. 

Column 11 of Table 3b shows that urbanization consistently reduces wage inequality 

across all quartiles, suggesting that it acts as an equalizer in wage distribution. Urban areas, 

offering diverse job opportunities and higher earning potential, appear to enable more 

equitable wage dispersion. This finding highlights urbanization as a key factor in reducing 

 
26 A detailed comparison between my method and FFL is presented in Section F.4 of Appendix F. The FFL approach 

primarily identifies an increase in inequality in the middle of the distribution but finds little change at the lower and upper 

tails or in the overall Gini index. In contrast, my method not only captures the same increase in mid-distribution inequality 

but also uncovers a significant reduction in inequality at the lower quartile and a notable rise at the upper quartile. 

Moreover, while the FFL method does not detect statistically significant covariate effects on the Gini index, my approach 

identifies meaningful contributions of individual factors to both the overall Gini and specific quartiles. These differences 

arise because the FFL method relies on unconditional quantiles and is sensitive to shifts in the wage distribution, whereas 

my method, based on conditional quantile regression, provides a more precise decomposition of inequality within groups, 

making it better suited for analyzing within-group wage disparities. 
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wage disparities, a nuance uniquely captured by my proposed method, unlike the MM 

method. 

Lastly, the influence of educational attainment, particularly the possession of a College 

Degree shown in Column 15, displays a robust negative and significant impact on inequality, 

with the most substantial effects observable in the uppermost quartile and the aggregate. 

The importance of a college education in the contemporary job market is underscored by 

this trend; as college-educated workers are increasingly favored, the resulting wage 

premium compresses the upper tail of the wage distribution, culminating in a reduction of 

inequality at the higher wage levels. This underscores the critical role of higher education in 

the quest to diminish wage inequality. 

In summary, my method provides a detailed analysis of wage distribution changes, 

offering deeper insights than the MM method. It effectively captures wage dynamics across 

income levels and assesses the impact of socioeconomic factors like unionization, 

manufacturing shifts, reflecting the complex interplay of globalization, technological 

advancement, and skill levels within the workforce. The analysis reveals that urbanization 

reduces wage inequality and higher education, particularly for higher earners, plays a crucial 

role in equalizing wages. This comprehensive approach uncovers various factors driving 

wage inequality, providing valuable evidence for policymakers to address wage disparities. 

 

5.2.1 Discussion 

As I conclude my analysis, I find it crucial to integrate my research outcomes with the widely 

held views on how education affects wage inequality. Consider an economy divided into two 

types of workers, the low-skilled and the high-skilled, with education measuring their skill 

level. The average wages for low-skilled workers, which I will call 𝑤𝑤𝐿𝐿 , contrast with the 𝑤𝑤𝐻𝐻 

earned by their high-skilled counterparts. The educational premium, reflected by the 𝑤𝑤𝐻𝐻/𝑤𝑤𝐿𝐿 

ratio, is something one can roughly estimate by regressing log wages on years of education. 
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As the proportion of high-skilled workers rises, it triggers a significant drop in wage 

inequality, and this happens through two main forces. The price effect kicks in first: the more 

these high-skilled workers flood the market, the more their relative wages start to fall. Then 

there is the composition effect: a larger slice of our workforce is climbing up to the high-skill, 

better-paid ranks, which naturally compresses the wage gap. The results show that 

educational progress is not just theoretical but a tangible lever for lessening wage 

disparities. 

6 Conclusion 

This study presents a new method to examine US wage disparities (1986-2015), 

decomposing the conditional Gini index through the conditional Lorenz curve and quantile 

function. Utilizing data from the CPS ORG, the key findings include the evolving role of 

manufacturing in wage dynamics, reduced but persistent race and gender wage impacts, and 

significant inequality reduction through higher education, especially college degrees. This 

methodological advancement offers new insights into wage distribution and inequality. 

This study enhances the literature on decomposition methods by using the conditional 

Gini coefficient to measure inequality in log wage distribution directly, bypassing density 

modeling. Traditional methods relied on kernel estimates or selected quantile analyses, 

often overlooking comprehensive inequality measures. The proposed approach, assuming a 

linear conditional quantile function for log wages, reveals how the impacts of different 

factors on wages have evolved. Notably, when compared with the MM algorithm, this method 

not only aligns with MM's conclusions but also uncovers aspects of wage inequality that the 

MM method did not distinctly identify. 

A limitation of this study, as an analog to Oaxaca (1973) decomposition, is the 

presumption that changes in the characteristics do not modify the returns of those 

characteristics. Moreover, the analysis only accounts for changes in the covariates from 1986 

to 2015, but the proposed decomposition technique could have considered counterfactual 

scenarios in reverse order. More importantly, the linear decomposition works for a 

particular transformation of wages for which the conditional quantile functions are assumed 
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to be linear in parameters (i.e., log wages), but this may not be a natural scale to analyze the 

distribution disparity. 

Further research could usefully explore how to account for the general equilibrium 

effects given changes in the distribution of the covariates, because those changes will also 

affect the returns to the characteristics. Moreover, a future study investigating different 

counterfactual scenarios and more recent years of analysis would be very interesting. A 

natural progression of this work is to extend the proposed method to the untransformed 

variable (i.e., wages) to address questions related to the inequality of the distribution of the 

variable in levels. 
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Figures 

 

Figure 1: Selected Coefficients Estimates From the Quantile Regression 

 
Note: This figure compares 1986 and 2015 quantile regression coefficient estimates from Equation (22), calculated for 69 points in the 
(0,1) interval. It features solid lines for 1986 and dashed lines for 2015, with shaded areas indicating 95% confidence intervals using a 
Huber sandwich estimate and local sparsity estimation. The regression, utilizing CPS ORG hourly wage data, includes individual, job-related, 
demographic, and macroeconomic factors, plus state and industry fixed effects. 
 



Tables 

 

Table 1: Summary Statistics for the CPS 1980-2015 

 
Note: The table presents summary statistics for my refined sample from the CPS ORG, utilizing the CEPR Uniform Extracts 
to generate a consistent series of hourly wages. All wages have been adjusted to 2020 USD using the CPI series 
CUSR0000SA0. My focus is on workers aged 16 to 65, earning hourly wages between $1 and $100, adjusted to 1979 dollars. 
Potential experience is calculated by subtracting the number of years of education and an additional five years for 
elementary schooling from each individual's age. Both education and potential experience are expressed in years. The 
columns labeled "manufacturing," "union," and "nonwhite" represent the proportion of workers in manufacturing jobs, 
unionized positions, or those who did not identify as white, respectively. All summary statistics are weighted by the CPS 
sample weights. 
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Table 2: Impact Estimates of Selected Covariates 

 
Note: The table presents the impact of individual characteristics on wage inequality for years 1986 and 2017. A positive sign 
of the reported impact is associated with a reduction in the inequality of the distribution of (log) wages given a small increase 
in the corresponding characteristic. The first entry of each cell in the table presents the impact estimation, whereas the 
second reports the 95% bootstrap confidence interval. Each column exhibits the results for the corresponding year. I 
computed the figures using the estimation procedure described in section 3. The polynomial approximation order is 7 for 
both years. The bootstrap uses 1,000 repetitions for each year. For the bootstrap, in each iteration, I calculated the �̂�𝜇𝑙𝑙𝑛𝑛 using 
the weighted average of the logarithm of real wages, adjusted to 2020 dollar value; Then, I compute the estimate Π�𝑗𝑗  from 
Equation (21) and compute the impact estimate Π�𝑗𝑗 �̂�𝜇𝑙𝑙𝑛𝑛⁄  
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Table 3a: Decomposition of Wage Changes (1986-2015) Using the MM Method 

 
Note: The table presents the results of the MM decomposition applied to wage data. The first two columns list the estimated 
log-transformed wages in 1986 and 2015 for selected quantiles. The third column reports the changes in these quantiles 
over the period. Columns four to six break down the total changes in the wage distribution into segments associated with 
covariates, variations in returns, and the residual component. The final columns, seven to fifteen, illustrate the effects of 
specific individual covariates. All point estimates come with 95% bootstrap confidence intervals, derived from 1,000 
bootstrap samples and displayed beneath each computed value. 
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Table 3b: Wage Distribution Shifts (1986-2015) Using an Additive Decomposition of Gini Index 

 
Note: The table details the shifts in wage distribution from 1986 to 2015, employing an additive decomposition of the Gini 
index as detailed in Equation (14). Each entry in Table 3b comprises two parts: the point estimate followed by the 95% 
bootstrap confidence intervals, obtained from 1,000 bootstrap samples. Negative point estimates in this table imply a 
reduction in the Gini coefficient, indicating a decline in wage inequality. The table spans four quartiles and the entire wage 
distribution, offering insights into the dynamics of wage changes and the impact of diverse socioeconomic factors. 



