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Abstract 
This paper introduces a new econometric method to identify factors influencing the disparities 

within the distribution of a positive random variable, focusing on US wages between 1986 and 

2015. I relate the conditional Lorenz curve to the conditional quantile function to additively 

decompose the conditional Gini index. Moreover, this paper presents a technique to disentangle 

the temporal changes in the distribution. The analysis shows that despite reduced impacts of race 

and gender on wages, persistent disparities require ongoing intervention, while higher 

education, especially college degrees, significantly reduces wage inequality during the analysis 

period. 
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1 Introduction 

Since the early 1980s, the escalating issue of economic inequality in the US has increasingly 

captured scholarly attention. 1  An intricate interplay of sociodemographic attributes, 

individual endowments, and the returns on these attributes and endowments fundamentally 

shapes the final distribution of income and wages. However, it is crucial to recognize that 

these characteristics and endowments are interconnected, and their combined influence on 

economic inequality is complex and elusive. Consequently, applying advanced statistical 

techniques is indispensable for disentangling this complexity and precisely measuring the 

impact of these interconnected factors on inequality. While extensive research has focused 

on identifying sources of economic disparities by estimating income or wage distribution 

densities, a substantial knowledge gap persists in understanding how inequality measures 

respond to these multifaceted influencing factors. 

In this study, I introduce a novel econometric methodology to systematically assess the 

influence of diverse determinants on the disparities within the distribution of a positive 

random variable, explicitly focusing on wages. I develop a method to decompose the 

conditional Gini index, a widely used inequality measure, by using conditional quantile 

regressions and leveraging the relationship between the Lorenz curve and the quantile 

function.2 This approach enables the precise identification and quantification of the factors 

most significantly impacting distribution inequality. Using data from the Ongoing Rotation 

Group (ORG) of the Current Population Survey (CPS) for 1986 and 2015, I illustrate this 

 
1 See Levy and Murnane (1992), Katz (1999), Autor et al. (2008) , Guvenen et al. (2014), and Abel and Deitz (2019) for a 

review of the literature. 
2 The Gini coefficient is a measure of income distribution inequality within a population, ranging from 0 (“perfect equality”) 

to 1 (“perfect inequality”). Preferred for its simplicity and ability to facilitate cross-population comparisons, it doesn't 

require parametric assumptions based on normative views, unlike some other inequality measures. For instance, the 

Atkinson Index depends on a parameter that reflects the society's aversion to inequality. This parameter essentially shapes 

how the index evaluates income distributions, making Atkinson's measure sensitive to the degree of inequality a society is 

willing to tolerate. Similarly, the Theil index and the Generalized Entropy measurements are subject to the selection of a 

parameter that assigns a weight to distances between incomes in different parts of the income distribution; the choice of 

the parameter, like in the Atkinson Index, relates to the society's aversion to inequality. See Hufe et al. (2020) for more 

contemporaneous measurements of inequality. 
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methodology and propose a decomposition of wage distribution changes, employing 

counterfactual scenarios based on estimated conditional Gini coefficients. 

Building on seminal contributions by Oaxaca (1973) and Blinder (1973), the literature 

has consistently advanced methodologies for disentangling the intricate factors that underlie 

wage disparities.3 The classical labor supply and demand model, featuring homogeneous 

agents, implicitly assumes a unique wage that clears the market. 4  However, recent 

developments have broadened our analytical horizons, prompting a shift towards a more 

profound examination of wage inequality across the entire distribution. For instance, using 

quantile regression, Buchinsky (1994) shows that the positive impact of education on wages 

is more pronounced for individuals in the upper echelons of the wage distribution compared 

with those at the lower end.5 More recently, Bayer and Charles (2018) find that black men at 

higher percentiles, particularly those with college educations, have experienced significant 

advances in relative earnings; this improvement is primarily attributed to positional gains 

among higher-educated black individuals. 

The progression of methodologies designed to model the entire wage distribution fuels 

optimism for a deeper understanding of the factors directly shaping the distribution. 6 

Machado and Mata (2005) notably contribute to this endeavor by developing a 

counterfactual decomposition technique using conditional quantile regression. Their study 

estimates marginal (log) wage distributions in alignment with a conditional distribution 

derived from conditional quantile regressions. These estimations are a foundation for 

 
3 For a review of many of the decomposition methods, please refer to Fortin et al. (2011). For example, Kleven et al. (2019) 

use these decomposition methods to understand the gender wage gaps in Denmark. 
4 Following the classical model, part of the literature has focused on the average wage differences controlling for individual 

and institutional characteristics. See, for example, Katz and Murphy (1992), Bound and Johnson (1992), Blau and Kahn 

(1996), Card and Lemieux (2001) 
5  Angrist et al. (2006) find a similar result for a more contemporary subsample of the US population. Arellano and 

Bonhomme (2017) show similar findings for the UK. 
6 The first method that models the distribution of wages is in DiNardo et al. (1996). The authors developed an estimation 

procedure to analyze counterfactual (log) wage distributions using kernel density methods to appropriately weighted 

samples. 
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constructing counterfactual scenarios, where they compare the implied marginal wage 

distributions based on the assumed covariate distributions. Their method explores wage 

differentials at various individual quantiles to try to assess the dynamics of the entire wage 

distribution. 

Traditional methods for analyzing inequality, such as visually inspecting kernel density 

estimates, focusing on isolated quantiles, or using ratios between quantiles, can overlook 

detailed dynamics and fail to reveal complex relationships within continuous parts of wage 

distributions. My proposed method addresses this by examining all quantiles of the 

distribution, and leveraging the inherent connection between the conditional quantile 

function and the conditional Lorenz curve.7 This approach allows for a thorough analysis of 

intricate dynamics throughout the entire wage distribution, not just isolated points. This 

approach directly assesses the impact of log wage distribution determinants on inequality 

by connecting them with the conditional Gini index, thus providing a precise measure of 

inequality, bypassing the need for density modeling. 

I employ comprehensive hourly wage data from the CPS ORG from 1986 to 2015 to 

exemplify the empirical application of my proposed methodology and contrast it with the 

approach of Machado and Mata (2005). I model the conditional quantile function of the 

logarithm of wages using a diverse array of individual, job-related, and demographic 

factors.8 Several key findings emerge from my analysis. The manufacturing sector, which 

initially correlated with lower wages in 1986, shifted to increasing wages by 2015. 

 
7 A conditional quantile function estimates the value at a specific percentile within a subgroup of data under certain 

conditions. For instance, it might tell us the median earnings for college-educated individuals in a population. This function 

is closely linked to conditional quantile regression, which is a statistical technique used to predict the conditional quantile 

of a response variable. Conditional quantile regression models the relationship between a set of predictor variables and 

specific quantiles of the response variable, allowing for a nuanced understanding of how this relationship varies across 

different parts of the distribution. 
8 The model integrates individual controls (experience, urban living, education), job-related attributes (unionization, public 

sector employment, manufacturing job, part-time status), and demographic indicators (nonwhite, female, marital status). 

Crucially, it incorporates state and industry fixed effects, essential for capturing macroeconomic shifts and sectoral 

composition changes. These fixed effects are vital for accounting for global trends such as trade liberalization and 

technological advancements, and regional economic shifts. 
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Concerning race and gender, despite the persistence of negative impacts, a notable decline 

in their adverse effects was observed. However, the continuous presence of these disparities 

underscores the need for targeted interventions. Finally, higher education, particularly 

college education, emerged as a significant factor in reducing wage inequality. I find that an 

increase in the proportion of college-educated workers led to a substantial decrease in the 

conditional Gini index, highlighting the value of higher education in addressing wage 

disparities. 

I implement the Machado and Mata (2005) method alongside my proposed technique to 

demonstrate the advantages of the later. My method reveals critical insights missed by the 

Machado and Mata approach. It uncovers a notable reduction in wage inequality at the lower 

wage spectrum, effectively balancing the rise at the higher end. This dual effect offers a more 

transparent view of the shifts in wage inequality over time. My method also detects the 

considerable influence of unionization and manufacturing across all wage levels, 

highlighting key economic shifts. Furthermore, it shows that urbanization consistently 

reduces wage inequality. This approach surpasses the Machado and Mata (2005) method by 

providing a holistic analysis of wage dynamics, encompassing various income levels and 

socio-economic factors, and particularly underscores the critical role of education in 

mitigating wage disparities. 

The structure of this paper unfolds as follows. In Section 2, I establish the theoretical 

linkage between the conditional Lorenz curve and the conditional Gini index, elucidating the 

additive decomposition of the coefficient and its capacity to capture temporal changes in the 

distribution. Section 3 introduces the proposed estimation procedure, outlining its 

methodology and implementation. Section 4 offers an extensive account of the US hourly 

wage data employed in this analysis. Moving to Section 5, I delve into the empirical 

application, demonstrating the practicality and insights generated using the proposed 

method. Finally, Section 6 concludes. 
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2 Conditional Lorenz Curve and Gini Index 

The Lorenz curve is a powerful instrument for illustrating the inequality present in the 

distribution of a positive random variable. Notably, this curve depicts the cumulative share 

of wages earned relative to the cumulative percentage of individuals, ranging from the 

lowest to the highest earners, thereby facilitating an insightful analysis of wage inequality. 

Adhering to the conceptual framework outlined by Koenker (2005), I define the Lorenz curve 

as follows: 

𝐿𝐿(𝜏𝜏) =
∫ 𝑄𝑄𝑌𝑌(𝑡𝑡)𝑑𝑑𝑡𝑡𝜏𝜏
0

∫ 𝑄𝑄𝑌𝑌(𝑡𝑡)𝑑𝑑𝑡𝑡1
0

=
1
𝜇𝜇
�𝑄𝑄𝑌𝑌(𝑡𝑡)𝑑𝑑𝑡𝑡
𝜏𝜏

0

, (1) 

 

where 𝑌𝑌 is a continuous and positive random variable with a cumulative density function 

𝐹𝐹𝑌𝑌(𝑦𝑦), quantile function denoted as 𝑄𝑄𝑌𝑌(𝑡𝑡) = inf{𝑦𝑦:𝐹𝐹𝑌𝑌(𝑦𝑦) ≥ 𝑡𝑡} = 𝐹𝐹−1(𝑡𝑡), with 𝑦𝑦𝜏𝜏 = 𝑄𝑄𝑌𝑌(𝜏𝜏) 

and mean 𝜇𝜇  satisfying 0 < 𝜇𝜇 < ∞ . As delineated in Appendix A, the application of a 

monotonic transformation, denoted ℎ(·), which satisfies ℎ(𝑌𝑌) ≥ 0 and 0 < µℎ < ∞, where 

µℎ = 𝐸𝐸[ℎ(𝑦𝑦)], culminates in a Lorenz curve of the transformed variable as given by 

𝐿𝐿ℎ(𝜏𝜏) =
1
𝜇𝜇ℎ
�𝑄𝑄ℎ(𝑌𝑌)(𝑡𝑡)𝑑𝑑𝑡𝑡
𝜏𝜏

0

=
𝜏𝜏𝐸𝐸[ℎ(𝑦𝑦)|ℎ(𝑦𝑦) ≤ ℎ(𝑦𝑦𝜏𝜏)]

𝜇𝜇ℎ
. (2) 

 

Drawing upon the fact that 0 ≤ 𝐸𝐸[ℎ(𝑦𝑦)|ℎ(𝑦𝑦) ≤ ℎ(𝑦𝑦𝜏𝜏)] ≤ 𝐸𝐸[ℎ(𝑦𝑦)] = µℎ, and considering 𝜏𝜏 ∈

(0,1), it is clear that the Lorenz curve of the transformed variable lies between zero and one. 

