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Abstract

Retail gasoline markets feature high cross-sectional price dispersion and asymmetric
cycles in price dynamics. This paper identifies different pricing strategies –indicated by
cycling behavior– at the gasoline retailer level, measures their consequences for price-
level variability, and explores their determinants. We use daily, station-level gasoline
prices in the U.S., and propose a new cycling indicator that overcomes problems with
the existing one. Our results show a high degree of heterogeneity in pricing strategies
within retail gasoline markets regardless of the gasoline brand, and even among gasoline
retailers in close proximity. We use this new intra-market variation in cycling behavior
as an identification strategy to estimate a cycle-induced price difference of 3.43 cents
between non-cycling and cycling stations. With respect to the reasons that motivate
cycling behavior, we rule out conventional forms of collusion and show that some
testable predictions of the standard theory of pricing cycles do not hold. We show that
the choice of pricing strategy by the retailers relates to the type of targeted consumers:
non-cycling stations aim to attract inelastic consumers while cycling stations target
price-sensitive consumers.
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1 Introduction

The varying price of retail gasoline is in the psyche of American consumers. U.S. households

spend a non-negligible share of their incomes in gasoline and their demand for it is very

inelastic (Brons et al., 2008). Consumers are also exposed to gas prices regardless of their

purchases because gas stations post their prices publicly for everyone to see, including the

competition. One salient, well-documented feature of retail gasoline markets is the high

degree of cross-sectional price dispersion: a price spotted for a gas station can differ sharply

from another found just down the block (see, e.g., Figure 8b). This affects market efficiency

and impacts welfare, as consumers have to allocate more resources to price-search activities.

Studies that have attempted to identify the sources of price differentials across stations have

focused on variables such as market structure, firm characteristics, gasoline brand, geographic

differentiation, and market concentration (Eckert and West, 2004; Hosken et al., 2008). But

much of this intra-market variation in prices has gone unexplained even after controlling

for all these determinants. In this paper, we show that gas station heterogeneity in pricing

strategies accounts for a significant part of the price dispersion observed in retail gasoline

markets.

The goal of this paper is to identify the existence of different pricing strategies across

firms within retail gasoline markets, measure its consequences for price-level variability, and

provide insights into the reasons behind the pricing strategy choices of gas stations. In order

to detect types of strategies we inspect the price dynamic patterns they produce. We dis-

tinguish between two different patterns, according to the presence or absence of asymmetric

price cycles. These type of cycles, where rapid price spikes are followed by slow reductions

(see, e.g., Figure 1), have only been documented at the market level (Eckert, 2002; Noel,

2007a; Lewis, 2009); there is no empirical evidence of firm heterogeneity –or lack thereof–

in cycling behavior. In this paper, we identify cycling and non-cycling pricing strategies at

the station level. We establish that both strategies coexist within markets, even for sta-

tions in close proximity and regardless of brand or other station and location characteristics.

This heterogeneity seems to be explained by consumers sorting through gas stations that

target different price sensitivities, and results in a significant price gap between cyclers and

non-cyclers.

We use a rich data set of daily, station level gas prices in the continental U.S. obtained

from GasBuddy.com, a website that provides consumer-reported information on gas prices.

In order to recognize the presence of cycles, we construct an indicator that exploits a defini-

tional implication of the asymmetry by comparing the steepness of increasing and decreasing

cycle phases. The resulting classification of dynamic price schedules is robust to several data
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situations often faced when studying retail gasoline markets, including the presence of price

trends and short sample periods. This new cycling indicator is a methodological contribution

that improves on the standard measure used in the literature, the median change in price,

that is based on the assumption that cycle asymmetry generates more periods with price

decreases than periods with increases. The median price change indicator cannot identify

cycles at the station level due to the large number of days were individual stations do not

change their prices. Furthermore, the implication of the asymmetry relies on or may not

hold if the decreasing stage of the cycles is under- or over-represented (e.g., under the data

circumstances mentioned above), in which case it leads to misclassifications. Our new cycling

indicator overcomes these drawbacks.

With our new cycling indicator, we classify the gas stations in our sample according to

their cycling or non-cycling strategies. Our results indicate that, even though cycling stations

are highly concentrated in the Midwest, several locations that have been viewed as non-

cycling based on aggregate market price dynamics actually have remarkable concentrations of

cyclers as well, most notably in Florida, Georgia, and Texas. This challenges the presumption

in the literature that market-level cycles in the U.S. are a Midwestern phenomenon (Lewis,

2009; Doyle et al., 2010; Zimmerman et al., 2013). More generally, although most firms in

cycling markets are cyclers and vice versa, both price strategies are to be found in any type of

market, sometimes coexisting yards away from each other. The station-level heterogeneity in

cycling behavior that we find contributes to the explanation of intra-market price variability:

controlling for the variables normally associated to price levels in the literature, cycling gas

stations charge 3.43 cents less than non-cycling ones. Therefore, the pricing strategy arises

as a newly-found significant determinant of cross-sectional price dispersion.

To assess the reasons behind these cycles and the variability in cycling behavior, we first

revisit the validity of existing explanations of asymmetric cycles in retail gasoline markets.