 

36 

Declarations 

Data and materials availability: MORG data is accessible at: http://www.nber.org/morg/annual/. 

CPS basic monthly files are available at: https://www.census.gov/data/datasets/time-

series/demo/cps/cps-basic.html. CEPR code is downloadable at https://ceprdata.org/cps-

uniform-data-extracts/cps-outgoing-rotation-group/cps-org-data/. 
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Appendices: For online publication only 

A. The Lorenz Curve as an Expected Value 

Consider 𝑍𝑍 , a continuous random variable with support in 𝑅𝑅 . Let its cumulative distribution 

function be 𝐹𝐹𝑍𝑍(𝑧𝑧)  and its probability density function be 𝑓𝑓𝑍𝑍(𝑧𝑧) . Assume that the conditional 

expectation 𝐸𝐸[𝑧𝑧|𝑧𝑧 ≤ 𝑎𝑎] exists and is finite for every 𝑎𝑎 ∈ 𝑅𝑅. For a given 𝜏𝜏 in the interval (0,1), define 

the quantile function 𝑄𝑄𝑍𝑍(𝑡𝑡) = inf{𝑧𝑧:𝐹𝐹𝑍𝑍(𝑧𝑧) ≥ 𝑡𝑡} = 𝐹𝐹𝑍𝑍−1(𝑡𝑡) , and denote 𝑧𝑧𝜏𝜏 = 𝑄𝑄𝑍𝑍(𝜏𝜏). 

Then, the integral of 𝑄𝑄𝑍𝑍(𝑡𝑡) from 0 to 𝜏𝜏 can be expressed as follows: 

� 𝑄𝑄𝑍𝑍(𝑡𝑡)𝑑𝑑𝑡𝑡
𝜏𝜏

0
= � 𝑧𝑧𝑓𝑓𝑍𝑍(𝑧𝑧)𝑑𝑑𝑧𝑧

𝑧𝑧𝜏𝜏

−∞
 

= 𝜏𝜏� 𝑧𝑧
𝑓𝑓𝑍𝑍(𝑧𝑧)
𝐹𝐹𝑍𝑍(𝑧𝑧𝜏𝜏)

𝑧𝑧𝜏𝜏

−∞
𝑑𝑑𝑧𝑧 

= 𝜏𝜏� 𝑧𝑧𝑓𝑓𝑍𝑍<𝑧𝑧𝜏𝜏(𝑧𝑧)
𝑧𝑧𝜏𝜏

−∞
𝑑𝑑𝑧𝑧 

= 𝜏𝜏𝐸𝐸[𝑧𝑧|𝑧𝑧 ≤ 𝑧𝑧𝜏𝜏]. 

 
 
 
 
 
 

(23) 
 

From Equation (23), it becomes evident that the integral of 𝑄𝑄𝑍𝑍(𝑡𝑡)  from 0 to 1 is equal to the 

expected value of 𝑧𝑧. 

Moreover, ∀𝜏𝜏 ∈ (0,1) 

𝐸𝐸[𝑧𝑧|𝑧𝑧 ≤ 𝑧𝑧𝜏𝜏] = � 𝑧𝑧
𝑓𝑓𝑍𝑍(𝑧𝑧)
𝐹𝐹𝑍𝑍(𝑧𝑧𝜏𝜏)

𝑧𝑧𝜏𝜏

−∞
𝑑𝑑𝑧𝑧 ≤ 𝑧𝑧𝜏𝜏 �

𝑓𝑓𝑍𝑍(𝑧𝑧)
𝐹𝐹𝑍𝑍(𝑧𝑧𝜏𝜏)

𝑧𝑧𝜏𝜏

−∞
= 𝑧𝑧𝜏𝜏 

and, 

𝑧𝑧𝜏𝜏 = 𝑧𝑧𝜏𝜏 �
𝑓𝑓𝑍𝑍(𝑧𝑧)

1 − 𝐹𝐹𝑍𝑍(𝑧𝑧𝜏𝜏)
𝑑𝑑𝑧𝑧

∞

𝑧𝑧𝜏𝜏
≤ � 𝑧𝑧

∞

𝑧𝑧𝜏𝜏 

𝑓𝑓𝑍𝑍(𝑧𝑧)
1 − 𝐹𝐹𝑍𝑍(𝑧𝑧𝜏𝜏)𝑑𝑑𝑧𝑧 = 𝐸𝐸[𝑧𝑧|𝑧𝑧 ≥ 𝑧𝑧𝜏𝜏]. 

Then, ∀𝜏𝜏 ∈ (0,1) 

0 ≤ (1 − 𝜏𝜏)(𝐸𝐸[𝑧𝑧|𝑧𝑧 ≥ 𝑧𝑧𝜏𝜏] − 𝐸𝐸 [𝑧𝑧|𝑧𝑧 ≤ 𝑧𝑧𝜏𝜏]), 

which implies 
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𝐸𝐸[𝑧𝑧|𝑧𝑧 ≤ 𝑧𝑧𝜏𝜏] ≤ 𝜏𝜏𝐸𝐸[𝑧𝑧|𝑧𝑧 ≤  𝑧𝑧𝜏𝜏] + (1 − 𝜏𝜏)𝐸𝐸[𝑧𝑧|𝑧𝑧 ≥ 𝑧𝑧𝜏𝜏] = 𝐸𝐸[𝑧𝑧]. (24) 
 

Let 𝑌𝑌 be a continuous and positive random variable with a cumulative density function 𝐹𝐹𝑌𝑌(𝑦𝑦), 

quantile function denoted by 𝑄𝑄𝑌𝑌(𝑡𝑡) = inf{𝑦𝑦:𝐹𝐹𝑌𝑌(𝑦𝑦) ≥ 𝑡𝑡} = 𝐹𝐹𝑌𝑌−1(𝑡𝑡) , and 𝑦𝑦𝜏𝜏 = 𝑄𝑄𝑌𝑌(𝜏𝜏) . Assume that 

0 < 𝐸𝐸[𝑦𝑦] < ∞ . Let ℎ(·)  be a continuous and monotone function. Define 𝑍𝑍 = ℎ(𝑌𝑌)  and µℎ  =

𝐸𝐸[ℎ(𝑦𝑦)] = 𝐸𝐸[𝑧𝑧]. Assume that ℎ(·) is such that ℎ(𝑌𝑌) ≥ 0 and 0 < µℎ < ∞. By the properties of the 

quantile function, 𝑄𝑄ℎ(𝑌𝑌)(𝑡𝑡) = ℎ�𝑄𝑄𝑌𝑌(𝑡𝑡)� . Then, using Equation (23), the Lorenz curve of the 

transformed variable is given by 

𝐿𝐿ℎ(𝜏𝜏) =
1
𝜇𝜇ℎ
� 𝑄𝑄ℎ(𝑌𝑌)(𝑡𝑡)𝑑𝑑𝑡𝑡
𝜏𝜏

0
=
𝜏𝜏𝐸𝐸[ℎ(𝑡𝑡)|ℎ(𝑡𝑡) ≤ ℎ(𝑦𝑦𝜏𝜏)]

𝐸𝐸[ℎ(𝑦𝑦)] . 

Using the inequality in (24), the transformed Lorenz curve takes values between 0 and 1. 

By the definition of the Gini coefficient, we have 

𝐺𝐺ℎ = 1 − 2� 𝐿𝐿ℎ(𝜏𝜏)𝑑𝑑𝜏𝜏
1

0
 

= 1 −
2
𝜇𝜇ℎ
� 𝜏𝜏𝐸𝐸[ℎ(𝑦𝑦)|ℎ(𝑦𝑦) ≤ ℎ(𝑦𝑦𝜏𝜏)]
1

0
𝑑𝑑𝜏𝜏. 

The Gini index, 𝐺𝐺ℎ, is always less than or equal to 1 because ℎ(𝑌𝑌) ≥ 0. Furthermore, based on the 

inequality presented in Equation (24), we can deduce that 

𝐸𝐸[ℎ(𝑦𝑦)|ℎ(𝑦𝑦) ≤ ℎ(𝑦𝑦𝜏𝜏)] ≤ 𝐸𝐸[ℎ(𝑦𝑦)], 

which implies 

� 𝜏𝜏𝐸𝐸[ℎ(𝑦𝑦)|ℎ(𝑦𝑦) ≤ ℎ(𝑦𝑦𝜏𝜏)]𝑑𝑑𝜏𝜏
1

0
≤ � 𝜏𝜏𝐸𝐸[ℎ(𝑦𝑦)]𝑑𝑑𝜏𝜏

1

0
=

1
2
𝐸𝐸[ℎ(𝑦𝑦)] =

𝜇𝜇ℎ
2

. 