Let us consider 𝑄𝑄ℎ(𝑌𝑌)(𝑡𝑡|𝑥𝑥), with 𝑡𝑡 ∈ (0,1), to represent the t-th conditional quantile of the 

distribution of ℎ(𝑌𝑌), given a vector of covariates denoted by 𝑥𝑥 ∈ 𝑅𝑅𝑃𝑃. I propose modeling this 

conditional quantile function as a linear combination of the covariates, illustrated in the 

Equation below: 
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𝑄𝑄ℎ(𝑌𝑌)(𝑡𝑡|𝑥𝑥) = 𝑥𝑥𝑇𝑇𝛽𝛽(𝑡𝑡) = �𝑥𝑥𝑗𝑗

𝑃𝑃

𝑗𝑗=1

𝛽𝛽𝑗𝑗(𝑡𝑡), (3) 

 

where each 𝛽𝛽𝑗𝑗(𝑡𝑡) is the coefficient aligned with 𝑗𝑗-th covariate at the t-th quantile. Next, let 

𝜆𝜆ℎ(𝜏𝜏) ∈ 𝑅𝑅𝑃𝑃  be a vector where its 𝑗𝑗 -th element is defined as 𝜆𝜆ℎ,𝑗𝑗(𝜏𝜏) = 1
𝜏𝜏 ∫ 𝛽𝛽𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡𝜏𝜏

0 , 

representing, in essence, the mean of the 𝑗𝑗-th coefficient within the interval (0, 𝜏𝜏)9F

9. From 

equations (2) and (3), the conditional Lorenz curve of the transformed variable is expressed 

as: 

Lh(𝜏𝜏|𝑥𝑥) =
1
𝜇𝜇ℎ
�𝑄𝑄ℎ(𝑌𝑌)(𝑡𝑡|𝑥𝑥)𝑑𝑑𝑡𝑡
𝜏𝜏

0

=
1
𝜇𝜇ℎ
�𝑥𝑥𝑗𝑗 �𝛽𝛽𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡

𝜏𝜏

0

𝑃𝑃

𝑗𝑗=1

=
𝜏𝜏𝑥𝑥𝑇𝑇𝜆𝜆ℎ(𝜏𝜏)

𝜇𝜇ℎ
. (4) 

 

By comparing equations (2) and (4), it becomes clear that 𝐸𝐸�ℎ(𝑦𝑦)|𝑥𝑥 ∧ �ℎ(𝑦𝑦) ≤ ℎ(𝑦𝑦𝜏𝜏)�� 

equates to 𝑥𝑥𝑇𝑇𝜆𝜆ℎ(𝜏𝜏). By taking the limit when 𝜏𝜏 goes to one, I deduce that 𝐸𝐸[ℎ(𝑦𝑦)|𝑥𝑥] is given 

by 𝑥𝑥𝑇𝑇𝜆𝜆ℎ(1) = 𝑥𝑥𝑇𝑇 ∫ 𝛽𝛽(𝑡𝑡)𝑑𝑑𝑡𝑡1
0 , provided that the integral exists for each characteristic 𝑗𝑗. 

Based on the Lorenz curve, the Gini coefficient is widely used to summarize the disparity 

of the distribution of a positive random variable. The relationship between the coefficient 

and the curve is defined by the following Equation: 

𝐺𝐺 = 1 − 2�𝐿𝐿(τ)
1

0

𝑑𝑑τ, (5) 

 

 
9 This convention implies that ∫ 𝛽𝛽𝑗𝑗

𝜏𝜏
0 (𝑡𝑡)𝑑𝑑𝑡𝑡 = 𝜏𝜏𝜆𝜆ℎ,𝑗𝑗(𝜏𝜏), and 𝜆𝜆ℎ(𝜏𝜏) = 1

𝜏𝜏
�∫ 𝛽𝛽1(𝑡𝑡)𝑑𝑑𝑡𝑡𝜏𝜏
0 ,⋯ ,∫ 𝛽𝛽𝑃𝑃(𝑡𝑡)𝑑𝑑𝑡𝑡𝜏𝜏

0 � = 1
𝜏𝜏 ∫ 𝛽𝛽(𝑡𝑡)𝑑𝑑𝑡𝑡𝜏𝜏

0 . 
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where 𝐺𝐺 represents the Gini index value; this index quantifies the degree of deviation of a 

given random variable's Lorenz curve from the line that indicates perfect equality10. 

I compute the conditional Gini coefficient given a vector of covariates by integrating the 

conditional Lorenz curve, delineated in Equation (4), into the Gini index's definition. The 

formulation is given by 

𝐺𝐺ℎ(𝑥𝑥) = 1 − 2�𝐿𝐿ℎ(𝜏𝜏|𝑥𝑥)𝑑𝑑𝜏𝜏
1

0

 

= 1−
1
𝜇𝜇ℎ
�𝑥𝑥𝑗𝑗 ��2𝛽𝛽𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡

𝜏𝜏

0

𝑑𝑑𝜏𝜏
1

0

𝑃𝑃

𝑗𝑗=1

, (6) 
 

 

where 𝑥𝑥 ∈ 𝑅𝑅𝑃𝑃. This Equation (6) constitutes an additive decomposition of the conditional 

Gini index. This analytical tool is invaluable in scrutinizing the progression of variations in 

the distribution of ℎ(𝑌𝑌) , contingent on the factor endowments and sociodemographic 

characteristics, 𝑥𝑥𝑗𝑗 , as well as the returns (prices) associated with these endowments and 

characteristics, 1
𝜇𝜇ℎ
∫ ∫ 2𝛽𝛽𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡𝜏𝜏

0 𝑑𝑑𝜏𝜏1
0  . 

It is interesting to mention that the coefficient can be reformulated by partitioning the 

interval (0,1) into 𝑛𝑛 equally spaced sub-intervals, as illustrated by the Equation 

𝐺𝐺 = 1 −� 2 � 𝐿𝐿(𝜏𝜏)𝑑𝑑𝜏𝜏

𝜏𝜏𝑖𝑖+1

𝜏𝜏𝑖𝑖

𝑛𝑛−1

𝑖𝑖=0

, (7) 

 

 
10 The line of perfect equitability is the Lorenz curve of a degenerate random variable 𝛿𝛿𝜇𝜇 , which only takes the single value 

𝜇𝜇. 
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where  𝜏𝜏𝑖𝑖 = 𝑖𝑖
𝑛𝑛

, for 𝑖𝑖 = 0,⋯ ,𝑛𝑛 − 1 . By definition, 𝜏𝜏𝑖𝑖+1 − 𝜏𝜏𝑖𝑖 = 1
𝑛𝑛

, and noting that the area 

beneath the line of perfect equitability can be expressed in terms of rectangles and triangles, 

it becomes evident that 

𝐺𝐺 = 2 ���
𝑖𝑖
𝑛𝑛2

+
1

2𝑛𝑛2
− � 𝐿𝐿(𝜏𝜏)𝑑𝑑𝜏𝜏

𝜏𝜏𝑖𝑖+1

𝜏𝜏𝑖𝑖

�
𝑛𝑛−1

𝑖𝑖=0

�. (8) 

 

I wish to emphasize this connection as it provides a direct method to numerically 

approximate the Gini coefficient, making it a flexible tool in inequality analysis. 

What is interesting about Equation (8) is its capability to pinpoint the sub-intervals most 

significantly contributing to the Gini index — essentially highlighting the quantiles that 

primarily augment the inequality within the distribution. Finally, combining equations (6) 

and (8), I re-express the coefficient, given a vector of covariates, as 

𝐺𝐺ℎ(𝑥𝑥) = 1 −��𝑥𝑥𝑗𝑗
1
𝜇𝜇ℎ

� �2𝛽𝛽𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡
𝜏𝜏

0

𝑑𝑑𝜏𝜏

𝜏𝜏𝑖𝑖+1

𝜏𝜏𝑖𝑖

𝑃𝑃

𝑗𝑗=1

𝑛𝑛−1

𝑖𝑖=0

 

= 2 ���
𝑖𝑖
𝑛𝑛2

+
1

2𝑛𝑛2
−�𝑥𝑥𝑗𝑗

1
𝜇𝜇ℎ

� �𝛽𝛽𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡
𝜏𝜏

0

𝑑𝑑𝜏𝜏

𝜏𝜏𝑖𝑖+1

𝜏𝜏𝑖𝑖

𝑃𝑃

𝑗𝑗=1

�
𝑛𝑛−1

𝑖𝑖=0

�. (9) 
 

 

In this Equation, I am considering the additive decomposition of the conditional coefficient 

in relation to both the endowments and characteristics, 𝑥𝑥𝑗𝑗 , as well as the specific sub-

intervals that play a significant role in escalating the inequality of the distribution. This 

analysis might pave the way for a deeper understanding of the underlying factors driving 

income or wealth disparities in various economic settings. 
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2.1 Impact of Individual Characteristics on the Conditional Gini Index 

I use Equation (6) to compute the variation in the conditional Gini index, resulting from a 

small positive change in a characteristic 𝑗𝑗 from 𝑥𝑥𝑗𝑗  to 𝑥𝑥𝑗𝑗′, as shown below: 

Δ𝐺𝐺ℎ(𝑥𝑥)
Δ𝑥𝑥𝑗𝑗

=
𝐺𝐺ℎ�𝑥𝑥𝑗𝑗′,𝑥𝑥−𝑗𝑗� − 𝐺𝐺ℎ(𝑥𝑥𝑗𝑗 ,𝑥𝑥−𝑗𝑗)

𝑥𝑥𝑗𝑗′ − 𝑥𝑥𝑗𝑗
= −

1
𝜇𝜇ℎ
��2𝛽𝛽𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡

𝜏𝜏

0

𝑑𝑑𝜏𝜏
1

0

≝ −
Π𝑗𝑗
𝜇𝜇ℎ

, (10) 

 

where 𝑥𝑥 = �𝑥𝑥𝑗𝑗 , 𝑥𝑥−𝑗𝑗� = ( 𝑥𝑥1,⋯ , 𝑥𝑥𝑗𝑗 ,⋯ , 𝑥𝑥𝑝𝑝) ∈ 𝑅𝑅𝑃𝑃 . I assume µℎ > 0 , which indicates that the 

direction of the change in the Gini coefficient exclusively relies on the sign of  

Π𝑗𝑗 = �� 2𝛽𝛽𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡
𝜏𝜏

0

𝑑𝑑𝜏𝜏
1

0

. 

If Π𝑗𝑗 is negative, a marginal positive shift in covariate 𝑗𝑗 correlates with an uptick in the 

conditional Gini index, thereby pointing to augmented inequality in the distribution of 

ℎ(𝑌𝑌) . Conversely, a slight positive adjustment in covariate 𝑗𝑗 , paired with a positive Π𝑗𝑗 , 

correlates with a decrease in the inequality found in the distribution of ℎ(𝑌𝑌). 

Furthermore, µℎ serves as a positive scaling parameter that normalizes the Lorenz curve 

and the Gini coefficient within the range of zero to one. Consequently, the magnitude of Π𝑗𝑗 

imparts information about the extent of the alteration in the Gini index, following a slight 

positive adjustment in covariate 𝑗𝑗 . Larger absolute values of Π𝑗𝑗  correspond with more 

pronounced shifts in the Gini coefficient, also in absolute terms. I label the absolute value of 
Π𝑗𝑗
𝜇𝜇ℎ

 as the impact of covariate 𝑗𝑗 on the distribution of ℎ(𝑌𝑌). Under this premise, it is evident 

that certain covariates exert a more substantial impact on the distribution of ℎ(𝑌𝑌) compared 

to others. 
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2.2 Temporal Changes in the Distribution of h(Y) 

I aim to grasp the intricacies of the distribution of ℎ(𝑌𝑌) to dissect the influence of various 

factors on the distributional changes over time. This decomposition bears practical 

implications as it facilitates distinguishing between the effects stemming from shifts in 

individual characteristics and alterations in the returns to those attributes. Previous 

decomposition approaches also used this kind of analysis; for instance, DiNardo et al. (1996) 

apply kernel density methods on reweighted samples to scrutinize counterfactual wage 

distributions. Similarly, Machado and Mata (2005) craft a counterfactual decomposition 

technique leveraging quantile regression, a strategy that aligns closely with the one I 

introduce here. In all scenarios, including mine, the decomposition broadens the Oaxaca 

(1973) method, initially forged to investigate counterfactual disparities in average earnings. 

Suppose I aim to scrutinize the changes in the distribution spanning two years, 

represented by 𝛹𝛹 ∈ {0,1} . I intend to explore two varieties of counterfactual scenarios. 

Firstly, I aspire to gauge the inequality in the distribution of ℎ(𝑌𝑌) in year 𝛹𝛹 = 1, aligned with 

the distribution of covariates in year 𝛹𝛹 = 0. Concurrently, I seek to calculate the disparity in 

the distribution of ℎ(𝑌𝑌) in year 𝛹𝛹 = 1, under the condition that only one covariate embodies 

the distribution witnessed in year 𝛹𝛹 = 0 . By deploying these counterfactuals, I can 

understand the impacts on the distribution of ℎ(𝑌𝑌) , which arise from changes in the 

covariates and shifts in the returns attributed to these covariates. 