The overwhelming majority of previous studies align with the theory of Edgeworth cycles

(Maskin and Tirole, 1988). This is one of the equilibria of the authors’ duopoly model; it

consists of a price war, in which firms undercut each other until they reach marginal cost,

followed by a relenting phase with firms randomizing over whether or not to restore price and

initiate a new cycle. It has been claimed that the theory does not offer testable predictions

other than the asymmetric price cycle pattern. However, the random strategies played in

the attrition war phase imply that it should not be possible to predict when firms leave

the trough of the cycle. We establish that the probability of a cycling station to be at the

last day of its cycle trough is highly concentrated on certain days of the week, undermining

the ability of the standard Edgeworth cycle model to explain the asymmetric price cycles

in retail gasoline markets. An alternative explanation of these cycles suggested by a new
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strand of literature is that they are the result of collusive behavior, based on the degree of

coordination at the restoring stage (Byrne and De Roos, 2019; Foros and Steen, 2013). An

observable consequence of any conventional form of collusion would be an increase in price

level, but a convincing identification of the effect of cycles on prices has eluded the literature

due to the presence of observable and unobservable confounders that cannot be controlled

for when the cycles are defined at the market level. In this paper, we exploit station-level

variability in cycling behavior as an identification strategy to estimate the cycle-induced

price gap controlling for market-level confounders. We find that cycling stations charge on

average lower prices, which provides evidence against conventional collusion hypotheses.

An explanation of cycling-behavior heterogeneity consistent with our data is a setting

where gas stations choose a pricing strategy depending on the type of consumers they intend

to target. Cycling stations aim to draw the attention of search-intensive consumers with

frequent and sizable price changes. By concentrating lower prices on a few forecastable days,

they attract price-sensitive consumers more willing to restrict their purchases to certain days

of the week. In contrast, non-cycling stations divide up the pricing space in a different way.

They use loyalty cards and cash discounts to target consumers that are willing to incur the

hassles of carrying station cards or cash, and charge much higher prices to those that are

not. Because of their low propensity to search, these consumers will also be attracted to

non-cycling stations’ fewer and milder changes in prices. We provide evidence of consumers

sorting themselves through gas stations according to the price schedule they offer by con-

structing a proxy for the frequency of price reporting, directly related to the level of search

activity. Our results indicate that consumer search is indeed higher at cycling gas stations.

The rest of the paper is organized as follows. Section 2 reviews the related literature

on retail gasoline markets, emphasizing our paper’s contributions. Section 3 describes the

database used in this study. Section 4 introduces the cycling indicator we construct to classify

stations’ strategies, describes its properties, and compares it to existing indicators. Section 5

provides an overview of the degree and nature of the station-level cycling heterogeneity

found within U.S. markets. In Section 6 we reassess the validity of the reasons behind

cycle asymmetry that have been suggested by the literature and offer an explanation of

strategy heterogeneity consistent with our results. Section 7 concludes with a discussion of

the contributions of this paper, its limitations, and implications for public policy and future

work.
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2 Related Literature

Our paper relates to previous research on gasoline retailing that focuses on cross-sectional

price dispersion and asymmetric retail price cycles, two well studied but previously unlinked

topics in the literature.1 Empirical work analyzing the determinants of station price levels

has mainly considered the effect of location characteristics (e.g., station density), brand or

contractual form, and station characteristics. The findings on location concentration have

been mixed: while several studies report a negative relationship between price and station

density (see, e.g., Barron et al. (2004) and Eckert and West (2004) for markets in the U. S.

and Canada, respectively), others find no effect (e.g., Hosken et al. (2008) in Washington

D.C.). Station amenities or physical characteristics (such as the availability of car wash or

service station) have been found to have little effect (Eckert and West, 2004; Hosken et al.,

2008). It has also been shown that station level prices are significantly affected by brand

and vertical structure (Hosken et al., 2008). There is no previous work incorporating the

role of different pricing strategies in station-level price variability, which is the contribution

of this paper to the retail gasoline price dispersion literature.

Asymmetric price cycles in gasoline retailing were first documented by Allvine and Pat-

terson (1974) in some southern and western U.S. cities. Castanias and Johnson (1993) were

the first to notice the resemblance between these cycles and an ‘Edgeworth cycle’ dynamic

pricing equilibrium. Edgeworth cycles were proposed by Edgeworth (1925) and later formal-

ized by Maskin and Tirole (1988) as one of the possible Markov perfect equilibria of their

alternating price-setting duopoly model. In this Edgeworth cycle equilibrium, firms engage in

a price war undercutting each other until the competitive price is reached; a relenting phase

then starts where firms randomize between setting marginal cost and restoring price—in

which case the other firm follows—to start a new cycle. Figure 2 displays the market-level

price dynamics that are generated in this equilibrium; the similarity with the sawtooth-like

patterns observed in retail gasoline markets is evident. As a consequence, Edgeworth cycles

have been the theoretical foundation of the overwhelming majority of empirical work that

arose since the early 2000 on asymmetric price cycles in gasoline retailing dynamics.2

The main contribution of this literature has been to establish the existence of asymmetric

cycles, independent of changes in costs, in retail gas prices.3 They have now been documented

1See Eckert (2013) and Noel (2016) for extensive surveys of the literature on retail gasoline markets.
2A few articles suggest extensions of the model to generate more testable predictions. Eckert (2003)

introduce firms of different sizes; Noel (2008) introduces different types of asymmetric equilibria (cost shocks,
product differentiation, capacity constraints) and adds a third firm.