In other words, the Gini index, 𝐺𝐺ℎ, is always positive. 
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B. Integral Approximation 

The Gini index takes the form 

𝐺𝐺ℎ(𝑥𝑥) = 1 −
1
𝜇𝜇ℎ
�𝑥𝑥𝑗𝑗 � � 2𝛽𝛽𝑗𝑗(𝜏𝜏)𝑑𝑑𝑡𝑡

𝜏𝜏

0
𝑑𝑑𝜏𝜏

1

0

𝑃𝑃

𝑗𝑗=1

. 

I use the family of Legendre polyonomy of degree 𝐾𝐾  to approximate each quantile regression 

coefficient estimate, �̂�𝛽𝑗𝑗(𝑡𝑡): 

�̂�𝛽𝑗𝑗(𝑡𝑡) ≈ 𝛽𝛽��𝑗𝑗,𝐾𝐾(𝑡𝑡) = 𝛼𝛼�0𝑝𝑝0(𝑡𝑡) + ⋯+ 𝛼𝛼�𝐾𝐾𝑝𝑝𝐾𝐾(𝑡𝑡) = �𝛼𝛼�𝑖𝑖𝑝𝑝𝑖𝑖(𝑡𝑡)
𝐾𝐾

𝑖𝑖=0

. 

Finally, I approximate the impact of characteristic 𝑗𝑗 as  

2
𝜇𝜇ℎ
�𝛼𝛼�𝑖𝑖 � � 𝑝𝑝𝑖𝑖(𝑡𝑡)

𝜏𝜏

0
𝑑𝑑𝜏𝜏

1

0

𝐾𝐾

𝑖𝑖=0

. 

To compute the vector 𝛼𝛼� = (𝛼𝛼�0,⋯ ,𝛼𝛼�𝐾𝐾) , first create a fixed grid 𝑡𝑡𝑛𝑛𝑔𝑔  with 𝑛𝑛𝑔𝑔  equally-spaced 

points on (0,1). Using statistical software, compute 𝑛𝑛𝑔𝑔 quantile regression coefficient estimates, 

one for each point on the grid. Represent these estimates as a 1 × 𝑛𝑛𝑔𝑔 vector �̂�𝛽𝑗𝑗 �𝑡𝑡𝑛𝑛𝑔𝑔�. In a similar 

fashion, define 𝑝𝑝𝑖𝑖 �𝑡𝑡𝑛𝑛𝑔𝑔� as the 1 × 𝑛𝑛𝑔𝑔 vector that computes the 𝑖𝑖-th Legendre polynomial at each 

grid point. Subsequently, define the 𝑛𝑛𝑔𝑔 × (𝐾𝐾 + 1) matrix 𝑃𝑃 �𝑡𝑡𝑛𝑛𝑔𝑔� with each 𝑝𝑝𝑖𝑖 �𝑡𝑡𝑛𝑛𝑔𝑔� as its columns, 

resulting in 𝑃𝑃 �𝑡𝑡𝑛𝑛𝑔𝑔� = �𝑝𝑝0 �𝑡𝑡𝑛𝑛𝑔𝑔� ,⋯ ,𝑝𝑝𝐾𝐾 �𝑡𝑡𝑛𝑛𝑔𝑔��. The values of 𝛼𝛼�𝑖𝑖 are then computed as the scalars 

that minimize the squared error between �̂�𝛽𝑗𝑗 �𝑡𝑡𝑛𝑛𝑔𝑔� and 𝑃𝑃 �𝑡𝑡𝑛𝑛𝑔𝑔� × 𝛼𝛼�. In other words, the entries of 

the vector 𝛼𝛼�  are the OLS coefficient estimates from the model with �̂�𝛽𝑗𝑗 �𝑡𝑡𝑛𝑛𝑔𝑔�  as the dependent 

variable and the design matrix 𝑃𝑃 �𝑡𝑡𝑛𝑛𝑔𝑔�. 
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C. Accuracy of the Estimating Procedure 

To better grasp the implications of the polynomial approximation's order, K, consider a 

hypothetical scenario. Let's say a researcher postulates a model for the conditional quantile 

function of wage logarithms, using the transformation ℎ(·) = ln(·) . Further, let’s assume the 

researcher gauges a quantile regression coefficient, �̂�𝛽𝑗𝑗(𝑡𝑡), across a grid of 𝑚𝑚 = 69 quantiles.  

Figure C.1 illustrates a representative smooth least-square approximation of this assumed 

quantile regression coefficient, �̂�𝛽𝑗𝑗(𝑡𝑡). In each of the figure's panels, the dashed line represents 

𝛽𝛽 �� 𝑗𝑗,𝐾𝐾(𝑡𝑡). Panel (a) showcases the outcomes of employing a smoothed polynomial approximation 

of second degree. If our focus remains solely on the quantile regression's point estimate, a second-

degree polynomial appears to inadequately represent the estimate. Yet, when accounting for the 

95% confidence interval, it's evident that a second-degree polynomial might offer a reasonable 

approximation. On the other hand, Panel (b) depicts the outcome using a sixth-degree polynomial. 

Increasing the polynomial's degree enhances the approximation fidelity to the quantile regression 

coefficient's point estimate. Such an enhancement might be a preferable approach, depending on 

the research objectives. 

The panels in Figure C.1 elucidate that utilizing a higher polynomial degree improves the 

approximation's adherence to the quantile regression's point estimate. However, even with a 

higher degree, the polynomial might not completely smooth out abrupt variations in the estimates. 

Such variations could likely arise from data scarcity for specific quantiles—typically at the extreme 

top or bottom 1% of wage distributions. Selecting the polynomial's degree presents a balancing 

act. While a greater degree enhances the approximation's precision—something that may be 

sought after—it doesn't always align with the primary objective of the approximation. 

Additionally, as demonstrated in Figure 1, if the smoothing polynomial resides within the 

confidence bands, then the approximation might be deemed ‘satisfactory’, despite any minor 

discrepancies. 

Moreover, let’s keep the assumption that ℎ(·) = ln(·) and assume further that the conditional 

quantile function of the logarithm of 𝑦𝑦 can be modeled by a simple linear relation: 

𝑄𝑄ln(𝑦𝑦)(𝑡𝑡|𝑥𝑥) = 𝛽𝛽0(𝑡𝑡) + 𝑥𝑥𝛽𝛽1(𝑡𝑡) + 𝜀𝜀(𝑡𝑡). 
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For simplicity, let's assume that the intercept is constant, e.g., 𝛽𝛽0 = 0.5, and the slope parameter 

increases linearly with quantiles, e.g., 𝛽𝛽1(𝑡𝑡) = 0.2 + 0.05𝑡𝑡. Under these simplifying assumptions, 

the numerator of the impact estimates would be: 

Π0 = 2� � 0.5𝑑𝑑𝑡𝑡
𝜏𝜏

0
𝑑𝑑𝜏𝜏 = 0.5

1

0
 

and 

Π1 = 2� � 0.2 + 0.05𝑡𝑡𝑑𝑑𝑡𝑡
𝜏𝜏

0
𝑑𝑑𝜏𝜏

1

0
= 0.21667 

To evaluate the precision of the estimation procedure, I generated a simulated dataset 

comprising 𝑁𝑁 = 1,000  observations. For this dataset, the variable 𝑥𝑥  is normally distributed, 

truncated at 20, and characterized by a mean of 35 and a standard deviation of 8. I set the error 

term to be uniformly distributed between zero and one, and to increase proportionally with 𝑥𝑥 by 

0.05 to achieve a slope that linearly rises with quantiles. Panel (a) of Figure C.1 showcases the 

simulated dataset, featuring selected estimated lines representing the conditional quantile 

functions. Panel (b) of the same figure displays the estimated conditional quantile regression 

coefficients marked with dots, in contrast to the actual conditional quantile regression coefficient, 

depicted as a solid line. 