Let us model the conditional quantile function in year 𝛹𝛹 as 

𝑄𝑄ℎ(𝑌𝑌)(𝑡𝑡|𝑥𝑥;𝛹𝛹) = 𝑥𝑥𝑇𝑇 𝛽𝛽𝛹𝛹(𝑡𝑡), (11) 
 

where 𝛽𝛽𝛹𝛹(𝑡𝑡) represents the coefficients of the covariates in year 𝛹𝛹 at quantile 𝑡𝑡, and 𝑥𝑥 is a 

vector of covariates. Now, let 𝑋𝑋(𝛹𝛹) denote an 𝑁𝑁𝛹𝛹 × 𝑃𝑃 matrix of data on these covariates in 

year 𝛹𝛹  with 𝑁𝑁𝛹𝛹  denoting the number of observations and 𝑃𝑃  signifying the number of 

covariates. Also, denote by 𝑋𝑋�𝑗𝑗(𝛹𝛹)  the average of column 𝑗𝑗  of the matrix 𝑋𝑋(𝛹𝛹) . Using the 



11 

additive decomposition of the Gini coefficient in Equation (6), I propose an estimate for the 

conditional Gini index in year 𝛹𝛹, expressed as 

𝐺𝐺�ℎ𝛹𝛹 = 1 −�𝑋𝑋�𝑗𝑗(𝛹𝛹)
𝑃𝑃

𝑗𝑗=1

Π�𝑗𝑗𝛹𝛹

�̂�𝜇ℎ𝛹𝛹
, (12) 

 

where �̂�𝜇ℎΨ and Π�ℎΨ are the respective estimates for µℎ and 𝛱𝛱𝑗𝑗  in year 𝛹𝛹. 

Despite the potential for general equilibrium effects stemming from alterations in the 

distribution of the covariates—given that these changes can influence the returns to the 

characteristics— let me assume for simplicity that the changes in the covariates do not 

modify the returns of those characteristics11. Considering this assumption, I can compute an 

estimate of the conditional Gini index in year 𝛹𝛹 = 1 , assuming all covariates were 

distributed as in year 𝛹𝛹 = 0, as follows: 

𝐺𝐺�ℎ1�𝑋𝑋(0)� = 1 −�𝑋𝑋�𝑗𝑗(0)
𝑃𝑃

𝑗𝑗=1

Π�𝑗𝑗1

�̂�𝜇ℎ1
. (13) 

 

For this discussion, let 𝐺𝐺ℎΨ denote the Gini index computed from a sample in year Ψ. I 

calculate changes in the Gini coefficient to capture shifts in the distribution of ℎ(𝑌𝑌): 

𝐺𝐺ℎ1 − 𝐺𝐺ℎ0 = 𝐺𝐺�ℎ1 − 𝐺𝐺�ℎ0 + residual 
= 𝐺𝐺�ℎ1 − 𝐺𝐺�ℎ1�𝑋𝑋(0)������������

change in covariates

+ 𝐺𝐺�ℎ1�𝑋𝑋(0)� − 𝐺𝐺�ℎ0�����������
change in returns

+ residual. (14) 

 

The change in the distribution tied to shifts in individual characteristics is measured by 𝐺𝐺�ℎ1 −

𝐺𝐺�ℎ1�𝑋𝑋(0)�, where returns remain constant and only the covariates vary. On the other hand, 

 
11 This is an inherent assumption of the Oaxaca (1973) decomposition that is also present in DiNardo et al. (1996) and 

Machado and Mata (2005). 
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the shift in the distribution of ℎ(𝑌𝑌) triggered by changes in returns to individual traits is 

encapsulated by 𝐺𝐺�ℎ1�𝑋𝑋(0)� − 𝐺𝐺�ℎ0, where covariates stay the same and only returns change. 

I define 𝑋𝑋−𝑗𝑗1 (0) = �𝑋𝑋�1(1),⋯ ,𝑋𝑋�𝑗𝑗(0),⋯ ,𝑋𝑋�𝑃𝑃(1)�  as a vector in 𝑅𝑅𝑃𝑃 , where the 𝑗𝑗 -th entry 

represents the average of characteristic 𝑗𝑗  in year 𝛹𝛹 = 0 , while all other entries are the 

averages of the respective covariates in year 𝛹𝛹 = 1 . To pinpoint the effect of a single 

covariate changing from year 𝛹𝛹 = 0 to 𝛹𝛹 = 1, I introduce the impact on the change in the 

distribution of ℎ(𝑌𝑌): 

𝐺𝐺�ℎ1 − 𝐺𝐺�ℎ1 �𝑋𝑋−𝑗𝑗1 (0)� = −�𝑋𝑋�𝑗𝑗(1) − 𝑋𝑋�𝑗𝑗(0)�
Π�𝑗𝑗1

�̂�𝜇ℎ1
. (15) 

 

This Equation assumes a specific sequence of changes from 𝛹𝛹 = 0 to 𝛹𝛹 = 1, an assumption 

that, admittedly, is arbitrary. It's also worth noting that understanding what would happen 

to the distribution at 𝛹𝛹 = 0  if all covariates were as in 𝛹𝛹 = 1  can provide alternative 

measures of the effects of changes in both covariate returns and the covariates themselves. 

2.2.1 Alternative Method 

I consider another way to understand changes in the distribution of ℎ(𝑌𝑌)  through the 

method proposed by Machado and Mata (2005). This approach estimates the entire 

distribution to isolate contributing factors to temporal changes. The technique relies on the 

probability integral transformation theorem, stating that if 𝑈𝑈 is a uniform random variable 

on [0,1], then 𝐹𝐹−1(𝑈𝑈) has distribution 𝐹𝐹. I model the conditional quantile of ℎ(𝑌𝑌) in year Ψ 

as given by equation (11): 

𝑄𝑄ℎ(𝑌𝑌)(𝑡𝑡|𝑥𝑥;𝛹𝛹) = 𝑥𝑥𝑇𝑇 𝛽𝛽𝛹𝛹(𝑡𝑡), 

Subsequently, I employ the following steps to estimate the implied marginal densities: 

1. Generate a random sample of size 𝑚𝑚  from a uniform random variable on 

[0,1]: 𝑢𝑢1,⋯ ,𝑢𝑢𝑚𝑚 
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2. Estimate 𝑄𝑄ℎ(𝑌𝑌)(𝑡𝑡|𝑥𝑥;𝛹𝛹) yielding 𝑚𝑚 estimates �̂�𝛽Ψ(𝑢𝑢𝑖𝑖). 

3. Generate a random sample of size 𝑚𝑚 with replacement from 𝑋𝑋(𝛹𝛹), the 𝑁𝑁𝛹𝛹 × 𝑃𝑃 matrix 

of data on covariates, denoted by{𝑥𝑥𝑖𝑖∗(𝛹𝛹)}𝑖𝑖=1𝑚𝑚 . 

4. Generate a random sample of ℎ(𝑌𝑌) that is consistent with the conditional distribution 
defined by the model: �𝜂𝜂𝑖𝑖∗(𝛹𝛹) ≝ 𝑥𝑥𝑖𝑖∗(𝛹𝛹)𝑇𝑇�̂�𝛽Ψ(𝑢𝑢𝑖𝑖)�𝑖𝑖=1

𝑚𝑚
. 

For generating a random sample from the marginal distribution of ℎ(𝑌𝑌) as it would have 

been in Ψ = 1 —assuming all covariates had been as in Ψ = 0—I use 𝑋𝑋(0) in the third step 

above. This procedure assumes that covariate changes do not modify their returns. 

To construct a counterfactual where only one covariate, 𝑥𝑥𝑖𝑖(1), is distributed as in year 

Ψ = 0, I introduce an additional step based on the method by Machado and Mata (2005). The 

authors defined a partition of the covariate 𝑥𝑥𝑖𝑖(1) in 𝐽𝐽 classes, 𝐶𝐶𝑗𝑗(1), with relative frequencies 

𝑓𝑓𝑗𝑗(·), for 𝑗𝑗 = 1,⋯  , 𝐽𝐽, and propose the following procedure: 

1. Generate {𝜂𝜂𝑖𝑖∗(1)}𝑖𝑖=1𝑚𝑚 , a random sample of ℎ(𝑌𝑌), with size 𝑚𝑚, that is consistent with 

the conditional distribution defined by the model. 

2. Take the first class, 𝐶𝐶1(1), and select all elements of {𝜂𝜂𝑖𝑖∗(1)}𝑖𝑖=1𝑚𝑚  that are generated using 

this class, 𝐼𝐼1 = {𝑖𝑖|𝑥𝑥𝑖𝑖(1) ∈ 𝐶𝐶1(1)}, that is {𝜂𝜂𝑖𝑖∗(1)}𝑖𝑖∈𝐼𝐼1 . Generate a random sample of size 

𝑚𝑚 × 𝑓𝑓1(0) with replacement from {𝜂𝜂𝑖𝑖∗(1)}𝑖𝑖∈𝐼𝐼1 . 

3. Repeat step 2 for 𝑗𝑗 = 2,⋯ , 𝐽𝐽. 

I generate random samples for various counterfactual scenarios using these two procedures. 

These approaches enable me to decompose changes in the density of ℎ(𝑌𝑌) based on these 

generated samples. 

Let 𝑓𝑓�𝜂𝜂(Ψ)� be an estimator of the marginal density of an observed sample of ℎ(𝑌𝑌) in 

year Ψ, and 𝑓𝑓�𝜂𝜂∗(Ψ)� an estimator of the density of ℎ(𝑌𝑌) based on the generated sample 

{𝜂𝜂𝑖𝑖∗(Ψ)}𝑖𝑖=1𝑚𝑚 . I denote 𝑓𝑓(𝜂𝜂∗(1);𝑋𝑋(0)) as an estimate of the counterfactual density in Ψ = 1 if 

the covariates had been distributed as in Ψ = 0. Similarly, 𝑓𝑓(𝜂𝜂∗(1); 𝑥𝑥𝑖𝑖(0)) is an estimate of 
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the density in Ψ = 1  if only the 𝑖𝑖𝑡𝑡ℎ  covariate is distributed as in Ψ = 0 . For a summary 

statistic 𝛼𝛼(⋅) (e.g., a quantile or scale measure), the decomposition of changes in 𝛼𝛼 can be 

written as: 

𝛼𝛼�𝑓𝑓(𝜂𝜂(1))� − 𝛼𝛼�𝑓𝑓(𝜂𝜂(0))� =       �𝑓𝑓(𝜂𝜂∗(1))� − 𝛼𝛼 �𝑓𝑓�𝜂𝜂∗(1);𝑋𝑋(0)�������������������������
change in covariates

 (16) 

                                                       + 𝛼𝛼 �𝑓𝑓(𝜂𝜂∗(1);𝑋𝑋(0))� − 𝛼𝛼 �𝑓𝑓�𝜂𝜂∗(0)�������������������������
change in returns

 
(17) 

+ residual (18) 
 

Likewise, the individual contribution of a covariate is: 

𝛼𝛼�𝑓𝑓(𝜂𝜂∗(1))� − 𝛼𝛼�𝑓𝑓�𝜂𝜂∗(1)�; 𝑥𝑥𝑖𝑖(0)�. (19) 
 

This alternative approach estimates the entire distribution to identify the factors affecting 

shifts in a particular quantile. In contrast, the method using the conditional Gini index 

directly evaluates inequality across the whole distribution. 

 

2.3 Inequality in the Distribution of Y 

I compute the linear decomposition of the Gini index in Equation (6) for the transformed 

variable, ℎ(𝑌𝑌) . However, I also find it compelling to gauge the influence of individual 

characteristics on the distribution of the positive random variable, 𝑌𝑌 . Studying the 

transformed variable instead of the variable in its original scale might pose a conflict 

between the statistical and economic objectives of this study. But, considering the assumed 

properties of the transformation ℎ(·) and using the properties of the quantile function, I 

derive: 

𝑄𝑄𝑌𝑌(𝑡𝑡|𝑥𝑥) = ℎ−1 �𝑄𝑄ℎ(𝑌𝑌)(𝑡𝑡|𝑥𝑥)� 
= ℎ−1(𝑥𝑥𝑇𝑇𝛽𝛽(𝑡𝑡)), 

 
 

(20) 
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This implies: 

𝐿𝐿(𝜏𝜏|𝑥𝑥) =
1
𝜇𝜇
�ℎ−1(𝑥𝑥𝑇𝑇𝛽𝛽(𝑡𝑡))𝑑𝑑𝑡𝑡
𝜏𝜏

0

  (21) 

 

and 

𝐺𝐺(𝑥𝑥) = 1 −
2
𝜇𝜇
��ℎ−1�𝑥𝑥𝑇𝑇𝛽𝛽(𝑡𝑡)�𝑑𝑑𝑡𝑡

𝜏𝜏

0

𝑑𝑑𝜏𝜏
1

0

.  (22) 

 

While the previous relationship is not inherently linear because ℎ−1(·) isn't linear, Equation 

(22) establishes a connection between the Gini coefficient of 𝑌𝑌 and a transformation of a 

linear combination of the quantile regression coefficients. I acknowledge that this link 

requires further exploration in future research. 