3Some papers relate this phenomenon with that of ‘rockets-and-feathers’, where retail gasoline prices
adjust faster to cost increases than they do to cost decreases. Eckert (2002) shows that the speed of upstream
prices passthrough depends upon the current position on the Edgeworth cycle. Noel (2009) decomposes
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in most large and many medium-sized cities in Canada (Eckert, 2002; Noel, 2007b; Atkinson,

2009) and Australia (Wang, 2009) since the 1980s, and in some European cities (Foros and

Steen, 2013; Siekmann, 2017). In the United States, the consensus is that these cycles

reappeared in the 2000s only in several Midwest markets (Lewis, 2009; Doyle et al., 2010;

Zimmerman et al., 2013). They have been shown to be more likely to emerge in markets with

low (Eckert, 2003; Noel, 2007a) or intermediate (Doyle et al., 2010) levels of concentration,

as well as those with a large number of certain type of small retailers (Noel, 2007a; Doyle

et al., 2010). Noel (2007a) shows how the length (found to be either monthly, weekly (Lewis

and Noel, 2011; Foros and Steen, 2013), or sometimes daily (Noel, 2007b)) and amplitude

of the cycles are affected by market characteristics.

The main contributions of our paper are in the topics within this literature related to

individual station behavior, the effect of cycles on price levels, and the alternative explanation

of these cycles as the result of collusive behavior. Previous work using station-level data

focused on the analysis of price leadership and coordination (Noel, 2007b; Atkinson, 2009;

Lewis, 2012), but there is no empirical evidence on the existence of cycling and non-cycling

station-level behavior. The only paper that refers to asymmetric cycles as a station level

decision is Doyle et al. (2010), but they use market-level data and several predictions of their

model—which is an adaptation of Edgeworth cycles—are inconsistent with our findings, as

we will explain later.

Attempts to find an association between asymmetric cycles and price levels have been

mostly limited to cross-section comparisons between markets with and without cycles (Noel,

2002; Doyle et al., 2010), although these papers warn against causal interpretations. Zimmer-

man et al. (2013) propose a difference-in-differences approach using the start of the Midwest

cycles in 2000; the decreasing price associated with the cycles, however, may be biased by

confounding changes in market structure of those cities (e.g., the expansion of some large

independent chains). Noel (2015) exploits the variability generated by a fire in a Canadian

refinery that arguably made asymmetric cycles in some markets halt, which led to increased

prices; the external validity issues associated with this natural experiment exercise indicates

that this result needs to be interpreted cautiously. A valid identification strategy for the

estimation of the effect of cycles on price levels would also be helpful to shed light on the

claim that these asymmetric cycles are collusive in nature. Byrne and De Roos (2019) and

Foros and Steen (2013) argue that the level of coordination in the synchronization of price

restorations is an indication of anti-competitive behavior in Perth (Australia) and Norway,

respectively.4 However, there is no evidence linking cycles to the expected result of any tra-

the asymmetry into a component explained by price response asymmetry and a ‘pure’ Edgeworth cycle
asymmetry. Lewis and Noel (2011) show that passthrough is faster in cycling than in non-cycling cities.

4Both markets posses institutional features that may make the cycles in this cities different in nature
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ditional form of collusion on the price level, nor is there a valid and general strategy available

to identify it.

In summary, our paper primarily contributes to the literature with the identification of

asymmetric cycles at the station level. The intra-market variability found in cycling behavior,

in turn, provides the literature with a new identification strategy for the cycle-induced price

gap, which helps disentangle various collusion hypotheses. Additionally, it contributes to the

discussion of what explains cross-sectional price-level variability in retail gasoline markets,

by uncovering a novel determinant—station’s cycling strategies.

3 Data

We use a novel database of daily regular gasoline prices at the station level in the continental

United States. We gathered these data from GasBuddy.com, a website that provides infor-

mation on gas prices reported by consumers through a smartphone app. Consumers use this

app to check prices at stations nearby and find good deals, but they also have cash incentives

to report or update prices as they spot them. The use of this type of consumer-reported

data is not new in the academic research on retail gas prices, although most previous work

analyzes Canadian markets.5

We retrieved these data every day at 10:00 pm during the 7-month period between

September 22, 2017 and April 22, 2018. For each day and gas station in our sample we

observe the latest price reported, how long ago it was reported (we keep only prices reported

in the last 24 hours), station location, station brand, and other station features (convenience

store, cash discounts, etc.). See Hurtado (2018) for an extensive explanation of the database.

In our analysis, we work with gas stations that have prices reported for at least 100 (out

of 213) days, to ensure that we correctly capture the patterns in their price dynamics. We

further limit our sample to cities with a representative amount (at least 70%) of stations

with more than 100 reports6 in order to be able to accurately characterize competition at

the market level. Our final database consists of 10,134,059 observations, from 58,618 gas

stations in 313 metropolitan statistical areas (MSA).

than those in North America, a price transparency program in Perth and recommended prices in Norway.
5See Atkinson (2008) for a description of the advantages and potential issues.
6This last restriction only reduces our sample size to be 80% of all stations with more than 100 observa-

tions.
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4 A New Cycling Indicator

The first step in our analysis is to classify gas stations according to their price strategy. We do

so by inspecting the firm-level price dynamics that these strategies produce; in particular,

we determine whether or not a station engages in asymmetric cycles. Figure 3 displays

representative examples of the different types of price dynamics at the station level. To tell

them apart in our data, we need a measure able to identify the presence of the distinctive

sawtooth-like pattern in Figure 3b. In this section, we develop such an indicator, discuss its

properties and robustness, and compare it with measures used in previous work.