I estimate the numerator of the impact using the integral approximation detailed in Appendix 

B. Varying the order of polynomial approximation from 𝐾𝐾 =2 to 10, I compute the 95% bootstrap 

confidence intervals using the 2.5th and 97.5th quantiles from 1,000 repetitions. Table C.1 

presents the results of this performance test. The first column of the table displays the exact 

numerators of the impact estimates. Columns two through ten reveal the estimated results using 

Legendre polynomials of the corresponding orders. Each estimate's cell includes the 95% 

bootstrap confidence interval. The final two rows of the table feature the results of the hypothesis 

tests Π�𝑖𝑖 ≠ Π𝑖𝑖 for 𝑖𝑖 =0,1. The key insight from this table is the accuracy of the procedure and the 

minimal effect of the polynomial approximation's order on the accuracy of the estimation. This 

exercise validates the estimation procedure's effectiveness in quantifying the covariates' impact. 
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Figure C.1: Example of approximation using Legendre polynomials 
(a) Polynomial of degree 2 (b) Polynomial of degree 6 

   

Note: The figure presents panels (a) and (b) to illustrative examples of least-square approximations on coefficients derived from 
a quantile regression, using Legendre polynomials of order two and six, respectively. In both panels, I showcase a generic 
quantile regression coefficient estimate, �̂�𝛽𝑗𝑗(𝑡𝑡), alongside its 95% confidence interval. The dashed line in each panel represents 
the least-square approximation using Legendre polynomials, 𝛽𝛽 �� 𝑗𝑗,𝐾𝐾(𝑡𝑡), for 𝐾𝐾 = 2, 6, respectively 
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Figure C.2:  
(a) Simulated dataset and selected conditional quantile relationships  

 
 

(b) Coefficient estimates and actual parameters 

     

Note: Panel (a) showcases the simulated dataset, and panel (b) displays the estimated quantile regression coefficients. The 
dataset in panel (a) comprises 𝑁𝑁 = 1,000 observations with the variable 𝑥𝑥 following a normal distribution, truncated at 20. This 
distribution has a mean of 35 and a standard deviation of 8. The simulation's error term is uniformly distributed between zero 
and one, incrementally increasing in proportion to 𝑥𝑥 by 0.05 to replicate a slope that linearly ascends with the quantiles. Panel 
(b) compares the estimated conditional quantile regression coefficients marked with dots, against the actual conditional 
quantile regression coefficient, shown as a solid line. 
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Table C.1: Performance Test Results Using Various Orders of Polynomial Approximation 

 
Note: The table shows the results from the performance test. The numerator of the impact is estimated using various orders 
of polynomial approximation, ranging from 𝐾𝐾 =2 to 10. The first column provides the exact numerators of the impact 
estimates, while columns two through ten display the estimated results using Legendre polynomials of each specified order. 
Below each estimate, the corresponding 95% bootstrap confidence intervals are provided. The bootstrap confidence 
intervals are derived from 1,000 repetitions. The last two rows of the table show the results of the hypothesis test 𝛱𝛱�𝑖𝑖 ≠ 𝛱𝛱𝑖𝑖  
for 𝑖𝑖 =0,1, underlining the accuracy of the procedure and the minimal impact of the polynomial approximation's order on 
this accuracy. 
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D. Inequality in the Distribution of Y  

I compute the linear decomposition of the Gini index in Equation (6) for the transformed variable, 

ℎ(𝑌𝑌). However, I also find it compelling to gauge the influence of individual characteristics on the 

distribution of the positive random variable, 𝑌𝑌. Studying the transformed variable instead of the 

variable in its original scale might pose a conflict between the statistical and economic objectives 

of this study. But, considering the assumed properties of the transformation ℎ(·) and using the 

properties of the quantile function, I derive: 

𝑄𝑄𝑌𝑌(𝑡𝑡|𝑥𝑥) = ℎ−1 �𝑄𝑄ℎ(𝑌𝑌)(𝑡𝑡|𝑥𝑥)� 
= ℎ−1(𝑥𝑥𝑇𝑇𝛽𝛽(𝑡𝑡)), 

 
 

(25) 
 

This implies: 

𝐿𝐿(𝜏𝜏|𝑥𝑥) =
1
𝜇𝜇
�ℎ−1(𝑥𝑥𝑇𝑇𝛽𝛽(𝑡𝑡))𝑑𝑑𝑡𝑡
𝜏𝜏

0

  (26) 

 

and 

𝐺𝐺(𝑥𝑥) = 1 −
2
𝜇𝜇
��ℎ−1�𝑥𝑥𝑇𝑇𝛽𝛽(𝑡𝑡)�𝑑𝑑𝑡𝑡

𝜏𝜏

0

𝑑𝑑𝜏𝜏
1

0

.  (27) 

 

While the previous relationship is not inherently linear because ℎ−1(·) isn't linear, Equation (27) 

establishes a connection between the Gini coefficient of 𝑌𝑌  and a transformation of a linear 

combination of the quantile regression coefficients. I acknowledge that this link requires further 

exploration in future research. 
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E. Wage Distribution Disparities 

To elucidate the wage distribution disparity both intra- and inter-gender, I present weighted 

kernel density estimates of the hourly wages for men and women spanning from 1980 to 2015 in 

figures E.1a and E.1b.27 These graphs feature a vertical line indicating the respective (log) real 

minimum wage as referenced in column two of Table 1, which shows the concentration of wage 

distributions at the lower range. These representations clearly illustrate a significant expansion in 

the upper tail of the distribution in recent years compared to preceding periods. Moreover, I point 

out an evident broadening in the spread of hourly wages relative to the mean over time for both 

sexes, more pronounced in women's data. This visual representation aligns with previous findings 

by Levy and Murnane (1992), DiNardo et al. (1996), Katz (1999), and Autor et al. (2008). 

  

 
27 These figures bear resemblance to those found in DiNardo et al. (1996), though a key distinction lies in my application of the CPS 

sample weights, in contrast to their implementation of hours-weighted kernel estimates. As in DiNardo et al. (1996), I determine 

the bandwidth for this estimation employing the Sheather and Jones (1991) method. 
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Figure E.1a: Kernel density estimates of men's (log) real wages 1980 - 2015 ($2020) 

 
Note: The figure presents kernel density estimates for hourly (log) wages of men, covering the years 1980 through 2015. In each 
panel, a vertical line indicates the federal minimum wage for that specific year. I have converted all wage values to 2020 USD 
using the CPI series CUSR0000SA0. This figure draws on my sample from the CPS ORG, employing the CEPR Uniform Extracts to 
create a consistent hourly wage series. I have narrowed my focus to include workers aged 16 to 65, with hourly wages ranging 
from $1 to $100 in 1979 dollars. 
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Figure E.1b: Kernel density estimates of women's (log) real wages 1980 - 2015 ($2020) 

 
Note: The figure presents kernel density estimates for hourly (log) wages of women, covering the years 1980 through 2015. In 
each panel, a vertical line indicates the federal minimum wage for that specific year. I have converted all wage values to 2020 
USD using the CPI series CUSR0000SA0. This figure draws on my sample from the CPS ORG, employing the CEPR Uniform 
Extracts to create a consistent hourly wage series. I have narrowed my focus to include workers aged 16 to 65, with hourly 
wages ranging from $1 to $100 in 1979 dollars. 
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F. Decomposing Wage Distributions Using Recentered Influence Function 
Regressions 

Recent research by Firpo, Fortin, and Lemieux (2009) introduces Unconditional Quantile 

Regression (UQR), a regression approach that examines how changes in the distribution of 

explanatory variables affect the unconditional quantiles of an outcome variable. Their method 

relies on regressing the Recentered Influence Function (RIF) of a given quantile on explanatory 

variables, allowing researchers to extend the Oaxaca-Blinder decomposition to study 

distributional effects beyond mean differences. This framework provides insight into how 

covariates contribute to wage dispersion at different points of the distribution, making it 

particularly valuable for analyzing inequality dynamics. 

Building on this work, Firpo, Fortin, and Lemieux (2018), hereafter FFL, refine the UQR 

decomposition by introducing a reweighting procedure that decomposes wage changes into 

composition effects (shifts in the distribution of covariates) and wage structure effects (changes 

in how covariates relate to wages). Their approach enables a more detailed examination of wage 

inequality across quantiles. However, a key limitation of their method is that the RIF 

transformation depends on the full distribution of wages, making results sensitive to shifts in the 

distribution of covariates. This sensitivity can lead to specification errors due to nonlinearities. 

The following sections detail the FFL decomposition method, discuss its identification strategy, 

and present my implementation using CPS ORG data from 1986 and 2015. I compare the FFL 

approach to my proposed method, which models conditional quantiles using conditional quantile 

regression. This comparison highlights key differences in how each method captures the role of 

covariates in shaping wage inequality, emphasizing the advantages of focusing on within-group 

variation. 

 

F.1 Wage Decomposition 

This section presents the decomposition method implemented by FFL. To keep the exposition 

consistent with the application, I will focus on the case where the outcome variable, 𝑌𝑌, represents 

wages. The decomposition compares similar individuals across two points in time, t= 0 and t = 1. 
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Suppose we observe a random sample of 𝑁𝑁 = 𝑁𝑁0 + 𝑁𝑁1  individuals, where 𝑁𝑁0  and 𝑁𝑁1  are the 

number of individuals at times t= 0 and t = 1, respectively. Let’s index individuals by 𝑖𝑖 = 1,⋯ ,𝑁𝑁. 

Let’s denote by 𝑦𝑦1,𝑖𝑖  the wage that individual 𝑖𝑖 was paid at time 1, and 𝑦𝑦0,𝑖𝑖  the wage paid at time 0. 