 

3 Estimation Procedure 

In the previous section, I measure the impacts and decompose the temporal changes in the 

distribution of ℎ(𝑌𝑌)  by estimatingΠ𝑗𝑗 = ∫ ∫ 2𝛽𝛽𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡𝜏𝜏
0 𝑑𝑑𝜏𝜏1

0  as detailed in Equation (6). A 

straightforward estimate would be Π�𝑗𝑗 = ∫ ∫ 2𝛽𝛽�𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡𝜏𝜏
0 𝑑𝑑𝜏𝜏1

0 , where 𝛽𝛽�𝑗𝑗 represents the 

estimated quantile regression coefficient. 

To clarify the estimation approach, I consider 𝑄𝑄ℎ(𝑌𝑌)(𝑡𝑡|𝑥𝑥)  for 𝑡𝑡 ∈  (0,1)  to be the 𝑡𝑡 -th 

conditional quantile function of ℎ(𝑌𝑌), given a vector of covariates 𝑥𝑥 ∈  𝑅𝑅𝑃𝑃. I posit that the 

conditional quantile function can be represented as: 

𝑄𝑄ℎ(𝑌𝑌)(𝑡𝑡|𝑥𝑥)  =  𝑥𝑥𝑇𝑇𝛽𝛽(𝑡𝑡), (23) 
Here, 𝛽𝛽(𝑡𝑡)  is a vector in 𝑅𝑅𝑃𝑃 , with its entries being the quantile regression coefficients. 

Drawing from Koenker and Bassett (1978), for a specific 𝑡𝑡 ∈  (0,1), I can estimate 𝛽𝛽(𝑡𝑡) by: 
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min
𝑏𝑏∈𝑅𝑅𝑃𝑃

�𝜌𝜌𝑡𝑡(ℎ(𝑦𝑦𝑖𝑖) − 𝑥𝑥𝑇𝑇𝑏𝑏)
𝑁𝑁

𝑖𝑖=1

 , (24) 

 

where 

𝜌𝜌𝑡𝑡(𝑢𝑢) = 𝑢𝑢�𝑡𝑡 − 𝐼𝐼(𝑢𝑢 < 0)� , (25) 
 

In the above, 𝑁𝑁  signifies the number of observations and 𝐼𝐼(·) represents the indicator 

function. 

Let �̂�𝛽(𝑡𝑡) be the solution to the optimization problem expressed in Equation (24). Further, 

let �̂�𝛽𝑗𝑗(𝑡𝑡) indicate the 𝑗𝑗-th component of this estimated vector, which functions based on the 

quantile 𝑡𝑡. My aim is to compute: 

Π�𝑗𝑗 = ��2𝛽𝛽�𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡
𝜏𝜏

0

𝑑𝑑𝜏𝜏
1

0

= � � �2𝛽𝛽�𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡
𝜏𝜏

0

𝑑𝑑𝜏𝜏

𝜏𝜏𝑖𝑖+1

𝜏𝜏𝑖𝑖

𝑛𝑛−1

𝑖𝑖=0

. (26) 

 

One feasible method to determine the double integrals in Equation (26) is to perform a 

numerical computation, using a set grid for the point evaluations of �̂�𝛽𝑗𝑗(𝑡𝑡) . However, a 

challenge emerges when extending one-dimensional integration methods to multiple 

dimensions: the required function evaluations increase exponentially, which is often termed 

the "curse of dimensionality". For instance, if we opt for 𝑚𝑚 evaluation points, the numerical 

approximation for the double integrals would demand an estimation proportional to 𝑚𝑚2. 

I propose an alternative. By deriving a smooth approximation for �̂�𝛽𝑗𝑗(𝑡𝑡) through a known 

functional form—one with a discernible antiderivative—I can then analytically calculate Π�𝑗𝑗 

using the established functional form. This method not only streamlines computations but 

also maintains the number of function evaluations at 𝑚𝑚, aligning with our original set of 

evaluation points. 
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There are various approximation procedures designed to smooth a continuous function. 

Splines, a commonly known method, approximate a function through a piecewise continuous 

polynomial. However, employing splines to estimate Π𝑗𝑗  presents challenges. Firstly, it 

necessitates the designation of knots. 12  Secondly, it mandates numerous piecewise 

integrations contingent on the number of these knots. 

Alternatively, I can utilize orthogonal polynomials to approximate any continuous 

function.13 This technique produces a singular polynomial of order 𝐾𝐾  that minimizes the 

error squared between the smoothing polynomial and the observed function values. One 

limitation when using orthogonal polynomials to compute Π𝑗𝑗  is the need to define the 

polynomial's order, 𝐾𝐾 . However, a notable advantage is the ease of computation for Π𝑗𝑗 's 

estimate. I can determine the double integrals of Equation (26) in a single step, contrasting 

the piecewise integration needed with splines. 

I assume that �̂�𝛽𝑗𝑗(𝑡𝑡) is continuous over the interval [0,1]. As outlined in Judd (1998), I can 

approximate this function using any set of orthogonal polynomials defined on this interval. 

The Weierstrass Approximation Theorem ensures that, given the aforementioned 

assumptions, �̂�𝛽𝑗𝑗(𝑡𝑡) can be uniformly approximated over [0,1] by polynomials, achieving any 

desired precision. Several orthogonal polynomial families exist, including Legendre, 

Chebyshev, Laguerre, and Hermite. The distinction among these families mainly lies in their 

weighting functions and polynomial domains. For functions with a bounded domain, the 

most straightforward weighting function is 𝑤𝑤(𝑥𝑥) = 1 , which aligns with the Legendre 

polynomials. For the sake of simplicity, I choose to use the Legendre polynomials to 

approximate �̂�𝛽𝑗𝑗(𝑡𝑡) over the interval [0,1]. 

 
12 The knots are the places where the polynomial pieces connect in the jargon used for splines. 

13 A weighting function, 𝑤𝑤(𝑥𝑥), on [𝑎𝑎, 𝑏𝑏] is any function that is positive almost everywhere and has a finite integral on [𝑎𝑎, 𝑏𝑏]. 

Given a weighting function, the inner product between the polynomials 𝑓𝑓 and 𝑔𝑔 is defined as ⟨𝑓𝑓,𝑔𝑔⟩  = ∫ 𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥)𝑤𝑤(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎  . 

A family of polynomials {𝑝𝑝𝑛𝑛(𝑥𝑥)} is orthogonal with respect to the weighting function 𝑤𝑤(𝑥𝑥) if and only if ⟨𝑝𝑝𝑚𝑚, 𝑝𝑝𝑛𝑛⟩ = 0 for all 

𝑚𝑚 ≠ 𝑛𝑛. 
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The domain of the Legendre polynomials is [−1,1], yet our goal is to approximate �̂�𝛽𝑗𝑗(𝑡𝑡) 

on [0,1] . This requires reshaping the orthogonal Legendre polynomials to fit the [0,1] 

interval, a process detailed in Appendix B.14 With the reshaped polynomials, I can derive the 

least-square approximation of �̂�𝛽𝑗𝑗(𝑡𝑡) using a polynomial of order 𝐾𝐾. Specifically, let 𝛽𝛽�𝑗𝑗,𝐾𝐾(𝑡𝑡) 

represent a polynomial described as: 

𝛽𝛽�𝑗𝑗,𝐾𝐾(𝑡𝑡) = 𝛼𝛼0,𝑗𝑗𝑝𝑝0(𝑡𝑡) + 𝛼𝛼1,𝑗𝑗𝑝𝑝1(𝑡𝑡) + ⋯+ 𝛼𝛼𝐾𝐾,𝑗𝑗𝑝𝑝𝐾𝐾(𝑡𝑡). 

Here, {𝑝𝑝𝑘𝑘}𝑘𝑘=0𝐾𝐾  denotes the first 𝐾𝐾 + 1 Legendre polynomials defined over [0,1]. The objective 

is to minimize the sum of the squared errors between �̂�𝛽𝑗𝑗(𝑡𝑡) and 𝛽𝛽�𝑗𝑗,𝐾𝐾(𝑡𝑡), which is defined by 

𝐸𝐸�𝛼𝛼0,𝑗𝑗 ,⋯ ,𝛼𝛼𝐾𝐾,𝑗𝑗� = ���̂�𝛽𝑗𝑗(𝑡𝑡) − 𝛽𝛽�𝑗𝑗,𝐾𝐾(𝑡𝑡)�
2
𝑑𝑑𝑡𝑡

1

0

. 

For a given 𝐾𝐾, I define 

𝛽𝛽 �� 𝑗𝑗,𝐾𝐾(𝑡𝑡) = 𝑎𝑎𝑎𝑎𝑔𝑔𝑚𝑚𝑖𝑖𝑛𝑛
𝛼𝛼0,𝑗𝑗,⋯,𝛼𝛼𝐾𝐾,𝑗𝑗

 𝐸𝐸�𝛼𝛼0,𝑗𝑗 ,⋯ ,𝛼𝛼𝐾𝐾,𝑗𝑗�; 

the polynomial 𝛽𝛽 �� 𝑗𝑗,𝐾𝐾(𝑡𝑡)  is a smoothed approximation of �̂�𝛽𝑗𝑗(𝑡𝑡)  based on 𝐾𝐾 + 1  known 

polynomials on [0,1] . One of the major benefits of this polynomial approximation is its 

closed-form antiderivatives, which streamline computation. By leveraging this smoothed 

approximation, I can efficiently determine the influence of the 𝑗𝑗 -th covariate on the 

inequality of the distribution of ℎ(𝑌𝑌), as described in Equation (26). 

To better grasp the implications of the polynomial approximation's order, K, consider a 

hypothetical scenario. Let's say a researcher postulates a model for the conditional quantile 

function of wage logarithms, using the transformation ℎ(·) = ln(·). Further, let’s assume the 

researcher gauges a quantile regression coefficient, �̂�𝛽𝑗𝑗(𝑡𝑡), across a grid of 𝑚𝑚 = 69 quantiles.  

 
14 Reshaping the Legendre orthogonal polynomials into the interval [0,1] requires a simple linear substitution that affects 

the limits of the integral. 
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Figure 1 illustrates a representative smooth least-square approximation of this assumed 

quantile regression coefficient, �̂�𝛽𝑗𝑗(𝑡𝑡) . In each of the figure's panels, the dashed line 

represents 𝛽𝛽 �� 𝑗𝑗,𝐾𝐾(𝑡𝑡). Panel (a) showcases the outcomes of employing a smoothed polynomial 

approximation of second degree. If our focus remains solely on the quantile regression's 

point estimate, a second-degree polynomial appears to inadequately represent the estimate. 

Yet, when accounting for the 95% confidence interval, it's evident that a second-degree 

polynomial might offer a reasonable approximation. On the other hand, Panel (b) depicts the 

outcome using a sixth-degree polynomial. Increasing the polynomial's degree enhances the 

approximation fidelity to the quantile regression coefficient's point estimate. Such an 

enhancement might be a preferable approach, depending on the research objectives. 

The panels in Figure 1 elucidate that utilizing a higher polynomial degree improves the 

approximation's adherence to the quantile regression's point estimate. However, even with 

a higher degree, the polynomial might not completely smooth out abrupt variations in the 

estimates. Such variations could likely arise from data scarcity for specific quantiles—

typically at the extreme top or bottom 1% of wage distributions. Selecting the polynomial's 

degree presents a balancing act. While a greater degree enhances the approximation's 

precision—something that may be sought after—it doesn't always align with the primary 

objective of the approximation. Additionally, as demonstrated in Figure 1, if the smoothing 

polynomial resides within the confidence bands, then the approximation might be deemed 

‘satisfactory’, despite any minor discrepancies. 

I use bootstrapping to assess if the estimate for Π�𝑗𝑗 significantly deviates from zero and to 

establish its confidence intervals. To detail the process, let 𝑁𝑁 represent the sample size and 

ℝ  the number of bootstrap repetitions. During each repetition, one should resample 𝑁𝑁 

observations with replacement, estimate the quantile regression coefficients, �̂�𝛽(𝑡𝑡), using this 

resampled data, then determine the smooth polynomial approximations, 𝛽𝛽 �� 𝑗𝑗,𝐾𝐾(𝑡𝑡). Using this 

smooth approximation, compute an estimate of 𝛽𝛽𝑗𝑗,𝐾𝐾  based on Equation (26). The point 

estimate for the impacts, 𝛱𝛱𝑗𝑗 , is derived by averaging the ℝ estimates from all repetitions, and 
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the 95% bootstrap confidence intervals are constructed using the 2.5-th and 97.5-th 

quantiles from the ℝ estimates.  