We propose a cycling indicator that exploits a definitional implication of the cycle asym-

metry. In the presence of asymmetric price cycles, sharp price jumps are followed by gradual

decreases. As a consequence, the rate at which prices go up is faster than the rate at which

they go down. We construct a measure of that discrepancy, the Cycling Ratio, defined as

the average change in increasing stages divided by the absolute value of the average change

in decreasing stages:

Cycling Ratios =
|∆+p

s|

|∆−p
s|

=

ΣT
t=1 |∆tp

s| × 1(t ∈ τ s+)

ΣT
t=11(t ∈ τ s+)

ΣT
t=1 |∆tp

s| × 1(t ∈ τ s
−
)

ΣT
t=11(t ∈ τ s

−
)

(1)

where ∆tp
s = pst − pst−1, τ+ is the subset of dates in the sample at which station s

experienced an increasing-price stage, and τ− is the subset of dates at which the station

experienced a decreasing-price stage.7

A Cycling Ratio sufficiently larger than one indicates that prices go up significantly faster

than they go down, suggesting the presence of cycling behavior. In order to minimize the

use of an arbitrary threshold above which a gas station should be considered a cycler, we

augment this measure by combining it with another regularity of asymmetric cycle patterns:

the presence of sizable price jumps. Figure 4a illustrates the strong positive correlation

between cycle asymmetry, as measured by the Cycling Ratio, and the size of the price

increases, which we measure with the average percent price increase. We classify most gas

stations with a Cycling Ratio of 1.5 or higher as cyclers: for these, the price increases were

on average more than 50% faster than the decreases. For Cycling Ratios higher than 1.1

but lower than 1.5, we demand more evidence of cycle asymmetry by requiring an average

price jump of at least 1% for the gas station to be classified as cycler.8 A graphical depiction

7See Figure B.1 for clarification of τ+ and τ− in the examples of Figure 3.
8We require a price jump of at least 0.3% for Cycling Ratios 1.5 or higher, mostly to correct for measure-

ment error.
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of the definition of our cycling indicator is provided in Figure 4b; the indicator takes on

a value of one for gas stations classified as cyclers according to the previous description,

and is zero otherwise. A more conservative approach is to only consider cyclers those that

have a Cycling Ratio greater than 1.5 and non-cyclers those with a Cycling Ratio lesser or

equal to 1 and percent price jump below 1%, discarding the rest (Figure B.2). Appendix ??

contains robustness analyses were the results of this paper are estimated using this restricted

sample. In general, the patterns found with this more stringent classification are even more

pronounced than those in our main analysis.

The Cycling Ratio constructed to measure cycle asymmetry is robust to the different

realities usually found when analyzing gasoline price data. To illustrate, Figure 5 displays

some simplified examples used to evaluate the accuracy of the Cycling Ratio in the presence

of price trends and short data periods. The price dynamics in Figures 5a, 5b, and 5c come

from the same asymmetric cycling data process, but represent different contexts of analysis:

upward trends in Figure 5b and short-period data availability in Figure 5c. Regardless of

those differences, however, the average (i.e., per period) price increase is always $0.4 and

the average price decrease is always -$0.2, resulting in a Cycling Ratio of 2 that reflects

the asymmetry of these cycles. In Figure 5d a non-cycling dynamic pattern is shown, with

average price increases of $0.1 and average price decreases of -$0.1 for a Cycling Ratio of

1. The presence of a downward trend in Figure 5d did not prevent the Cycling Ratio from

correctly identifying the absence of asymmetric cycles.

To conclude this section, we compare the performance of our new cycling indicator with

the standard indicator used in the literature, the median change in price. Lewis (2009)

used for the first time the median daily change in a city average price as a proxy for the

extent of asymmetric price cycles. The measure reflects the following rationale: with cycle

asymmetry, there would be more periods when the price decreases than periods when it

increases, and then the median first difference of the price would be negative. This indicator

has been extensively used in the literature ever since to identify cycling cities (Lewis, 2009;

Doyle et al., 2010; Lewis, 2012; Zimmerman et al., 2013). The cutoff threshold below which

a market is categorized as cycler varies across studies; Doyle et al. (2010) applies a cutoff of

-0.5 cents, that was later adopted by Zimmerman et al. (2013) as well. Whereas the median

change in price was used to classify cycling and non-cycling cities before, in this study we

intend to classify patterns of the price dynamics of firms instead. Unlike market-level prices,

which as an average of its stations will most certainly change daily, one feature of the price

dynamics of individual gas stations is the large number of days when there are not changes

in prices. As a result, the median price change has no power to identify cycling from non-

cycling station-level strategies (for example, in Figure 3 both stations have a median price
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change of zero).