Therefore, for each individual 𝑖𝑖 , the observed wage, 𝑦𝑦𝑖𝑖 , can be defined as 𝑦𝑦𝑖𝑖 = 𝑦𝑦1,𝑖𝑖 ⋅ Ψ𝑖𝑖 + y0,𝑖𝑖 ⋅

(1 −Ψ𝑖𝑖), where Ψ𝑖𝑖 = 1 if individual 𝑖𝑖 was observed at time 1 and 0 otherwise.  

The probability that an individual 𝑖𝑖 is observed at time t = 1 is 𝑝𝑝. The conditional probability that 

an individual 𝑖𝑖 is observed at t = 1, given their observed characteristics 𝑥𝑥𝑖𝑖 ∈ ℝ𝐾𝐾 , is defined as the 

propensity score, 𝑝𝑝(𝑋𝑋) = Pr(Ψ = 1 ∣ 𝑋𝑋 = 𝑥𝑥) . Wage determination depends on observed 

components, 𝑥𝑥𝑖𝑖 , and unobserved components, 𝜖𝜖𝑖𝑖 ∈ ℝ, through the wage structure functions: 

𝑦𝑦t,𝑖𝑖 = 𝑔𝑔t(𝑥𝑥𝑖𝑖 , 𝜖𝜖𝑖𝑖), t = 0,1, 

where 𝑔𝑔t(⋅,⋅) are unknown real-valued mappings such that 𝑔𝑔t:ℝ𝐾𝐾 × ℝ → ℝ+ ∪ {0}. Also, assume 

the joint distribution of (𝑌𝑌,Ψ,𝑋𝑋) is unknown. 

From observed data on (𝑌𝑌,Ψ,𝑋𝑋), it is possible to identify the distributions 𝑌𝑌1|Ψ = 1 ∼ 𝑑𝑑𝐹𝐹1 and 

𝑌𝑌0|Ψ = 0 ∼ 𝑑𝑑𝐹𝐹0 non-parametrically; estimating the counterfactual distribution 𝑌𝑌0|Ψ = 1 ∼  𝑑𝑑𝐹𝐹𝐶𝐶  is 

essential for the decomposition. The counterfactual distribution 𝐹𝐹𝐶𝐶  represents the wages that 

would have prevailed under the wage structure when Ψ = 0 , but with the observed and 

unobserved characteristics for Ψ = 1. 

To formalize the decomposition, let 𝜈𝜈 represent a functional of the conditional joint distribution of 

(𝑌𝑌1,𝑌𝑌0)|Ψ. Specifically, 𝜈𝜈:ℱ → ℝ, where ℱ  is a class of distribution functions such that ∀𝐹𝐹 ∈ ℱ , 

‖𝜈𝜈(𝐹𝐹)‖ < +∞. Examples of 𝜈𝜈 include means, quantiles, variances, or Gini indices. Notice how these 

functionals use the entire distribution 𝐹𝐹 ∈ ℱ. 

The overall wage gap, measured in terms of the functional 𝜈𝜈, is defined as: 

Δ𝜈𝜈𝑂𝑂 = 𝜈𝜈(𝐹𝐹1) − 𝜈𝜈(𝐹𝐹0) = 𝜈𝜈1 − 𝜈𝜈0. 

Adding and subtracting the counterfactual distribution 𝐹𝐹𝐶𝐶 , we can express the wage gap as: 

Δ𝜈𝜈𝑂𝑂 = 𝜈𝜈1 − 𝜈𝜈𝐶𝐶�����
change in covariates

+ 𝜈𝜈𝐶𝐶 − 𝜈𝜈0�����
change in returns

= Δ𝜈𝜈𝑅𝑅�
structure

+ Δ𝜈𝜈𝑋𝑋�
composition

, 
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Where, Δ𝜈𝜈𝑋𝑋 reflects the effect of changes in the returns due to changes in the distribution of 𝑋𝑋, and 

Δ𝜈𝜈𝑅𝑅 reflects changes in the wage structure functions 𝑔𝑔𝑡𝑡(⋅,⋅), provided we can hold the distribution 

of observables and unobservables fixed for Ψ = 1. 

 

F.2 Identification and Estimation of the Composition and Structure Effects 

FFL proves the identification of the counterfactual distribution, 𝐹𝐹𝐶𝐶 , based on two assumptions. 

First, the ignorability assumption: Conditional on 𝑋𝑋 , the unobserved components, 𝜖𝜖 , are 

independent of Ψ. Second, the overlapping support assumption: ∀𝑋𝑋 ∈ ℝ𝐾𝐾 , 0 < 𝑝𝑝(𝑋𝑋) = 𝑃𝑃𝑎𝑎(Ψ = 1 ∣

𝑋𝑋) < 1. 

Under these assumptions, FFL shows that one can identify the parameters of the counterfactual 

distribution 𝑌𝑌0|Ψ = 1 ∼  𝑑𝑑𝐹𝐹𝐶𝐶 . The identification relies on three weighting functions: 𝜔𝜔1(Ψ) = Ψ
𝑝𝑝

, 

which transforms features of the marginal distribution of 𝑌𝑌  into features of the conditional 

distribution of 𝑌𝑌1 ∣  Ψ = 1; 𝜔𝜔0(Ψ) = 1 − Ψ
1−𝑝𝑝

, which transforms features of the marginal distribution 

of 𝑌𝑌 into features of the conditional distribution of 𝑌𝑌0 ∣ Ψ = 0; and 𝜔𝜔𝐶𝐶(Ψ,𝑋𝑋)  = � 𝑝𝑝(𝑋𝑋)
1−𝑝𝑝(𝑋𝑋)

� ⋅ �1−Ψ
𝑝𝑝
�, 

which transforms features of the marginal distribution of 𝑌𝑌 into features of the counterfactual 

distribution of 𝑌𝑌0 ∣ Ψ = 1. 

FFL shows that, under the ignorability and overlapping support assumptions, the distribution 

function 𝐹𝐹t(𝑦𝑦) for t = 0,1 can be expressed as 

𝐹𝐹𝑡𝑡(𝑦𝑦) = 𝔼𝔼[𝜔𝜔𝑡𝑡(Ψ) ⋅ 𝕀𝕀{𝑌𝑌 ≤ 𝑦𝑦}], 𝑡𝑡 =  0, 1 

and the counterfactual distribution as 

𝐹𝐹𝐶𝐶(𝑦𝑦) = 𝔼𝔼[𝜔𝜔𝐶𝐶(Ψ,𝑋𝑋) ⋅ 𝕀𝕀{𝑌𝑌 ≤ 𝑦𝑦}]. 

The identification of Δ𝜈𝜈𝑅𝑅 and Δ𝜈𝜈𝑋𝑋 follows from the fact that these quantities can be expressed as 

functionals of the distributions obtained by weighting the observations with the weighting 

functions described before. 
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F.2.1 The RIF regressions 

The Influence Function (IF) of a distributional statistic, 𝜈𝜈(𝐹𝐹) , measures the sensitivity of the 

statistic to small changes in the underlying distribution 𝐹𝐹. The IF is defined as: 

𝐼𝐼𝐹𝐹(𝑌𝑌; 𝜈𝜈,𝐹𝐹) = lim
𝜖𝜖→0

𝜈𝜈�(1 − 𝜖𝜖)𝐹𝐹 + 𝜖𝜖𝛿𝛿𝑌𝑌� − 𝜈𝜈(𝐹𝐹)
𝜖𝜖

, 

where 𝛿𝛿𝑌𝑌  is a point mass at 𝑌𝑌 . Intuitively, the IF captures how much the statistic 𝜈𝜈(𝐹𝐹)  would 

change if an infinitesimal fraction of the distribution F were replaced by a point mass at 𝑌𝑌. By 

definition 𝔼𝔼[(𝑦𝑦; 𝜈𝜈,𝐹𝐹)] = 0.  

For a given outcome 𝑌𝑌, the RIF is defined as: 

𝑅𝑅𝐼𝐼𝐹𝐹(𝑌𝑌; 𝜈𝜈,𝐹𝐹) = 𝜈𝜈(𝐹𝐹) + 𝐼𝐼𝐹𝐹(𝑌𝑌; 𝜈𝜈,𝐹𝐹), 

which ensures that the expectation of the RIF equals 𝜈𝜈(𝐹𝐹). Different summary statistics would 

have different RIF transformations, and the RIF regression is the OLS estimate of the conditional 

expectation of the RIF transformation. 