The precision of my estimation procedure strongly depends on how accurately I model 

the conditional quantile function 𝑄𝑄ℎ(𝑌𝑌)(𝑡𝑡|𝑥𝑥) , notably the linearity aspect of the quantile 

regression model. Relying on the consistency of the quantile regression estimate and 

considering regularity conditions, as outlined by Bantli and Hallin (1999), I am confident 

about the precision of my 𝛱𝛱𝑗𝑗  estimate. Assuming we know the quantile process 𝛽𝛽(𝑡𝑡) and 

therefore the true impact estimate 𝛱𝛱𝑗𝑗 , for a sizable sample and as detailed by Koenker 

(2005), we know that �̂�𝛽𝑛𝑛(𝑡𝑡) → 𝛽𝛽(𝑡𝑡) . This leads me to the inference that Π�𝑗𝑗 ≈ Π𝑗𝑗 . I delve 

deeper into this rationale in Appendix C, where I assert that my estimation procedure offers 

an accurate assessment of the impact of the 𝑗𝑗-th covariate. 

 

4 Hourly Wage Series From the CPS ORG 

In this study, I scrutinize data from the Current Population Survey (CPS) to analyze the shifts 

in wage distribution in the United States from 1980 to 2015. Since 1979, the CPS's Outgoing 

Rotation Group (ORG) has actively engaged workers in a comprehensive survey, collecting 

detailed earnings data. This data facilitates the accurate estimation of hourly wages, which 

can be derived directly from reported hourly earnings or calculated by dividing weekly 

earnings by the corresponding hours worked per week. Employing this methodology 

provides a robust measure of labor costs and resonates well with established economic 

theories concerning wage determination, which are founded on the dynamics of market 

supply and demand. 

Nevertheless, the task of utilizing the ORG data comes with its set of challenges, as 

highlighted by Acemoglu and Autor (2011). Over the years, the CPS has altered its methods 

of classifying and processing the earnings data for hourly and non-hourly paid workers, 

introducing variability in the dataset. To assemble a cohesive series of hourly wages, I make 

careful adjustments to account for the modifications in the top coding of weekly earnings 
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and the changes in categorizing overtime payments, tips, and commissions for those earning 

hourly wages. Furthermore, I adapt to the transformations in responses concerning 'usual 

weekly hours' over various years. These shifts, which have occurred over a span greater than 

three decades, compel an attentive analysis of survey alterations to maintain data coherence 

and accuracy.  

To ensure I overcome all these challenges, I utilize programs available under the GNU 

General Public License created by the Center for Economic and Policy Research (CEPR). This 

resource integrates data from the National Bureau of Economic Research (NBER) Annual 

Earnings Files with the CPS basic monthly files, establishing a consistent wage series utilizing 

the data from the CPS ORG. 15 

For the final sample, I first adjust every wage to mirror 2020's monetary value using the 

Consumer Price Index issued by the Bureau of Labor Statistics. 16 Following this, I focus on 

workers who report hourly wages between $1 and $100 (in 1979 dollars) and fall within the 

age bracket of 16 to 65 years. Subsequently, following Acemoglu and Autor (2011), I devise 

a potential experience variable, which is the result of subtracting the number of years of 

education from individuals' ages and deducting an additional five years to account for 

elementary schooling. Moreover, I incorporate an indicator variable to the series to signify 

female, nonwhite and unionized workers. I also adhere to a uniform classification concerning 

twenty industries and a consistent classification of manufacturing employees. 

In this study, I meticulously categorize educational attainment, recognizing its crucial 

impact on earnings as established by seminal works in economics. I draw upon the insights 

of Card (1999), Autor, et al. (2003), Goldin and Katz (2007), and Acemoglu and Autor (2011), 

 
15 These programs have significantly contributed to my success in developing a consistent hourly wage series, extending 

from 1980 to 2015. I direct readers to Schmitt (2003) for a comprehensive description of the harmonized hourly wage 

series. Additionally, the methodology employed to derive this series aligns with that detailed in the Data Appendix of 

Acemoglu and Autor (2011). For those looking to conduct further analysis, I have made the relevant codes available on my 

website. 
16 Specifically, using the seasonally adjusted index for all items based on US city average (Series Id: CUSR0000SA0). 
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all of whom underscore education's pivotal role in shaping labor market outcomes and 

highlight its position as a key determinant of earnings and employment opportunities. 

Building upon this foundational understanding, I incorporate a variety of educational 

categories in my analysis: non-school attendees or dropouts, high school graduates, 

individuals with some college education but no degree, those holding an associate degree, 

and individuals with a bachelor’s degree or higher. Specifically, I include the associate degree 

category to acknowledge its proven positive impact on earnings. Recent research from 

Jepsen et al. (2014), Bahr et al. (2015), Stevens et al. (2019), and Grosz (2020), collectively 

affirm the significant earnings returns associated with community college programs, 

highlighting their vital role in the labor market and underscoring the importance of 

considering associate degrees in educational classifications for a thorough evaluation of 

their impact on wages. 

I utilize large sample sizes for the analysis, averaging around 165,000 workers annually 

from 1980 to 2015. To highlight the gender gap, I delineate the CPS samples' summary 

statistics for men and women separately in Table 1. While the average real wages for men 

remain relatively constant at 3.2 ($24.4), I observe a systematic increase for women. A 

noticeable reduction in the gender wage gap occurred between 1980 and 2015, yet a 

discernible difference persists. Furthermore, Table 1 highlights an escalating trend in 

educational attainment for both genders, with women exhibiting a higher average number 

of years of education compared to men. During this period, I also note a decline in the 

unionization rate and the proportion of manufacturing employees, juxtaposed with a 

consistent increase in nonwhite workers' participation rate. 

To elucidate the wage distribution disparity both intra- and inter-gender, I present 

weighted kernel density estimates of the hourly wages for men and women spanning from 

1980 to 2015 in figures 2a and 2b.17 These graphs feature a vertical line indicating the 

 
17 These figures bear resemblance to those found in DiNardo et al. (1996), though a key distinction lies in my application of 

the CPS sample weights, in contrast to their implementation of hours-weighted kernel estimates. As in DiNardo et al. (1996), 

I determine the bandwidth for this estimation employing the Sheather and Jones (1991) method. 
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respective (log) real minimum wage as referenced in column two of Table 1, which shows 

the concentration of wage distributions at the lower range. These representations clearly 

illustrate a significant expansion in the upper tail of the distribution in recent years 

compared to preceding periods. Moreover, I point out an evident broadening in the spread 

of hourly wages relative to the mean over time for both sexes, more pronounced in women's 

data. This visual representation aligns with previous findings by Levy and Murnane (1992), 

DiNardo et al. (1996), Katz (1999), and Autor et al. (2008). 

 

5 Sources of Wage Inequality in the US 

Building on the relationship between the conditional Gini coefficient and conditional 

quantile regression discussed in section 2, I employ the comprehensive hourly wage data 

from the CPS ORG for my empirical application. I start by setting ℎ(⋅)  as the natural 

logarithm. Then, I select 1986 (Ψ = 0)  as my starting point to account for the onset of 

increasing wage inequality in the US during the early 1980s. The analysis extends to 2015 

( Ψ = 1), encompassing three decades of rising wage disparity. 

I model the conditional quantile function of the logarithm of wages as: 

𝑄𝑄ln𝑤𝑤𝑖𝑖𝑖𝑖𝑗𝑗�𝑡𝑡|𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗;Ψ� = 𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑇𝑇 𝛽𝛽Ψ(𝑡𝑡) + 𝜂𝜂𝑖𝑖(𝑡𝑡) + 𝛾𝛾𝑗𝑗(𝑡𝑡) + 𝜀𝜀𝑖𝑖𝑖𝑖𝑗𝑗(𝑡𝑡) (27) 
 

Here, 𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗 represents the characteristic for individual 𝑖𝑖, in state 𝑠𝑠, working in industry 𝑗𝑗. This 

vector encompasses job-related attributes such as unionization status, public sector 

employment, manufacturing job, and part-time work status. Demographic attributes include 

indicators for nonwhite, female, and marital status. Additional controls cover a quadratic in 

potential experience, urban living indicators, education categories, decade-based experience 

indicators, and their interactions with education classes. Finally, 𝜂𝜂𝑖𝑖(𝑡𝑡) and 𝛾𝛾𝑗𝑗(𝑡𝑡) are state 

and industry fixed effects, respectively. 
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Importantly, the selected independent variables in my quantile regression model serve 

as robust controls for broader macroeconomic and structural shifts that have occurred over 

the study's timeframe. By incorporating industry fixed effects, inspired by the findings of 

Blum (2008), I effectively capture the sectoral composition of the economy. This inclusion is 

pivotal to elucidate transitions, such as those from manufacturing-heavy sectors to service-

centric ones or the notable rise of the tech sector in more recent years. 

Incorporating job-related attributes such as manufacturing job and state fixed effects, I 

indirectly tap into the effects of international trade. Chongvilaivan and Hur (2011) 

emphasize the nuanced relationship between sectors like manufacturing and the broader 

implications of trade liberalization, outsourcing, and global competition. Additionally, the 

state fixed effects account for regional disturbances, especially the 'China shock' highlighted 

by Autor et al. (2013). 

Technological changes are significant drivers of wage inequality. In my model, I've 

incorporated the urban living indicators to identify regions more inclined towards 

technology adoption and innovation. Drawing from Hühne and Herzer (2017), I've combined 

education categories with decade-based experience indicators. This blend illuminates the 

changing job requirements amidst swift technological progress. Given that technology tends 

to benefit those with specialized education or skills, this integration provides insight into 

technology's impact on wages. 

Figure 3 displays the quantile regression coefficients estimated of Equation (27) for a grid 

of 69 equally-spaced points over the (0,1) interval 18. In each panel, the solid line corresponds 

to the estimates in 1986, while the dashed line depicts those from 2015. In each case, the 

shaded regions around the lines correspond to the 95% confidence interval obtained by 

computing a Huber sandwich estimate using a local estimate of the sparsity. 

 
18 The 69 equally spaced points create a grid that has constant step of around 1.4%. 
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Figure 3 offers a comprehensive view of the factors that affect wages from 1986 to 2015 

across the entire distribution. Starting with union status, the positive wage premium 

associated with union membership was more pronounced in 1986 across all quantiles but 

has reduced by 2015. For public sector employees, there is a premium for lower wage 

workers, and a penalty for upper wage employees, and these premium and penalty remains 

similar in magnitude for both 1986 and 2015.  

Figure 3 depicts the evolving impact of manufacturing job status on wages across three 

decades. In 1986 manufacturing job status had a notably negative influence on wages. 

Contrastingly, by 2015, manufacturing job status became a positive determinant for wages 

across almost all quantiles, although the strength of this influence declined among the 

highest earners. This shift from a predominantly negative to positive impact over the years 

highlights the dynamic nature of the manufacturing sector's role in wage determination, 

possibly influenced by structural changes, economic shifts, and external such as the China 

shock and trade agreements that over the studied period that led to keep only a more 

productive manufacturing sector withing the US. 

Looking at demographic factors, nonwhite and women workers both show wage 

penalties, with the latter having a slightly more pronounced difference, especially in higher 

quantiles. Notably, this disparity has narrowed for both groups over the 30-year span, 

indicating progress, albeit limited, in wage equality. Moreover, married workers enjoy a 

wage premium, particularly in 1986 in the lower end of the distribution. However, the 

advantage at the lower wages diminishes by 2015. 

Figure 3 underscores a shift in the urban wage premium between 1986 and 2015. In 

1986, the figure shows an evident urban wage premium, especially prominent in the middle 

to higher quantiles. However, by 2015 this premium appears to diminish, suggesting a 

decrease in the urban wage advantage. This trend complements the findings of De la Roca 
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and Puga (2017), emphasizing the dynamic nature of knowledge spillover in urban 

environments and its potential impact on wages over time. 

Finally, Figure 3 reveals distinct patterns when evaluating the wage dynamics between 

1986 and 2015 across various educational attainment levels. High school and some college-

educated individuals from 1986 displayed a pronounced wage advantage over their 2015 

counterparts, particularly in the lower quantiles. This advantage signified that those with 

less than a technical degree in 1986 had better wage outcomes, especially in the lower-

paying roles. In contrast, those with an associate degree in both years showed nearly 

indistinguishable wage impacts across most quantiles, with only a slight edge for the 2015 

cohort in the top earnings bracket. Remarkably, the trend inverts for individuals with a 

college degree or more. The 2015 cohort consistently outperformed the 1986 group, 

reflecting the escalating value of a college degree over these three decades, especially among 

the highest earners. This divergence underscores the shifting dynamics in the premium 

placed on education within the labor market over this period. 