The inability of the median change in price to classify gas stations, however, is not

its primary drawback: it may incur misclassifications at the market level under certain

conditions. The implication of the cycle asymmetry that its accuracy relies on does not hold

whenever the decreasing stages are under or overrepresented, which happens in practice

under the circumstances of retail gasoline markets mentioned before. For instance, if prices

trend upwards, the undercutting phases will be cut short, which generates a lower count

of days with negative changes in price. In this case, the median price change will tend to

misclassify cycling markets as non-cyclers (e.g., in the case of Figure 5b, the median price

change is $0.1). On the other hand, with downward trends, the decreasing stages will be

artificially long, making the median price change prone to misclassify symmetric dynamic

patterns as asymmetric cycles (in the example of Figure 5d, the median price change is -$0.1).

But even if the decreasing price stages reach down to the same, steady marginal cost every

time, if the available data span a relatively short sample period undercutting stages might

be underrepresented, leading to false rejection of cycling behavior (e.g., the median price

change is $0.1 for Figure 5c). Even though adjusting the cutoff threshold can sometimes

mitigate this issues,9 those changes would necessarily be arbitrary and would heavily depend

on visual inspection.

The cycling indicator proposed in this paper is suited to identify cycling asymmetry in

station-level price dynamics and overcomes the misclassification drawbacks of the median

change in price. Because it leverages changes in steepness of the stages instead of their

different duration, its accuracy does not depend on a constant marginal cost or a lengthy

data set. The main use we make of our new cycling indicator in this paper is the classification

of all the stations in our sample as cyclers or non-cyclers; however, the new indicator can be

applied to price dynamics at the market level as well. In Table 1 we compare the split of the

313 cities in our data in cyclers and non-cyclers, according to both the new indicator and

the median price change (using the -0.5 cent threshold). For most markets the indicators

coincide; however, almost a quarter of the cities are non-cyclers according to the median

change in price but cyclers according to the new indicator. This can be in part due to the

cutoff used being too stringent, but, as we will explain in the next section, it is mostly due

to the misclassification issues of the median price change that our new indicator improves

upon.

9Noel (2015) mentions the need to determine the cutoff considering the price trends.
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5 Intra-Market Price Strategy Heterogeneity

Using the indicator described in Section 4, every gas station in our sample was classified

according to its price strategy, concretely, based on whether it engages in asymmetric price

cycle dynamics or not. In this section we present our findings on the heterogeneous cycling

behavior found in retail gasoline markets, characterize this variability between and within

cities, and explore its consequences for cross-sectional price dispersion.

5.1 Cycling Heterogeneity: An Overview

Every point in Figure 6 corresponds to a gas station in our data, and its color depends on the

price strategy it was classified into.10 Blue points represent non-cycling firms, whereas red

and orange represent cycling stations. The distinction among cyclers accounts for differences

in the degree of asymmetry or cycle intensity: orange is for cycling stations with a Cycling

Ratio between 1 and 3, red for Cycling Ratios of 3 or higher (i.e., prices jump at least three

times as fast as they go down). Figure 6 reveals two broad features of asymmetric price

cycles in U.S. retail gasoline markets. First, even though cycling gas stations are highly

concentrated in the Midwest, other metropolitan areas in the South and the West also

have a high concentration of cyclers. Several previous studies have concluded that market-

level cycles in the U.S. are a Midwestern phenomenon (Lewis, 2009; Doyle et al., 2010;

Zimmerman et al., 2013); however Figure 6 shows a significant agglomeration of cycling

firms in typically considered non-cycling areas, suggesting there might be asymmetric price

cycles at the market level in these areas too. We test this by applying our cycling indicator

to the average price dynamics of every city in our sample (see Table 1), which confirmed

the existence of asymmetric cycles in some non-Midwest markets in the states of Florida,

Georgia, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, and Utah. In some

of these cases, the median price change classifies them as cyclers as well; it might have been

the case, then, that previous work did not find cycle asymmetry there because the cycles

were indeed not present during the time period that their data spanned. In other cases, the

median price change is not negative enough (considering the usual cutoffs) to detect price

cycle asymmetry; this reinforces the advantages and the identification power of our new

cycling indicator.

Figure 6 also highlights that, even though there is concentration of cyclers and non-

cyclers in different markets, gas stations with both types of price strategy turn up to a

greater or lesser extent all around the country. To better illustrate this result, Figure 7

10Figure B.3 provides a version of this map in grayscale.
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shows a closer look at some selected markets. The cities of Chicago in Figure 7a and Dallas

in Figure 7b are overall cycling markets, while both Boston in Figure 7c and Los Angeles in

Figure 7d are non-cycling markets. Although most firms in cycling markets are cyclers and

vice versa,11 both price strategies are found in each type of market, sometimes coexisting

yards away from each other (Figure 8a). Figure 9 depicts the average price dynamics of

cycling and non-cycling stations separately for our two examples of cycling cities; clearly,

the overall cycling nature of these markets is inherited from the dynamic patterns of their

large proportion of cycling stations.

We also explore whether gas stations stick always to the same price strategy or instead

change it over time. To do this, we constructed daily station-level indicators using price

dynamics within a two-month rolling window.12 As explained in Section 4, the robustness

of our cycling indicator to short data periods allows us to perform this exercise accurately.

Based on this daily indicator, we calculated the share of cycling and non-cycling stations

in the U.S. for every day in our sample period, shown in Figure 10a. The fluctuation of

this share reveals that firms in U.S. retail gasoline markets do switch pricing strategies

over time; only 26% of the gas stations in our sample stick to either a cycling or non-

cycling strategy during the whole period (Figure 10b). In that sense the full-sample cycling

indicator we use throughout the paper summarizes the price strategy that each gas station

most predominantly followed.