In the current context, one can assume linearity of the RIF as  

𝑚𝑚t
𝜈𝜈(𝑥𝑥) = 𝑋𝑋𝛾𝛾t𝜈𝜈 , t = 0,1, 

and 

𝑚𝑚𝐶𝐶
𝜈𝜈(𝑥𝑥) = 𝑋𝑋𝛾𝛾𝐶𝐶𝜈𝜈 . 

where, 

𝛾𝛾𝑡𝑡𝜈𝜈 = (𝔼𝔼[𝑋𝑋𝑋𝑋′|Ψ = 𝑡𝑡])−1 · 𝔼𝔼[𝑅𝑅𝐼𝐼𝐹𝐹(𝑌𝑌𝑡𝑡; 𝜈𝜈𝑡𝑡 ,𝐹𝐹𝑡𝑡)𝑋𝑋|Ψ = 𝑡𝑡], 𝑡𝑡 = 0,1, 

and 

𝛾𝛾𝐶𝐶𝜈𝜈 = (𝔼𝔼[𝑋𝑋𝑋𝑋′|Ψ = 1])−1 · 𝔼𝔼[𝑅𝑅𝐼𝐼𝐹𝐹(𝑌𝑌0; 𝜈𝜈𝐶𝐶 ,𝐹𝐹𝐶𝐶)𝑋𝑋|Ψ = 1]. 

F.2.2 Estimates of the Structure and Composition Effects 
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In this setup, the structure effect is estimated as 

Δ𝜈𝜈𝑅𝑅 = 𝔼𝔼[𝑋𝑋|Ψ = 1]′(𝛾𝛾1𝜈𝜈 − 𝛾𝛾𝐶𝐶𝜈𝜈), 

and the composition effect is 

Δ𝜈𝜈𝑋𝑋 = 𝔼𝔼[𝑋𝑋|Ψ = 1]′𝛾𝛾𝐶𝐶𝜈𝜈 − 𝔼𝔼[𝑋𝑋|Ψ = 0]′𝛾𝛾0𝜈𝜈 = (𝔼𝔼[𝑋𝑋|Ψ = 1]′ − 𝔼𝔼[𝑋𝑋|Ψ = 0]′)𝛾𝛾0𝜈𝜈 + 𝐸𝐸𝑎𝑎𝑎𝑎𝜈𝜈 , 

where, 𝐸𝐸𝑎𝑎𝑎𝑎𝜈𝜈 = 𝔼𝔼[𝑋𝑋|Ψ = 1]′(𝛾𝛾𝐶𝐶𝜈𝜈 − 𝛾𝛾0𝜈𝜈) is the approximation error. The error arises because the 

FFL’s regression-based procedure provides only a first-order approximation of the composition 

effect. In practice, this error can be estimated as the difference between the reweighting-based 

estimate of the composition effect (𝜈𝜈𝐶𝐶 − 𝜈𝜈0) and the estimate obtained using the RIF regression 

approach, which is (𝔼𝔼[𝑋𝑋|Ψ = 1] − 𝔼𝔼[𝑋𝑋|Ψ = 0])′𝛾𝛾0𝜈𝜈 . When the RIF regression approach accurately 

approximates the composition effect, the error should be close to zero. Therefore, the magnitude 

of this error serves as a specification test for the validity of FFL’s regression-based procedure. 

In the context of estimation using the RIF regression, a key challenge is the sensitivity of the 

method to changes in the distribution of 𝑋𝑋. In conventional regression analysis, OLS estimates can 

depend on the distribution of 𝑋𝑋 when the conditional expectation of 𝑌𝑌 given 𝑋𝑋 is nonlinear. The 

issue becomes more complex for RIF regressions, particularly for distributional statistics beyond 

the mean. 

The RIF transformation depends not only on the outcome variable 𝑌𝑌  but also on the overall 

distribution of 𝑌𝑌. When the distribution of 𝑋𝑋 changes, it can shift the distribution of 𝑌𝑌, which in 

turn affects the value of 𝑅𝑅𝐼𝐼𝐹𝐹(𝑌𝑌; 𝜈𝜈,𝐹𝐹) for a given 𝑌𝑌. This dependency on 𝐹𝐹 has direct implications 

for RIF regressions. Since the left-hand side of the regression is no longer the same transformation 

of 𝑌𝑌, the coefficients in the RIF regression are also affected. In essence, changing the distribution 

of 𝑋𝑋 indirectly alters the estimated relationship between 𝑋𝑋 and 𝑌𝑌 by modifying the underlying RIF 

values. 

Examining the approximation error provides a practical specification test for assessing the validity 

of FFL’s regression-based procedure. While their method may perform well for specific statistics, 

it can encounter challenges for others, particularly those affected by significant non-linearities. 

These non-linearities arise because changes in the distribution of 𝑋𝑋 can alter the distribution of 𝑌𝑌, 

which in turn affects the RIF values used in the regression. This dependency can lead to 
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inaccuracies in the estimated coefficients of the RIF regression, highlighting the importance of 

careful evaluation when applying their method. 

 

F.3 RIF Transformations for Unconditional Quantiles and the Gini Index 

Quantiles are key distributional statistics that partition a distribution into intervals with equal 

probabilities. For a quantile 𝑞𝑞𝜏𝜏 at level 𝜏𝜏, the RIF is defined as: 

𝑅𝑅𝐼𝐼𝐹𝐹(𝑦𝑦; 𝑞𝑞𝜏𝜏,𝐹𝐹) = 𝑞𝑞𝜏𝜏 +
𝜏𝜏 − 𝕀𝕀(𝑦𝑦 ≤ 𝑞𝑞𝜏𝜏)

𝑓𝑓𝑌𝑌(𝑞𝑞𝜏𝜏)
, 

where 

𝜏𝜏 is the chosen quantile level (e.g., 𝜏𝜏 = 0.5 for the median), 𝕀𝕀(𝑦𝑦 ≤ 𝑞𝑞𝜏𝜏) is an indicator function that 

equals one if 𝑦𝑦 is smaller or equal to 𝑞𝑞𝜏𝜏, and 𝑓𝑓𝑌𝑌(⋅) is the probability density of 𝑌𝑌, which must be 

estimated. 

The RIF transformation adjusts 𝑌𝑌  to reflect its contribution to the quantile 𝑞𝑞𝜏𝜏 . The first term 

anchors the transformation at the quantile value, while the second term measures deviations from 

the quantile based on the density. This transformation allows researchers to analyze how 

covariates affect the unconditional quantile by regressing 𝑅𝑅𝐼𝐼𝐹𝐹(𝑦𝑦; 𝑞𝑞𝜏𝜏,𝐹𝐹) on the covariates 𝑋𝑋. The 

resulting coefficients estimate the marginal effect of each covariate on the selected quantile, 

reflecting its contribution to shifts in that part of the distribution. 

It is also possible to compute the RIF transformation for the Gini index. In Firpo, Fortin, and 

Lemieux (2009), they define the Generalized Lorenz Curve as 

𝐺𝐺𝐿𝐿(𝑝𝑝,𝐹𝐹𝑌𝑌) = � 𝑧𝑧𝑑𝑑𝐹𝐹𝑌𝑌(𝑧𝑧)
𝐹𝐹−1(𝑝𝑝)

−∞
 

where 𝐹𝐹−1(𝑝𝑝) is the quantile function associated with 𝐹𝐹𝑌𝑌 . The Gini index is related to the area 

under the Generalized Lorenz Curve as 
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𝐺𝐺(𝐹𝐹𝑌𝑌) = 1 −
2
𝜇𝜇
� 𝐺𝐺𝐿𝐿(𝑝𝑝,𝐹𝐹𝑌𝑌)𝑑𝑑𝑝𝑝
1

0
, 

Where 𝜇𝜇 = 𝐸𝐸(𝑌𝑌). Define: 

𝑅𝑅(𝐹𝐹𝑌𝑌) = � 𝐺𝐺𝐿𝐿(𝑝𝑝,𝐹𝐹𝑌𝑌)𝑑𝑑𝑝𝑝
1

0
. 

Then, the RIF for the Gini index evaluated at 𝑦𝑦 is: 

𝑅𝑅𝐼𝐼𝐹𝐹(𝑦𝑦;𝐺𝐺,𝐹𝐹𝑌𝑌) = 1 + 𝐵𝐵(𝐹𝐹𝑌𝑌)𝑦𝑦 + 𝐶𝐶(𝑦𝑦;𝐹𝐹𝑌𝑌) 

where: 

𝐵𝐵(𝐹𝐹𝑌𝑌) = 2𝜇𝜇−2𝑅𝑅(𝐹𝐹𝑌𝑌) and 𝐶𝐶(𝑦𝑦;𝐹𝐹𝑌𝑌) = −2𝜇𝜇−1{𝑦𝑦[1 − 𝑝𝑝(𝑦𝑦)] + 𝐺𝐺𝐿𝐿(𝑝𝑝(𝑦𝑦),𝐹𝐹𝑌𝑌)} 

The previous RIF transformation for the Gini index is based on the entire distribution 𝐹𝐹𝑌𝑌 . A 

different RIF transformation needs to be computed for a component of the Gini index; for example, 

to measure the disparities due to the bottom 25% of the distribution, the RIF transformation needs 

to account for the condition of being part of the lower quartile of the distribution. In some sense, 

modeling the conditional quantile function is an intermedia step that allows me to split the 

analysis by quartiles. 