 

5.1 Impact of Individual Characteristics 

I implement the procedure described in section 3 to estimate the sources of wage inequality 

in the US. I choose the order of the polynomial approximation to be 7 for year 𝛹𝛹 = 0 (1985) 

and 𝛹𝛹 = 1 (2015). Appendix C shows that the results are not sensitive to the choice of the 

order of the polynomial approximation. Additionally, I set the number of repetitions for the 

bootstrap estimation as 𝑅𝑅 = 1,000. For each year, I compute �̂�𝜇𝑙𝑙𝑛𝑛 as the weighted average of 

the logarithm of real wages in 2020 dollars. Then, I estimate Π�𝑗𝑗 in Equation (26) for the years 

of analysis and compute the impact estimate Π
�𝑗𝑗
𝜇𝜇�𝑙𝑙𝑙𝑙

. 

The results of the estimation for selected covariates are presented in Table 2. As 

discussed in section 2.1, given a small positive change in covariate 𝑗𝑗, a positive sign of Π�𝑗𝑗 is 
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associated with a reduction in the inequality of the distribution of (log) wages. The first entry 

of each cell in Table 2 presents the impact estimation, whereas the second reports the 95% 

bootstrap confidence interval; each column exhibits the results for the corresponding year. 

All covariates shown in Table 2, except potential experience, are binary variables, which is 

relevant when thinking about small positive changes.  

Evaluating the results in Table 2, one can discern the relative impacts of various factors 

on wage inequality between 1986 and 2015. Unionization, for instance, consistently reduced 

wage inequality. Holding other factors constant, an increase in the proportion of unionized 

workers can lead to a noticeable decline in wage disparities. However, its impact has 

lessened over the years, pointing to evolving workplace dynamics and the role of unions. 

Public sector jobs had a marginal positive effect in 1986, but by 2015, this influence 

disappeared. Conversely, the manufacturing sector, which initially exacerbated wage 

disparities in 1986, started to bridge this gap by 2015. 

Table 2 shows that potential experience has a modest but steady role in reducing wage 

disparities. The implications tied to marital status and residence in urban areas also offer 

insights. The former consistently aids in narrowing the wage gap, while the influence of the 

latter waned slightly across the years. Factors such as race and gender, despite their negative 

implications, have witnessed a decline in their adverse impacts over the years. Nonetheless, 

the persistent effects tied to these demographics underline the need for continued 

interventions. 

When examining education, higher levels have a resounding impact. Keeping everything 

else constant, an uptick in the proportion of college-educated workers significantly drops 

the conditional Gini index. This effect is more pronounced than that of high school-educated 

workers, indicating the premium attached to college education in wage determinants. The 

results in Table 2 not only highlight the variables impacting wage inequality in the US during 

the study period but also shed light on the evolving magnitude and direction of these effects. 

While some factors actively narrow the wage gap, others underscore the necessity for 

targeted interventions. Delving deeper, the following subsection offers insights into the 

temporal shifts in wage distribution. 
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5.2 Temporal Changes in the Distribution of (Log) Wages 

In this subsection, I delve deeper into the temporal changes in the distribution of wages. I 

aim to compare the approach introduced in subsection 2.2 with the well-established 

algorithm by Machado and Mata (2005), hereafter referred to as MM. This comparison aims 

to underline the merits of the proposed method. For the execution of the proposed method 

from section 2.2, I partition the interval (0,1) into four evenly distributed sub-intervals, 

namely Q1, Q2, Q3, and Q4. I maintain the polynomial approximation order at 7 for the years 

1986 and 2015 and set the repetition count at 1,000, consistent with my previous analyses. 

For the MM methodology, as detailed in subsection 2.2.1, I designate m = 4,500 and adopt 

𝛼𝛼(⋅) as the quantile statistic. 

Table 3a presents the results of applying the MM decomposition to wage data. The first 

two columns feature the calculated quantiles for the estimated log-transformed wage 

distributions for the selected study years. These quantiles range from the 1st to the 99th, 

capturing the lower, median, and upper segments of the wage scale. The third column 

reports the changes in these quantiles between 1986 and 2015, including both the point 

estimates and the corresponding 95% bootstrap confidence intervals. I obtain these 

intervals from 1,000 bootstrap samples, using the 2.5th and 97.5th percentile markers of the 

bootstrap distribution, which provides solid statistical conclusions about the shifts in wage 

distribution across thirty years. 

Column 3 of Table 3a indicates the overall conditional wage changes and reveals a critical 

limitation of the MM method in assessing inequality. From 1986 to 2015, while the data show 

substantial wage growth at the 1st quantile by 30.5% and at the 99th percentile by 29%, this 

approach fails to capture the nuance of inequality changes. The pronounced wage increases 

at the distribution's bottom may seem to be offset by similarly significant gains at the top; 

drawing conclusions from this is problematic since the analysis merely contrasts two 

discrete quantiles rather than a continuous evaluation of the entire wage distribution. Hence, 

it's not surprising that the Gini coefficient only shows a marginal increase from 11.04 to 
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11.09. This inconsistency points to a potential blind spot in the MM method for 

understanding wage inequality; it indicates sizable shifts in wages at the extremes but does 

not effectively translate these changes into a comprehensive understanding of inequality 

within the wage distribution.19 Therefore, while the MM method can identify wage-level 

shifts, its ability to elucidate the broader picture of wage inequality is constrained. 

Columns 4 to 6 in Table 3a decompose the total changes in the wage distribution into 

three distinct parts: changes due to covariates as described by equation (16), changes 

attributable to variations in returns as specified by equation (17), and the residual 

component as defined by equation (18). This decomposition dissects the factors influencing 

wage changes across different income levels, yet it yields results that are challenging to 

interpret concerning inequality. With some quantiles receiving positive impacts and others 

negative, the overarching effect on inequality remains unclear, underscoring the complexity 

of discerning clear trends from such diverse outcomes. 

For the lower percentiles, specifically the 1st and 10th, the analysis shows that changes 

in covariates do not significantly affect wage changes. In stark contrast, a significant positive 

impact from covariates emerges at the 25th and upper levels of the wage distribution, 

suggesting that the characteristics measured by these covariates are particularly beneficial 

for individuals in higher income brackets. 

The influence of returns on characteristics also shows variability across the distribution. 

The lower end and the top benefit from positive impacts, signifying that specific attributes 

or qualifications are highly valued for earners in these segments, perhaps due to unique 

market conditions or the premium placed on certain skills. At the median, however, the effect 

is negative, which could indicate that median earners benefit less from the measured 

characteristics, or that different factors are at play that are not captured by the covariates. 

Finally, Columns 7 to 15 in Table 3a analyze the effects of individual covariates on wage 

changes across different income levels. Unionization appears to be a double-edged sword, 

 
19 In fact, one can realistically only report a few editorializing statistics in a table before a reader gets completely 
lost in numbers. 
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having a significantly negative impact at the 75th and 90th percentiles, which suggests that 

the benefits it provides may not be felt equally across the wage spectrum. Meanwhile, 

manufacturing does not significantly influence wage changes at any percentile, hinting at its 

diminished role or varied effects within the contemporary economic landscape. When it 

comes to demographics, nonwhite workers face a disadvantage with negative wage changes 

from the 10th to the 90th percentile. For women, the data presents a complex picture; there's 

a notable disadvantage at the higher end of the wage spectrum with a significant negative 

impact at the 90th percentile, whereas at the entry point of the 1st quantile, women tend to 

have a positive wage impact. Living in an urban area does not generally affect wage changes, 

except at the 90th percentile where its impact becomes significant. Finally, education stands 

out as a clear advantage; possessing a college degree is positively and significantly associated 

with wage increases across most of the percentiles, underscoring the critical value of higher 

education in promoting wage growth. 

Table 3b provides a detailed breakdown of the shifts in the wage distribution, employing 

the additive decomposition approach to the Gini index as outlined in Equation (14). The 

format of this table mirrors that of Table 3a, where each cell offers two pieces of information: 

the initial entry denotes the point estimate, while the subsequent entry indicates the 95% 

bootstrap confidence intervals derived from 1,000 bootstrap samples. Within the context of 

this table, a negative point estimate suggests a decrease in the Gini coefficient, signaling a 

decline in wage inequality. Hence, any negative figures within the table can be interpreted as 

factors contributing to a more equitable wage distribution. 

Table 3b breaks down the changes in wage inequality from 1986 to 2015 into four 

different quartiles and the entire distribution. The data shows that for the lower half of wage 

earners (Q1 and Q2), wage inequality decreased, with Q1 showing a statistically significant 

reduction. On the other hand, the third level (Q3) shows a slight, but not statistically 

significant, increase in inequality. The most significant change is seen in the top earners (Q4), 

where there is a definite increase in inequality, pointing towards heightened inequality at 

the higher end of wage earners. The first merit of the proposed method becomes apparent 

here. While overall inequality -when combining all quartiles- has gone up just a little, it 
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highlights a significant decrease at the lower end that almost exactly offsets the increase at 

the higher end. This gives us a much clearer picture of how wage inequality has shifted over 

time. 

Table 3b examines the effects of covariates and the associated returns on wage 

inequality. According to the figures in Column 4, the influence of covariates on wage 

distribution within the first quartile (Q1) is not statistically significant. In contrast, the 

impact is significant in the second, third, and fourth quartiles (Q2, Q3, and Q4), suggesting 

that these factors substantially influence the dynamics of wage distribution among middle- 

to upper-income brackets. Column 5 reveals a uniform and statistically significant increase 

in wage inequality due to shifts in the returns to specific characteristics across all quartiles. 

This pattern is particularly pronounced in the higher wage quartiles (Q3 and Q4), reflecting 

a labor market in which the prices of particular characteristics are commanding increasingly 

higher wages. This discrepancy significantly affects the upper tier of the wage distribution, 

contributing to a broadening wage gap. 

Table 3b reveals that unionization and manufacturing have a uniform and significant 

impact on wage inequality across all quartiles. Specifically, Columns 7 and 8 show that 

changes in the returns to these sectors contribute to increased wage disparities. This 

phenomenon likely mirrors the broader economic shifts affecting these sectors, such as the 

decline in unionized jobs and the transformation of manufacturing due to factors like 

globalization and automation. Such economic transformations are creating a divergence in 

wage outcomes, where higher-skilled workers in these sectors may benefit from wage 

increases, while those with fewer skills could experience wage stagnation, thus intensifying 

wage inequality. The methodology I propose, in contrast to the MM method, is sensitive 

enough to isolate and identify the changes in returns from unionization and manufacturing 

jobs, offering a more precise understanding of the factors escalating wage disparities. 

Regarding demographics, the analysis separates the impact of race and gender. Table 3b 

shows that racial disparities, represented by the Nonwhite variable in Column 9, contribute 

to increasing wage inequality consistently across all quartiles, suggesting that wages are 

diverging along racial lines. However, the gender factor, analyzed through the Women 
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variable in Column 10, does not manifest a significant effect on wage inequality, indicating 

that gender by itself may not be a dominant factor in wage disparity within the scope of this 

analysis. 

Urbanization, as covered in Column 11 of Table 3b, consistently presents a statistically 

significant reduction in wage inequality. The urban coefficient's negativity across all 

quartiles suggests that urbanization might serve as a leveler in wage distribution. Urban 

areas, with their broader spectrum of job opportunities and the potential for higher earnings, 

are inferred to facilitate a more equitable wage dispersion, which could mitigate the effects 

of wage inequality within cities. This is another characteristic that the proposed method 

isolates as a contributing factor to wage equality, in contrast to the MM method.  

Lastly, the influence of educational attainment, particularly the possession of a College 

Degree shown in Column 15, displays a robust negative and significant impact on inequality, 

with the most substantial effects observable in the uppermost quartile and the aggregate. 

The importance of a college education in the contemporary job market is underscored by 

this trend; as college-educated workers are increasingly favored, the resulting wage 

premium compresses the upper tail of the wage distribution, culminating in a reduction of 

inequality at the higher wage levels. This underscores the critical role of higher education in 

the quest to diminish wage inequality. 

In summary, my proposed method offers a more incisive analysis of the temporal changes 

in wage distribution compared to the MM method. The approach of the proposed method 

successfully captures the nuances of wage dynamics across different income levels and 

quantifies the influences of various socioeconomic factors. In particular, it highlights how 

unionization and shifts in manufacturing have differentially affected wage disparities, 

reflecting the complex interplay of globalization, technological advancement, and skill levels 

within the workforce. This method also reveals that urbanization tends to reduce wage 

inequality, while higher education emerges as a powerful equalizer, particularly for upper-

tier earners. The detailed decomposition of wage changes afforded by the proposed method 

underscores its ability to discern the multifaceted drivers of wage inequality, which the MM 

method overlooks. Therefore, the proposed method stands out for its comprehensive 
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analysis, providing clear insights into the factors that drive wage inequality and offering 

robust evidence that is crucial for informed policymaking aimed at reducing wage 

disparities. 