5.2 What Predicts Cycling Behavior?

In light of our findings in Subsection 5.1, we explore which location characteristics and station

features are associated with each type of pricing strategy (Table A.1 and Table A.3; the

dependent variable is the cycling indicator). In Table A.1 the estimations include city-brand

fixed effects, so the results aim to explain the variability in cycling behavior of same-brand

stations within the same market. Non-cycling stations tend to be located in more densely

populated areas. Furthermore, consistent with Doyle et al. (2010), we found a non-linear

relationship with station density: cycling is more likely at intermediate levels of station

concentration; it peaks at 6 or 7 gas stations in a 1-mile radius. However, once we control

for the cycling behavior of neighbors, station density loses explanatory power, suggesting

that Doyle et al. (2010)’s geographic differentiation vs. market power channel does not drive

this result. A station’s cycling indicator is strongly correlated with the cycling indicator

11The share of cycling stations does not seem to uniquely determine cycling at the market level. Preliminary
results show that there is a non-linear relationship between the two, and it interacts with station-type
concentration; for the cycling pattern to show up in average prices, cycling stations do not only need to be
enough, but also effectively coordinate cycle peaks and troughs.

12We also tried an alternative window of 4 months with very similar results, see Subsection 6.1.
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of its closest neighbor—and with the average cycling behavior of neighboring stations in

general—although that influence fades away the more isolated the station is. This result

implies that gas stations following the same pricing strategy are on average expected to be

found bunched together.

Table A.3 looks at the association between cycling and station brand size and features.

Stations with convenience stores are more likely to be cyclers, regardless of their brand size.

This result complements the empirical findings of Doyle et al. (2010), who find a positive

relationship between cycling markets and the presence of convenience stores, but only those

operated by independent gas stations. Some of our results, however, contrast with the

predictions of Doyle et al. (2010)’s model. In particular we find that complementary goods

other than convenience store, such as service station or restaurant, are negatively correlated

with cycling. Also, both the smallest and the largest brands are less likely to cycle, therefore

their brand loyalty channel to explain non-cycling strategies finds no support. However, we

do find evidence for one of the predictions of Doyle et al. (2010)’s model: stations with a

higher proportion of consumers with propensity to not switch gas stations are less likely

to cycle. We mentioned how both channels explored in Doyle et al. (2010) to test that

prediction, geographic differentiation and brand loyalty, do not hold in our results. The

richness of our station-level data allows us to identify a better way in which that prediction

can be tested. We find that big-brand gas stations offering discounts, either through loyalty

cards or cash discounts, are much more likely to be non-cyclers. These are very relevant

predictors of cycling behavior; we will return to these results in section Section 6.

5.3 Pricing Strategy Heterogeneity and Price Dispersion

As mentioned in Section 2, vast attention has been paid in the literature to cross-sectional

price variation within markets. In examining the determinants of price levels or price dis-

persion, studies have considered several types of variables associated with these price differ-

entials: location characteristics, station features, local concentration of stations, brand, etc.

Researchers have not previously related price levels or price dispersion to asymmetric cycling

in gasoline markets, because cycle asymmetry is a phenomenon so far only documented at

the market level. In this paper, we introduce a new dimension of station heterogeneity within

markets, the cycling vs. non-cycling pricing strategy, whose effect on price levels—compared

to other determinants—we explore in this subsection.

Table 2 presents a simple analysis of the effect of previously-considered determinants and

the pricing strategy on station-level prices. The results are fairly consistent with previous

findings: stations charge higher prices in higher income neighborhoods and when located on
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a highway, and they charge lower prices overall the higher the station density. Prices are also

related to the presence of certain station characteristics, after controlling for city-brand fixed

effects. The effect of the pricing strategy is included through the indicator variable ‘Cycler’,

that takes value one for stations engaging in asymmetric cycles and zero otherwise (column

(2) uses our more stringent version of the cycling indicator defined in Section 4). We find

that cycling stations charge prices 3.43 cents lower than non-cycling stations on average.

The magnitude of this effect is considerably higher than almost every other determinant,

whose coefficients rarely exceed one cent in absolute value. Interestingly, two of the station

characteristics with reasonably large coefficients, loyalty card and cash discounts, are also

negatively correlated with cycling behavior. Table 3 shows that gas stations that neither

offer cash discounts nor loyalty cards are much less likely to be cyclers and, among them, the

cycling price gap is significantly higher. This reflects that non-cyclers in this group charge

price premiums both for the discount features and for the non-cycling strategy. When the

restricted sample is used in column (2) of Table 2 the coefficient associated with cycling

behavior is 80% larger, becoming by far the dominant explanatory factor for price levels.

The interpretation of the cycling coefficient, as well as the issues needed to be tackled in

order to identify it, will be discussed in detail in Subsection 6.1. At this point, these results

reveal that the difference in pricing strategies is a significant determinant of price variability

within markets that has not been considered before.