 

F.4 Empirical Implementation 

I implemented the FFL decomposition using the hourly wage series I constructed from the CPS 

ORG data for years 1986 (𝑡𝑡 = 0) and 2015 (𝑡𝑡 = 1), spanning three decades of rising wage disparity. 

For the empirical analysis, I model two statistics, 𝜈𝜈𝑡𝑡: a quantile 𝜏𝜏 and the Gini index, computed 

from the entire distribution of wages at times 𝑡𝑡 = 0 and 𝑡𝑡 = 1. I denote their corresponding RIF 

transformations as 𝑅𝑅𝐼𝐼𝐹𝐹�𝑦𝑦𝑡𝑡; 𝑞𝑞𝑡𝑡,𝜏𝜏,𝐹𝐹𝑡𝑡�  for quantiles and 𝑅𝑅𝐼𝐼𝐹𝐹(𝑦𝑦𝑡𝑡;𝐺𝐺𝑡𝑡 ,𝐹𝐹𝑡𝑡) for the Gini index. I assume 

linearity of the RIF as 

𝑅𝑅𝐼𝐼𝐹𝐹(𝑦𝑦𝑡𝑡,𝑖𝑖𝑖𝑖𝑗𝑗; 𝜈𝜈𝑡𝑡 ,𝐹𝐹𝑡𝑡) = 𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗′ 𝛽𝛽t𝜈𝜈 + 𝜂𝜂𝑡𝑡,𝑖𝑖
𝜈𝜈 + 𝛾𝛾𝑡𝑡,𝑗𝑗

𝜈𝜈 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑗𝑗 , 𝑡𝑡 = 0,1. 
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Here, 𝑠𝑠  indexes states, and 𝑗𝑗  indexes industries. To model the counterfactual distribution of 

𝑌𝑌0|Ψ = 1, I use the appropriate reweighting functions and assume linearity of 𝑅𝑅𝐼𝐼𝐹𝐹(𝑦𝑦1,𝑖𝑖𝑖𝑖𝑗𝑗;𝑣𝑣𝐶𝐶 ,𝐹𝐹𝐶𝐶) 

employing the same specification. 

The vector 𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗  includes job-related attributes such as unionization status, public sector 

employment, manufacturing employment, and part-time work status. Demographic 

characteristics encompass indicators for nonwhite, female, and marital status. Additional controls 

include a quadratic in potential experience, urban residency indicators, education categories, 

decade-based experience indicators, and interactions between education and experience. Finally, 

𝜂𝜂𝑡𝑡,𝑖𝑖
𝜈𝜈  and 𝛾𝛾𝑗𝑗𝜈𝜈  represent state and industry fixed effects, respectively. 

Before estimating the RIF regressions, it is important to examine the wage density for 

irregularities that could affect the estimation of the RIF at key quantiles or the wage model 

specification. Figure F.1 shows kernel density estimates of hourly wages for 1986 and 2015, with 

bandwidths of 0.06 and 0.08, respectively. It also includes the 1986 density reweighted to match 

the 2015 distribution of characteristics. Notable features include cliffs at the lower end due to 

minimum wage effects and mid-distribution peaks from wage heaping, where workers round their 

wages to the nearest dollar. The impact of minimum wages is evident in Figure F.1, with vertical 

lines marking the binding federal minimum wage in 1986 and the binding state minimum wage in 

2015. Since minimum wages are not explicitly modeled, the 1986 and reweighted densities 

overlap in those ranges, indicating that the included covariates may not fully capture wage-setting 

mechanisms. Thus, any effects observed at the lower end of the distribution should be interpreted 

with caution. 

Figure F.2 presents coefficient estimates from RIF regressions for various quantiles, calculated at 

95 points along the (0,1) interval. The dashed lines represent estimates for 1986, while the solid 

lines correspond to 2015. These regressions control for individual, job-related, demographic, and 

macroeconomic factors, as described before. The general trends in the coefficient estimates 

obtained using UQR largely mirror those observed in Figure 1 of the main text, which presents 

results from conditional quantile regression, with the notable exception of education. 

Union membership exhibited a positive wage premium across all quantiles in 1986, but this 

premium diminished by 2015. For public sector employees, a wage premium is observed at the 
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lower end of the wage distribution, while a wage penalty appears at the upper end. These patterns 

remain similar in magnitude between 1986 and 2015. In contrast, manufacturing jobs were 

associated with lower wages in 1986 but became a positive determinant of wages across all 

quantiles by 2015, according to UQR estimates. Part-time, nonwhite, and female workers 

experienced wage penalties across the wage distribution, with the gender wage gap appearing 

more pronounced. 

Union membership exhibited a positive wage premium across all quantiles in 1986, but this 

premium diminished by 2015. For public sector employees, a wage premium is observed at the 

lower end of the wage distribution, while a wage penalty appears at the upper end. These patterns 

remain similar in magnitude between 1986 and 2015. In contrast, manufacturing jobs were 

associated with lower wages in 1986 but became a positive determinant of wages across all 

quantiles by 2015, according to UQR estimates. Part-time, nonwhite, and female workers 

experienced wage penalties across the wage distribution, with the gender wage gap appearing 

more pronounced. Married workers consistently benefited from a wage premium, reinforcing the 

well-documented marriage wage effect. Additionally, an urban wage premium is present in both 

years, though it has declined over time, suggesting a narrowing of urban-rural wage disparities. 

The RIF regression estimates for education highlight varying effects across the wage distribution. 

For high school, some college, and associate degrees, the impact is positive and increasing up to 

the 30th percentile, then declines toward the 80th percentile, turning negative at the top of the 

distribution. This hill-shaped pattern suggests these education levels boost wages at lower 

quantiles but reduce them at the upper end. 

For college degrees, the pattern is also hill-shaped but consistently positive. The effect peaks 

around the 30th percentile, indicating strong returns for lower-wage earners, and then diminishes 

at higher quantiles, though it remains positive across the distribution. These findings show that 

education plays a key role in shaping wages but does so in a non-uniform way, with its effects on 

inequality depending on both the level of education and position in the wage distribution. 

Unlike conditional quantile regression, which measures the effect of covariates on the conditional 

distribution of wages (i.e., wages given a specific set of characteristics), the UQR approach 

captures the total effect of changing the distribution of covariates on the overall wage distribution. 

While UQR can provide insights into how changes in education levels affect wage inequality across 
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the entire labor market, the conditional quantile approach offers a complementary perspective by 

focusing on within-group dynamics. This focus on conditional distributions may be more aligned 

with understanding inequality within specific demographic or job-related groups, which is often 

central to discussions of wage disparities and targeted policy interventions. 

F.4.1 Decomposition Results 

Figure F.3, panel A, illustrates the overall change in (real log) wages at each percentile and 

decomposes this change into composition and wage structure effects using the reweighting 

procedure. The overall change in wages exhibits a U-shaped pattern, with increasing wage 

dispersion at the top end of the distribution and declining wages at the lower end. The composition 

effects play a significant role in driving inequality, contributing to much of the observed increase 

in wage dispersion. Once composition effects are accounted for, the remaining wage structure 

effects—estimated using reweighting—exhibit a cleaner U-shaped pattern. Wage declines are 

concentrated in the middle of the distribution (20th to 80th percentile), while wage gains at both 

the top and bottom ends become comparable. Notably, composition effects alone cannot explain 

the U-shaped nature of wage changes, suggesting that structural factors are key drivers of this 

pattern. 

Panel B of Figure F.3 moves to the next step of the decomposition, using RIF regressions to 

attribute the composition effect to specific sets of covariates. This panel compares the overall 

composition effect obtained through reweighting (shown in panel A) with the composition effect 

derived from RIF regressions. The difference between these two curves represents the 

specification error. While the error is relatively small for many quantiles, it is more pronounced at 

specific points, particularly in the upper 80th percentile and some middle and upper-middle 

quantiles (40th, 55th, 60th, and 65th percentiles). This suggests that the RIF regression may 

struggle to capture non-linear relationships, as changes in the distribution of covariates can alter 

the wage distribution, which in turn affects the RIF values used in the regression. 

From an implementation perspective, relying on the conditional distribution through conditional 

quantile regression may offer certain advantages. The conditional quantile regression focuses on 

within-group changes in the wage distribution, which can provide more precise insights into how 

covariates affect wage inequality within specific demographic or job-related groups. This can be 

particularly useful for policy applications aimed at targeted interventions, where understanding 
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within-group dynamics is crucial. In contrast, the unconditional approach provides a broader view 

but may be less suited to contexts where detailed group-specific effects are important. 

Finally, I examine the impact of each factor on overall wage inequality, focusing on the 90–10 log 

wage differential, as well as the 50–10 and 90–50 differentials, which represent changes in the 

lower and upper parts of the distribution, respectively. Tables F.1 and F.2 present the 

decomposition of these differentials alongside the Gini of log wages. Table F.1 provides a simple 

Oaxaca-Blinder-type decomposition using RIF regressions without reweighting, while Table F.2 

includes results from the full reweighting procedure. 