5.2.1 Discussion 

As I conclude my analysis, I find it crucial to integrate my research outcomes with the widely 

held views on how education affects wage inequality. Let me break it down simply: imagine 

an economy split into two types of workers, the low-skilled and the high-skilled, with 

education measuring their skill level. Even though there is a range of differences within each 

group, the average wages for low-skilled workers, which I will call 𝑤𝑤𝐿𝐿 , contrast with the 𝑤𝑤𝐻𝐻 

earned by their high-skilled counterparts. The educational premium, reflected by the 𝑤𝑤𝐻𝐻/𝑤𝑤𝐿𝐿 

ratio, is something one can roughly estimate by regressing log wages on years of education. 

Now, as the proportion of high-skilled workers rises, it triggers a significant drop in wage 

inequality, and this happens through two main forces. The price effect kicks in first: the more 

these high-skilled workers flood the market, the more their relative wages start to fall. Then 

there is the composition effect: a larger slice of our workforce is climbing up to the high-skill, 

better-paid ranks, which naturally compresses the wage gap. These two effects combined 

lead to the prediction that shifts to the right in both demand and supply of skilled workers 

that would leave price unchanged would result in less wage inequality. The results show that 

educational progress is not just theoretical but a tangible lever for lessening wage 

disparities. 

6 Conclusion 

This paper introduces a novel econometric methodology to analyze factors influencing wage 

disparities in the US from 1986 to 2015. The study additively decomposes the conditional 

Gini index by linking the conditional Lorenz curve to the conditional quantile function, 

enabling precise quantification of factors affecting wage inequality. Utilizing data from the 

CPS ORG, the paper reveals key findings: the manufacturing sector's role in wage dynamics 

has evolved; race and gender impacts on wages have lessened but still necessitate 
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intervention; and notably, higher education, particularly college degrees, significantly 

reduces wage inequality in the US during the analysis period. This methodological 

advancement offers new insights into wage distribution and inequality. 

This study enhances the literature on decomposition methods by using the conditional 

Gini coefficient to measure inequality in log wage distribution directly, bypassing density 

modeling. Traditional methods relied on kernel estimates or selected quantile analyses, 

often overlooking comprehensive inequality measures. The proposed approach, assuming a 

linear conditional quantile function for log wages, reveals how the impacts of different 

factors on wages have evolved. Notably, when compared with the MM algorithm, this method 

not only aligns with MM's conclusions but also uncovers aspects of wage inequality that the 

MM method did not distinctly identify. 

A limitation of this study, as an analog to Oaxaca (1973) decomposition, is the 

presumption that changes in the characteristics do not modify the returns of those 

characteristics. Moreover, the analysis only accounts for changes in the covariates from 1986 

to 2015, but the proposed decomposition technique could have considered counterfactual 

scenarios in reverse order. More importantly, the linear decomposition works for a 

particular transformation of wages for which the conditional quantile functions are assumed 

to be linear in parameters (i.e., log wages), but this may not be a natural scale to analyze the 

distribution disparity. 

Further research could usefully explore how to account for the general equilibrium 

effects given changes in the distribution of the covariates, because those changes will also 

affect the returns to the characteristics. Moreover, a future study investigating different 

counterfactual scenarios and more recent years of analysis would be very interesting. A 

natural progression of this work is to extend the proposed method to the untransformed 

variable (i.e., wages) to address questions related to the inequality of the distribution of the 

variable in levels. 
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Figures 

Figure 1: Example of approximation using Legendre polynomials 
(a) Polynomial of degree 2 (b) Polynomial of degree 6 

   

Note: The figure presents panels (a) and (b) to illustrative examples of least-square approximations on coefficients derived from 
a quantile regression, using Legendre polynomials of order two and six, respectively. In both panels, I showcase a generic 
quantile regression coefficient estimate, �̂�𝛽𝑗𝑗(𝑡𝑡), alongside its 95% confidence interval. The dashed line in each panel represents 
the least-square approximation using Legendre polynomials, 𝛽𝛽 �� 𝑗𝑗,𝐾𝐾(𝑡𝑡), for 𝐾𝐾 = 2, 6, respectively 
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Figure 2a: Kernel density estimates of men's (log) real wages 1980 - 2015 ($2020) 

 
Note: The figure presents kernel density estimates for hourly (log) wages of men, covering the years 1980 through 2015. In each 
panel, a vertical line indicates the federal minimum wage for that specific year. I have converted all wage values to 2020 USD 
using the CPI series CUSR0000SA0. This figure draws on my sample from the CPS ORG, employing the CEPR Uniform Extracts to 
create a consistent hourly wage series. I have narrowed my focus to include workers aged 16 to 65, with hourly wages ranging 
from $1 to $100 in 1979 dollars. 
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Figure 2b: Kernel density estimates of women's (log) real wages 1980 - 2015 ($2020) 

 
Note: The figure presents kernel density estimates for hourly (log) wages of women, covering the years 1980 through 2015. In 
each panel, a vertical line indicates the federal minimum wage for that specific year. I have converted all wage values to 2020 
USD using the CPI series CUSR0000SA0. This figure draws on my sample from the CPS ORG, employing the CEPR Uniform 
Extracts to create a consistent hourly wage series. I have narrowed my focus to include workers aged 16 to 65, with hourly 
wages ranging from $1 to $100 in 1979 dollars. 
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Figure 3: Selected Coefficients Estimates From the Quantile Regression 

 
Note: The figure shows selected quantile regression coefficient estimates for the model in Equation (27), computed for a grid of 69 equally-
spaced points across the (0,1) interval. Each panel in the figure contrasts the estimates from two years, 1986 (𝛹𝛹 = 0) and 2015 (𝛹𝛹 = 1), 
with the solid line representing 1986 and the dashed line depicting 2015. The shaded areas surrounding each line denote the 95% 
confidence intervals, calculated using a Huber sandwich estimate with a local estimate of the sparsity. The regression uses comprehensive 
hourly wage data from the CPS ORG. The analysis incorporates a range of individual, job-related, demographic, and macroeconomic 
attributes, along with state and industry fixed effects. The figure demonstrates the shift in wage dynamics over time, reflecting broader 
economic and structural changes, including the impact of technological advancements and sectoral shifts in the economy. 
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Tables 

Table 1: Summary Statistics for the CPS 1980-2015 

 
Note: The table presents summary statistics for my refined sample from the CPS ORG, utilizing the CEPR Uniform Extracts 
to generate a consistent series of hourly wages. All wages have been adjusted to 2020 USD using the CPI series 
CUSR0000SA0. My focus is on workers aged 16 to 65, earning hourly wages between $1 and $100, adjusted to 1979 dollars. 
Potential experience is calculated by subtracting the number of years of education and an additional five years for 
elementary schooling from each individual's age. Both education and potential experience are expressed in years. The 
columns labeled "manufacturing," "union," and "nonwhite" represent the proportion of workers in manufacturing jobs, 
unionized positions, or those who did not identify as white, respectively. All summary statistics are weighted by the CPS 
sample weights. 
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Table 2: Impact Estimates of Selected Covariates 

 
Note: The table presents the impact of individual characteristics on wage inequality for years 1986 and 2017. A positive sign 
of the reported impact is associated with a reduction in the inequality of the distribution of (log) wages given a small increase 
in the corresponding characteristic. The first entry of each cell in the table presents the impact estimation, whereas the 
second reports the 95% bootstrap confidence interval. Each column exhibits the results for the corresponding year. I 
computed the figures using the estimation procedure described in section 3. The polynomial approximation order is 7 for 
both years. The bootstrap uses 1,000 repetitions for each year. For the bootstrap, in each iteration, I calculated the �̂�𝜇𝑙𝑙𝑛𝑛 using 
the weighted average of the logarithm of real wages, adjusted to 2020 dollar value; Then, I compute the estimate Π�𝑗𝑗  from 
Equation (26) and compute the impact estimate Π�𝑗𝑗 �̂�𝜇𝑙𝑙𝑛𝑛⁄  
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Table 3a: Decomposition of Wage Changes (1986-2015) Using the Machado and Mata Method 

 
Note: The table presents the results of the Machado and Mata decomposition applied to wage data. The first two columns 
list the estimated log-transformed wages in 1986 and 2015 for selected quantiles. The third column reports the changes in 
these quantiles over the period. Columns four to six break down the total changes in the wage distribution into segments 
associated with covariates, variations in returns, and the residual component. The final columns, seven to fifteen, illustrate 
the effects of specific individual covariates. All point estimates come with 95% bootstrap confidence intervals, derived from 
1,000 bootstrap samples and displayed beneath each computed value. 
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Table 3b: Wage Distribution Shifts (1986-2015) Using an Additive Decomposition of Gini Index 

 
Note: The table details the shifts in wage distribution from 1986 to 2015, employing an additive decomposition of the Gini 
index as detailed in Equation (14). Each entry in Table 3b comprises two parts: the point estimate followed by the 95% 
bootstrap confidence intervals, obtained from 1,000 bootstrap samples. Negative point estimates in this table imply a 
reduction in the Gini coefficient, indicating a decline in wage inequality. The table spans four quartiles and the entire wage 
distribution, offering insights into the dynamics of wage changes and the impact of diverse socioeconomic factors. 
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Appendices 

A. The Lorenz Curve as an Expected Value 

Consider 𝑍𝑍 , a continuous random variable with support in 𝑅𝑅 . Let its cumulative distribution 

function be 𝐹𝐹𝑍𝑍(𝑧𝑧)  and its probability density function be 𝑓𝑓𝑍𝑍(𝑧𝑧) . Assume that the conditional 

expectation 𝐸𝐸[𝑧𝑧|𝑧𝑧 ≤ 𝑎𝑎] exists and is finite for every 𝑎𝑎 ∈ 𝑅𝑅. For a given 𝜏𝜏 in the interval (0,1), define 

the quantile function 𝑄𝑄𝑍𝑍(𝑡𝑡) = inf{𝑧𝑧:𝐹𝐹𝑍𝑍(𝑧𝑧) ≥ 𝑡𝑡} = 𝐹𝐹𝑍𝑍−1(𝑡𝑡) , and denote 𝑧𝑧𝜏𝜏 = 𝑄𝑄𝑍𝑍(𝜏𝜏). 

Then, the integral of 𝑄𝑄𝑍𝑍(𝑡𝑡) from 0 to 𝜏𝜏 can be expressed as follows: 

� 𝑄𝑄𝑍𝑍(𝑡𝑡)𝑑𝑑𝑡𝑡
𝜏𝜏

0
= � 𝑧𝑧𝑓𝑓𝑍𝑍(𝑧𝑧)𝑑𝑑𝑧𝑧

𝑧𝑧𝜏𝜏

−∞
 

= 𝜏𝜏� 𝑧𝑧
𝑓𝑓𝑍𝑍(𝑧𝑧)
𝐹𝐹𝑍𝑍(𝑧𝑧𝜏𝜏)

𝑧𝑧𝜏𝜏

−∞
𝑑𝑑𝑧𝑧 

= 𝜏𝜏� 𝑧𝑧𝑓𝑓𝑍𝑍<𝑧𝑧𝜏𝜏(𝑧𝑧)
𝑧𝑧𝜏𝜏

−∞
𝑑𝑑𝑧𝑧 

= 𝜏𝜏𝐸𝐸[𝑧𝑧|𝑧𝑧 ≤ 𝑧𝑧𝜏𝜏]. 

 
 
 
 
 
 

(28) 
 

From Equation (28), it becomes evident that the integral of 𝑄𝑄𝑍𝑍(𝑡𝑡)  from 0 to 1 is equal to the 

expected value of 𝑧𝑧. 

Moreover, ∀𝜏𝜏 ∈ (0,1) 

𝐸𝐸[𝑧𝑧|𝑧𝑧 ≤ 𝑧𝑧𝜏𝜏] = � 𝑧𝑧
𝑓𝑓𝑍𝑍(𝑧𝑧)
𝐹𝐹𝑍𝑍(𝑧𝑧𝜏𝜏)

𝑧𝑧𝜏𝜏

−∞
𝑑𝑑𝑧𝑧 ≤ 𝑧𝑧𝜏𝜏 �

𝑓𝑓𝑍𝑍(𝑧𝑧)
𝐹𝐹𝑍𝑍(𝑧𝑧𝜏𝜏)

𝑧𝑧𝜏𝜏

−∞
= 𝑧𝑧𝜏𝜏 

and, 

𝑧𝑧𝜏𝜏 = 𝑧𝑧𝜏𝜏 �
𝑓𝑓𝑍𝑍(𝑧𝑧)

1 − 𝐹𝐹𝑍𝑍(𝑧𝑧𝜏𝜏)
𝑑𝑑𝑧𝑧

∞

𝑧𝑧𝜏𝜏
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∞

𝑧𝑧𝜏𝜏 

𝑓𝑓𝑍𝑍(𝑧𝑧)
1 − 𝐹𝐹𝑍𝑍(𝑧𝑧𝜏𝜏)𝑑𝑑𝑧𝑧 = 𝐸𝐸[𝑧𝑧|𝑧𝑧 ≥ 𝑧𝑧𝜏𝜏]. 