6 Explaining Asymmetric Price Cycles

We have so far documented the existence of different pricing strategies among gas stations

within cities in the U.S. retail gasoline industry. Concretely, we provided evidence that some

firms engage in asymmetric price cycle dynamics while others do not, even stations of the

same brand in the same local markets. We illustrated some of the consequences of that

heterogeneity in terms of cross-sectional price dispersion. In this section, we attempt to

shed some light on the reasons behind the cycles and the variability in cycling behavior. We

begin by reassessing the validity of previous explanations mentioned in Section 2, collusion

and Edgeworth cycles. Our results indicate that neither of these theoretical foundations of

asymmetric cycles finds full support in light of our new evidence. Lastly, in Subsection 6.3

we exploit the richness of our station-level strategy results in order to take the explanation

of cycling asymmetry in a new direction, related to targeting of consumers with different

price sensitivity.
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6.1 Are Cycles Collusive?

Beyond the popular Edgeworth cycle explanation, which we will look into in Subsection 6.2,

the issue of whether there are collusive components behind these asymmetric cycles or not has

recently caught the attention of a new strand of literature. As mentioned in Section 2, these

authors argue that the high levels of coordination found among firms in the increasing stages

are evidence of the collusive nature of the cycles. One testable prediction if these asymmetric

cycles were the result of some traditional form of collusion is that the existence of cycles

should lead to higher prices. A convincing identification of the effect of cycles on prices,

however, has eluded the literature so far. Since asymmetric cycles have been considered

a market-level phenomenon, previous attempts have relied either on price comparisons of

markets with and without cycles, or on market-level price differences before and after cycles

appear or disappear. The results from most of these strategies, as the literature warns, should

not be given a causal interpretation due to the presence of market-level confounders, either

unobservable characteristics or observable features of the market structure that are very

closely correlated with the presence of cycles.13 In this paper, we provide a new dimension

of asymmetric cycle variability—the intra-market heterogeneity in cycling behavior—which

we exploit as an identification strategy to better estimate the cycle-induced price gap.

Figure 11 illustrates the comparison between the previously available source of variability

and the new identification strategy that we utilize for the estimation of the effect of asym-

metric cycles on price levels. As mentioned before, most previous work measured this effect

by comparing cycling and non-cycling markets; Figure 11a replicates that comparison for

the markets in our data. Consistent with the literature, non-cycling markets have higher

prices than cycling markets, on average. This price gap, however, cannot be attributed

solely to the lack of cycles, because these markets might be different in ways other than

the cycling patterns. With cycling variability at the market level, these differences cannot

be reliably controlled for, because they are either unobservable or perfectly correlated with

the existence of cycles. To address these identification issues, we exploit a different level

of variability in cycling behavior: the within-market heterogeneity in cycling strategies. In

Figure 11b we overlap the price dynamics of the gas stations of Figure 8; noticeably, the

non-cycling station’s prices are in general higher than those of the cycling stations. Since

these firms are located close to each other, they face the same local market characteristics;

this in turn implies that the market-level confounders are controlled for in this comparison.

In what follows, we use this source of identification to measure the effect of asymmetric

cycling behavior on price levels.

13One exception could be Noel (2015)’s natural experiment approach, although, by construction, it lacks
external validity.
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The results are presented in Table 4. The dependent variable is the daily, station-level

price of regular gasoline in cents, and the main explanatory variable is the pricing strategy

of the gas station, measured with the full-sample cycling indicator presented in Section 4

(other price-level determinants are also controlled for, as in Table 2). In column (1) the

price gap was obtained without local market fixed effects; not accounting for the market

confounders gives an average difference in price of 11 cents between cycling and non-cycling

stations. Once the daily market environment is controlled for by including date-zipcode

fixed effects in column (2), the price gap decreases by almost 70%. This discrepancy reveals

the extent of bias in the estimation of the price gap when one does not control for local

conditions by exploiting within-market heterogeneity in cycling behavior. If the effect on

price of the different brands by city is further canceled out, we reach our main specification

result: gas stations that exhibit asymmetric cycling patterns in their price dynamics charge

on average 3.43 cents less for regular gasoline than stations that follow non-cycling pricing

strategies (this is the price gap reported in column (1) of Table 2). In other words, under the

same market structure, same-brand firms offering identical amenities and with equal location

characteristics charge on average a significantly lower price if they are cyclers. There is a

baseline effect of 2.7 cents, and then the gap increases the higher the cycling intensity (i.e.,

the more asymmetric the cycles, indicated by a higher Cycling Ratio). This result holds

for premium and midgrade gasoline as well (see Table A.6). As shown in Table 2, the

magnitude of the coefficient almost doubles if the results are estimated using the restricted

sample (Table A.5).

The up-and-down nature of cyclers’ price dynamics would suggest that the average gap

previously estimated changes systematically over time. The main specification of column

(3), but interacting the cycling indicator with the date fixed effect, yields the coefficients

plotted in Figure 12. It can be noticed how the price gap shrinks, sometimes even becoming

positive, in periods of cycle peaks.