Table F.1 highlights a significant increase in inequality in the middle of the distribution, as 

measured by the total 90–10 log wage differential. This increase is driven by a rise in total 

composition effects and a decline in total structure effects. However, for the lower tail (50–10 gap), 

the upper tail (90–50 gap), and the entire distribution (Gini of log wages), the FFL method does 

not detect significant changes. 

In contrast, my proposed method (as shown in Table 3b of the main text) also identifies a positive 

and significant increase in inequality in the middle of the distribution (Q2–Q3), driven by changes 

in composition (changes in returns) and mitigated by a reduction in structure effects (changes in 

covariates). Additionally, similar to the FFL procedure, my method finds a small and statistically 

insignificant change in the Gini coefficient for the entire distribution of log wages. However, unlike 

the FFL method, my approach disentangles a significant reduction in inequality in the lower 

quartile of log wages and a significant increase in the upper quartile. 

Table F.1 also reveals notable changes in composition and wage structure effects in the middle of 

the distribution, primarily due to unionization, education, occupation, and industry. However, 

most factors are statistically insignificant for the lower tail (50–10 gap) and the upper tail (90–50 

gap), except for changes in composition effects grouped by industry. Moreover, none of the factors 

show statistically significant effects on the Gini index for the entire distribution of log wages. In 

contrast, my proposed methodology identifies significant effects of covariates on the aggregate 

Gini index and individual quartiles of the distribution. 

Table F.2 shows the results using the reweighting procedure. The reweighting procedure creates 

a counterfactual distribution of the wages that would have prevailed under the worker’s 
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charateristics in the year 1986, but with the distributions of observed and unobserved 

characteristics in year 2015. The magnitude, statistical significance, using the reweighting 

procedure are very similar to those a from the simple Oaxaca-Blinder decomposition using RIF 

regressions. In addition, the table shows the specification error for the composition effects as well 

as the reweighting error. 

A key finding in Table F.2 is that the specification error is statistically significant, suggesting that 

the RIF regression may struggle to capture non-linear relationships. Changes in the distribution of 

covariates can alter the overall wage distribution, which in turn affects the RIF values used in the 

regression. This introduces a potential limitation in decomposing sources of inequality using the 

FFL method, as the results may be sensitive to shifts in the distributional shape, making it more 

challenging to precisely identify composition and structure effects. These issues highlight the 

importance of considering alternative approaches, such as conditional quantile regression, which 

directly models within-group wage variation and is less affected by distributional changes. 
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Figure F.1: Kernel density estimates of (log) real wages 1986 - 2015 ($2020) and counterfactual 

 
Note: This figure presents kernel density estimates of hourly (log) wages for workers in 1986, 2015, and the counterfactual 
reweighted distribution. Vertical lines mark the binding federal minimum wage in 1986 and the highest state minimum wage in 
2015, which exceeded the federal minimum. All wages are converted to 2020 USD using the CPI series CUSR0000SA0. The data 
are drawn from the CPS ORG, utilizing the CEPR Uniform Extracts to construct a consistent hourly wage series. The sample is 
restricted to workers aged 16 to 65, with hourly wages between $1 and $100 in 1979 dollars. 
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Figure F.2: Selected Coefficients Estimates From the Unconditional Quantile Regression 

 
Note: This figure compares 1986 and 2015 coefficient estimates from RIF regressions for quantiles, calculated for 95 points in 
the (0,1) interval. It features dashed lines for 1986 and solid lines for 2015. The regression, utilizing CPS ORG hourly wage data, 
includes individual, job-related, demographic, and macroeconomic factors, plus state and industry fixed effects. 
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Figure F.3: Decomposition of Total Change and Composition Effects - 2015 vs. 1986 

 
Note: Panel A shows the total change in real log wages (red line) from 1986 to 2015, decomposed into composition (blue dashed 
line) and wage structure effects (green dashed line). Panel B compares the composition effect from reweighting (blue dashed 
line) with the explained portion from RIF regressions (gray dashed line) and the specification error (orange solid line). Shaded 
areas indicate 95% confidence intervals computed using 1,000 bootstraps. 
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Table F.1: Oaxaca-Blinder Decomposition of Wage Inequality Using RIF Regressions 

 
Note: This table presents the Oaxaca-Blinder decomposition of wage inequality measures using RIF regressions without 
reweighting. The decomposition is applied to the 90–10, 50–10, and 90–50 log wage differentials, as well as the Gini index of log 
wages. "Other" includes non-white, non-married, and five experience categories. Statistical significance levels are indicated as 
*** for 1%, ** for 5%, and * for 10%. Bootstrapped standard errors (1,000 replications) were used to compute the p-values, with 
standard errors presented in parentheses.. 

 

  

Inequality Measure 90-10 50-10 90-50 GiniLog x 100
(1) (2) (3) (4)

Total Change 0.031*** 0.056 0.056 0.056
(0.008) (0.057) (0.049) (0.077)

Composition 0.093*** -0.01 -0.01 -0.01
(0.004) (0.018) (0.028) (0.095)

Wage Structure -0.062*** 0.065 0.065*** 0.065
(0.01) (0.074) (0.024) (0.041)

Composition Effects:
Union 0.01*** -0.001 -0.001 -0.001

(0.001) (0.006) (0.012) (0.047)
Other 0.009*** -0.002 -0.002 -0.002

(0.002) (0.005) (0.003) (0.028)
Education 0.067*** 0.011 0.011 0.011

(0.003) (0.007) (0.008) (0.121)
Ocupation 0.033*** -0.002 -0.002 -0.002

(0.004) (0.012) (0.006) (0.026)
Industry -0.026*** -0.016*** -0.016*** -0.016

(0.002) (0.002) (0.003) (0.087)
Wage Structure Effects:

Union 0.006*** -0.015*** -0.015 -0.015
(0.002) (0.003) (0.014) (0.049)

Other 0.011 0.023 0.023 0.023
(0.011) (0.029) (0.027) (0.065)

Education 0.098** -0.138 -0.138 -0.138
(0.047) (0.085) (0.163) (0.477)

Ocupation -0.078** -0.032 -0.032 -0.032
(0.034) (0.037) (0.048) (0.253)

Industry 0.105*** -0.05 -0.05 -0.05
(0.035) (0.079) (0.077) (1.021)
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Table F.2: Reweighted Decomposition of Wage Inequality Using RIF Regressions 

 
Note: This table presents the FFL reweighting decomposition of wage inequality measures using RIF regressions. The 
decomposition is applied to the 90–10, 50–10, and 90–50 log wage differentials, as well as the Gini index of log wages. "Other" 
includes non-white, non-married, and five experience categories. Statistical significance levels are indicated as *** for 1%, ** for 
5%, and * for 10%. Bootstrapped standard errors (1,000 replications) were used to compute the p-values, with standard errors 
presented in parentheses. 

 

Inequality Measure 90-10 50-10 90-50 GiniLog x 100
(1) (2) (3) (4)

Total Change 0.031*** 0.056 0.056 0.056
(0.008) (0.057) (0.049) (0.077)

Composition 0.11*** -0.01 -0.01 -0.01
(0.004) (0.023) (0.03) (0.138)

Wage Structure -0.065*** -0.065 -0.065 -0.065
(0.012) (0.04) (0.056) (0.092)

Composition Effects:
Union 0.008*** -0.001 -0.001 -0.001

(0.001) (0.005) (0.009) (0.038)
Other 0.005*** -0.002 -0.002 -0.002

(0.002) (0.004) (0.002) (0.016)
Education 0.083*** 0.011 0.011 0.011

(0.004) (0.012) (0.01) (0.172)
Ocupation 0.035*** -0.002 -0.002 -0.002

(0.004) (0.013) (0.006) (0.037)
Industry -0.021*** -0.016*** -0.016*** -0.016

(0.002) (0.002) (0.006) (0.059)
Specification Error -0.023* 0.065*** 0.065* 0.065

(0.013) (0.025) (0.035) (0.104)
Wage Structure Effects:

Union 0.015*** 0.015 0.015*** 0.015
(0.003) (0.01) (0.005) (0.059)

Other -0.023 -0.023 -0.023 -0.023
(0.091) (0.065) (0.161) (1.513)

Education 0.138** 0.138 0.138* 0.138
(0.063) (0.153) (0.074) (1.092)

Ocupation 0.032 0.032 0.032 0.032
(0.052) (0.082) (0.078) (0.466)

Industry 0.05 0.05 0.05 0.05
(0.103) (0.079) (0.166) (1.759)

Reweighting Error -0.278*** -0.278** -0.278** -0.278
(0.097) (0.121) (0.128) (2.471)
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