Then, ∀𝜏𝜏 ∈ (0,1) 

0 ≤ (1 − 𝜏𝜏)(𝐸𝐸[𝑧𝑧|𝑧𝑧 ≥ 𝑧𝑧𝜏𝜏] − 𝐸𝐸 [𝑧𝑧|𝑧𝑧 ≤ 𝑧𝑧𝜏𝜏]), 

which implies 
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𝐸𝐸[𝑧𝑧|𝑧𝑧 ≤ 𝑧𝑧𝜏𝜏] ≤ 𝜏𝜏𝐸𝐸[𝑧𝑧|𝑧𝑧 ≤  𝑧𝑧𝜏𝜏] + (1 − 𝜏𝜏)𝐸𝐸[𝑧𝑧|𝑧𝑧 ≥ 𝑧𝑧𝜏𝜏] = 𝐸𝐸[𝑧𝑧]. (29) 
 

Let 𝑌𝑌 be a continuous and positive random variable, with cumulative density function 𝐹𝐹𝑌𝑌(𝑦𝑦), 

quantile function denoted by 𝑄𝑄𝑌𝑌(𝑡𝑡) = inf{𝑦𝑦:𝐹𝐹𝑌𝑌(𝑦𝑦) ≥ 𝑡𝑡} = 𝐹𝐹𝑌𝑌−1(𝑡𝑡) , and 𝑦𝑦𝜏𝜏 = 𝑄𝑄𝑌𝑌(𝜏𝜏) . Assume that 

0 < 𝐸𝐸[𝑦𝑦] < ∞ . Let ℎ(·)  be a continuous and monotone function. Define 𝑍𝑍 = ℎ(𝑌𝑌)  and µℎ  =

𝐸𝐸[ℎ(𝑦𝑦)] = 𝐸𝐸[𝑧𝑧]. Assume that ℎ(·) is such that ℎ(𝑌𝑌) ≥ 0 and 0 < µℎ < ∞. By the properties of the 

quantile function, 𝑄𝑄ℎ(𝑌𝑌)(𝑡𝑡) = ℎ�𝑄𝑄𝑌𝑌(𝑡𝑡)� . Then, using Equation (28), the Lorenz curve of the 

transformed variable is given by 

𝐿𝐿ℎ(𝜏𝜏) =
1
𝜇𝜇ℎ
� 𝑄𝑄ℎ(𝑌𝑌)(𝑡𝑡)𝑑𝑑𝑡𝑡
𝜏𝜏

0
=
𝜏𝜏𝐸𝐸[ℎ(𝑡𝑡)|ℎ(𝑡𝑡) ≤ ℎ(𝑦𝑦𝜏𝜏)]

𝐸𝐸[ℎ(𝑦𝑦)] . 

Using the inequality in (29), the transformed Lorenz curve takes values between 0 and 1. 

By the definition of the Gini coefficient, we have 

𝐺𝐺ℎ = 1 − 2� 𝐿𝐿ℎ(𝜏𝜏)𝑑𝑑𝜏𝜏
1

0
 

= 1 −
2
𝜇𝜇ℎ
� 𝜏𝜏𝐸𝐸[ℎ(𝑦𝑦)|ℎ(𝑦𝑦) ≤ ℎ(𝑦𝑦𝜏𝜏)]
1

0
𝑑𝑑𝜏𝜏. 

The Gini index, 𝐺𝐺ℎ, is always less than or equal to 1 because ℎ(𝑌𝑌) ≥ 0. Furthermore, based on the 

inequality presented in Equation (29), we can deduce that 

𝐸𝐸[ℎ(𝑦𝑦)|ℎ(𝑦𝑦) ≤ ℎ(𝑦𝑦𝜏𝜏)] ≤ 𝐸𝐸[ℎ(𝑦𝑦)], 

which implies 

� 𝜏𝜏𝐸𝐸[ℎ(𝑦𝑦)|ℎ(𝑦𝑦) ≤ ℎ(𝑦𝑦𝜏𝜏)]𝑑𝑑𝜏𝜏
1

0
≤ � 𝜏𝜏𝐸𝐸[ℎ(𝑦𝑦)]𝑑𝑑𝜏𝜏

1

0
=

1
2
𝐸𝐸[ℎ(𝑦𝑦)] =

𝜇𝜇ℎ
2

. 

In other words, the Gini index, 𝐺𝐺ℎ, is always positive. 
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B. Integral Approximation 

The Gini index takes the form 

𝐺𝐺ℎ(𝑥𝑥) = 1 −
1
𝜇𝜇ℎ
�𝑥𝑥𝑗𝑗 � � 2𝛽𝛽𝑗𝑗(𝜏𝜏)𝑑𝑑𝑡𝑡

𝜏𝜏

0
𝑑𝑑𝜏𝜏

1

0

𝑃𝑃

𝑗𝑗=1

. 

I use the family of Legendre polyonomy of degree 𝐾𝐾  to approximate each quantile regression 

coefficient estimate, �̂�𝛽𝑗𝑗(𝑡𝑡): 

�̂�𝛽𝑗𝑗(𝑡𝑡) ≈ 𝛽𝛽��𝑗𝑗,𝐾𝐾(𝑡𝑡) = 𝛼𝛼�0𝑝𝑝0(𝑡𝑡) + ⋯+ 𝛼𝛼�𝐾𝐾𝑝𝑝𝐾𝐾(𝑡𝑡) = �𝛼𝛼�𝑖𝑖𝑝𝑝𝑖𝑖(𝑡𝑡)
𝐾𝐾

𝑖𝑖=0

. 

Finally, I approximate the impact of characteristic 𝑗𝑗 as  

2
𝜇𝜇ℎ
�𝛼𝛼�𝑖𝑖 � � 𝑝𝑝𝑖𝑖(𝑡𝑡)

𝜏𝜏

0
𝑑𝑑𝜏𝜏

1

0

𝐾𝐾

𝑖𝑖=0

. 

To compute the vector 𝛼𝛼� = (𝛼𝛼�0,⋯ ,𝛼𝛼�𝐾𝐾) , first create a fixed grid 𝑡𝑡𝑛𝑛𝑔𝑔  with 𝑛𝑛𝑔𝑔  equally-spaced 

points on (0,1). Using statistical software, compute 𝑛𝑛𝑔𝑔 quantile regression coefficient estimates, 

one for each point on the grid. Represent these estimates as a 1 × 𝑛𝑛𝑔𝑔 vector �̂�𝛽𝑗𝑗 �𝑡𝑡𝑛𝑛𝑔𝑔�. In a similar 

fashion, define 𝑝𝑝𝑖𝑖 �𝑡𝑡𝑛𝑛𝑔𝑔� as the 1 × 𝑛𝑛𝑔𝑔 vector that computes the 𝑖𝑖-th Legendre polynomial at each 

grid point. Subsequently, define the 𝑛𝑛𝑔𝑔 × (𝐾𝐾 + 1) matrix 𝑃𝑃 �𝑡𝑡𝑛𝑛𝑔𝑔� with each 𝑝𝑝𝑖𝑖 �𝑡𝑡𝑛𝑛𝑔𝑔� as its columns, 

resulting in 𝑃𝑃 �𝑡𝑡𝑛𝑛𝑔𝑔� = �𝑝𝑝0 �𝑡𝑡𝑛𝑛𝑔𝑔� ,⋯ ,𝑝𝑝𝐾𝐾 �𝑡𝑡𝑛𝑛𝑔𝑔��. The values of 𝛼𝛼�𝑖𝑖 are then computed as the scalars 

that minimize the squared error between �̂�𝛽𝑗𝑗 �𝑡𝑡𝑛𝑛𝑔𝑔� and 𝑃𝑃 �𝑡𝑡𝑛𝑛𝑔𝑔� × 𝛼𝛼�. In other words, the entries of 

the vector 𝛼𝛼�  are the OLS coefficient estimates from the model with �̂�𝛽𝑗𝑗 �𝑡𝑡𝑛𝑛𝑔𝑔�  as the dependent 

variable and the design matrix 𝑃𝑃 �𝑡𝑡𝑛𝑛𝑔𝑔�. 
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C. Accuracy of the Estimating Procedure 

Set ℎ(·) = 𝑙𝑙𝑛𝑛(·) and assume that the conditional quantile function of the logarithm of 𝑦𝑦 can be 

modeled by a simple linear relation: 

𝑄𝑄ln(𝑦𝑦)(𝑡𝑡|𝑥𝑥) = 𝛽𝛽0(𝑡𝑡) + 𝑥𝑥𝛽𝛽1(𝑡𝑡) + 𝜀𝜀(𝑡𝑡). 

For simplicity, let's assume that the intercept is constant, e.g., 𝛽𝛽0 = 0.5, and the slope parameter 

increases linearly with quantiles, e.g., 𝛽𝛽1(𝑡𝑡) = 0.2 + 0.05𝑡𝑡. Under these simplifying assumptions, 

the numerator of the impact estimates would be: 

Π0 = 2� � 0.5𝑑𝑑𝑡𝑡
𝜏𝜏

0
𝑑𝑑𝜏𝜏 = 0.5

1

0
 

and 

Π1 = 2� � 0.2 + 0.05𝑡𝑡𝑑𝑑𝑡𝑡
𝜏𝜏

0
𝑑𝑑𝜏𝜏

1

0
= 0.21667 

To evaluate the precision of the estimation procedure, I generated a simulated dataset 

comprising 𝑁𝑁 = 1,000  observations. For this dataset, the variable 𝑥𝑥  is normally distributed, 

truncated at 20, and characterized by a mean of 35 and a standard deviation of 8. I set the error 

term to be uniformly distributed between zero and one, and to increase proportionally with 𝑥𝑥 by 

0.05 to achieve a slope that linearly rises with quantiles. Panel (a) of Figure C.1 showcases the 

simulated dataset, featuring selected estimated lines representing the conditional quantile 

functions. Panel (b) of the same figure displays the estimated conditional quantile regression 

coefficients marked with dots, in contrast to the actual conditional quantile regression coefficient, 

depicted as a solid line. 

I estimate the numerator of the impact using the integral approximation detailed in Appendix 

B. Varying the order of polynomial approximation from 𝐾𝐾 =2 to 10, I compute the 95% bootstrap 

confidence intervals using the 2.5th and 97.5th quantiles from 1,000 repetitions. Table C.1 

presents the results of this performance test. The first column of the table displays the exact 

numerators of the impact estimates. Columns two through ten reveal the estimated results using 

Legendre polynomials of the corresponding orders. Each estimate's cell includes the 95% 
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bootstrap confidence interval. The final two rows of the table feature the results of the hypothesis 

tests Π�𝑖𝑖 ≠ Π𝑖𝑖 for 𝑖𝑖 =0,1. The key insight from this table is the accuracy of the procedure and the 

minimal effect of the polynomial approximation's order on the accuracy of the estimation. This 

exercise validates the estimation procedure's effectiveness in quantifying the covariates' impact. 
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Figure C.1:  
(a) Simulated dataset and selected conditional quantile relationships  

 
 

(b) Coefficient estimates and actual parameters 

     

Note: Panel (a) showcases the simulated dataset, and panel (b) displays the estimated quantile regression coefficients. The 
dataset in panel (a) comprises 𝑁𝑁 = 1,000 observations with the variable 𝑥𝑥 following a normal distribution, truncated at 20. This 
distribution has a mean of 35 and a standard deviation of 8. The simulation's error term is uniformly distributed between zero 
and one, incrementally increasing in proportion to 𝑥𝑥 by 0.05 to replicate a slope that linearly ascends with the quantiles. Panel 
(b) compares the estimated conditional quantile regression coefficients marked with dots, against the actual conditional 
quantile regression coefficient, shown as a solid line. 
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Table C.1: Performance Test Results Using Various Orders of Polynomial Approximation 

 
Note: The table shows the results from the performance test. The numerator of the impact is estimated using various orders 
of polynomial approximation, ranging from 𝐾𝐾 =2 to 10. The first column provides the exact numerators of the impact 
estimates, while columns two through ten display the estimated results using Legendre polynomials of each specified order. 
Below each estimate, the corresponding 95% bootstrap confidence intervals are provided. The bootstrap confidence 
intervals are derived from 1,000 repetitions. The last two rows of the table show the results of the hypothesis test 𝛱𝛱�𝑖𝑖 ≠ 𝛱𝛱𝑖𝑖  
for 𝑖𝑖 =0,1, underlining the accuracy of the procedure and the minimal impact of the polynomial approximation's order on 
this accuracy. 
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