The results shown so far use the full-sample cycling indicator, which classifies gas stations

according to the price strategy that they most predominantly followed. As described in

Subsection 5.1, we also constructed daily station-level cycling indicators using the price

dynamics of a two-month rolling window around each day. Accordingly, an additional test

for the existence of a price gap induced by cycling behavior would be to compare a gas station

price level in periods when it engages in cycles and in periods when it does not.14 The results

of such exercise are reported in columns (5) and (6) of Table 4, where the estimation used

the varying cycling indicator and included gas station fixed effects. The decreasing effect of

asymmetric cycling strategies on prices survives even when looking into the dynamics of an

14Figure B.5 in Appendix ?? displays the Cycling Ratio distributions for periods of cycling and non-cycling.
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individual firm: the prices charged by a gas station are relatively lower on average when the

station cycles than when it does not.15

Lastly, in Figure 13 we explore how this cycling price gap differs across markets in our

sample. The distribution of price gaps is shown in Figure 13a. Although more research

remains to be done to explain the variability in market price gaps, we suggest one possible

direction in Figure 13b. On the one hand, the cycling classification of the market-level price

dynamics does not seem to be systematically related to the existence of a positive price

gap, nor to the magnitude of negative price gaps. On the other hand, there seems to be

a non-linear relationship between the share of cycling stations and the price gap: the price

differential between cycling and non-cycling stations seems to be bigger in markets where

cycling stations are either relatively very few or they are the big majority.

The results presented in this subsection demonstrate that gas stations engaging in asym-

metric cycles charge on average lower prices than non-cycling gas stations. This finding can

naturally be interpreted as evidence against the hypothesis posed by some previous work

that cycles in retail gasoline markets are the result of traditional forms of collusion. In this

sense, the coordination of firms in the restoring stage of the cycles seems to be the realiza-

tion of some specific form of firm interaction rather than involving collusive behavior in the

conventional sense. The remainder of the paper is devoted to understanding the nature of

those interactions. We first assess to which extent Edgeworth cycles can explain the cycling

pattern found in our data. Finally, we suggest insights on why cycle heterogeneity arises

within markets.

6.2 Edgeworth Cycles Revisited

As mentioned in Section 2, the overwhelming majority of empirical studies of price cycles in

retail gasoline markets align with the theory of Edgeworth cycles (Maskin and Tirole, 1988).

In this subsection, we document ways in which the standard version of that theory and its

available extensions are inconsistent with our new findings. The first and foremost limitation

is the assumption underlying virtually every previous work on Edgeworth cycles that all firms

in a cycling market engage in cycling patterns and vice versa. As we documented in Section 5,

there is a high degree of heterogeneity in cycling behavior within markets, sometimes even

within yards distance, which entirely rules out the accuracy of that assumption. The only

contribution that steps into the right direction in that sense is Doyle et al. (2010)’s. In

their model, they aim to explain why some markets display cycles while others do not by

treating cycling behavior as a firm-level decision, driven by some station characteristics.

15Other robustness checks of Table 4 using a four-month rolling window (Table A.7) and controlling for
neighbors cycling behavior (Table A.8) are presented in Appendix ??.
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However, they test their model with aggregated data and are silent about the possibility of

cycling heterogeneity within local markets. We also discussed earlier in Subsection 5.2 how

the station features that should predict cycling according to their model—i.e., brand loyalty,

geographic differentiation, and complementary goods—do not necessarily find support in our

firm-level results. For the theory of Edgeworth cycles or its extensions to be able to explain

the observed patterns in the retail gasoline industry an adaptation rendering cycling strategy

heterogeneity at the station level would be needed. We address a way in which that can be

accomplished in Subsection 6.3.

Apart from these limitations, another drawback of Edgeworth cycles as an explanation

of the asymmetric cycles in retail gasoline prices comes from the fact that one testable

prediction of the model is decidedly contradicted by our data. The main empirical prediction

of the theory is the asymmetry of the cycles in price dynamics; the resemblance of the

asymmetric cycles in retail gasoline markets to the pattern of Edgeworth cycle dynamic

pricing equilibrium was what linked the observed phenomenon to Maskin and Tirole (1988)’s

explanation in the first place. Even though it has been claimed that the theory does not

offer any other testable predictions, there is an additional feature of Edgeworth cycles that

can be tested in the data. In Maskin and Tirole (1988)’s Edgeworth cycle equilibrium, the

decreasing phase of the cycle has firms undercutting each other until they reach marginal

cost. At the trough of the cycle, the firms enter a war of attrition in which they randomize

between restoring price or not; once one of them does relent, the other follows and a new

cycle is initiated. One consequence of that mechanism is that the cycle length should be

random; in particular, it should not be possible to predict when firms leave the trough of

the cycle. However, we find strong weekly patterns in the asymmetric cycle dynamics,16

revealing that the timing of price relenting could be predicted by day of the week.

To illustrate this claim, Figure 14 overlaps the price dynamics of cycling stations in

our cycling market examples of Chicago and Dallas with weekly markers; the shaded areas

indicate Monday-Tuesday-Wednesday intervals. One regularity to notice is that when a new

cycle starts it does so at the beginning of the week, and then a cycle peak occurs certainly

within a couple of days. On the other hand, the time span between cycle troughs is always

weekly, biweekly, triweekly, and so on. These two observations imply that the duration of

the cycles can be approximately measured in multiples of weeks, and that which multiple

depends on whether a price jump is triggered in that market early in the week or not. In

what follows we look into each of those regularities.

16Weekly patterns in asymmetric retail gasoline price cycles have been documented before (see, e.g., Lewis
and Noel (2011)); however, they have not been analyzed as a contradiction of the fundamentals of Edgeworth
cycles.
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We first explore which days of the week are more likely to be cycle peaks or troughs.

For each cycling gas station, we calculated the empirical probability distribution of peaks

and troughs across days of the week, in terms of the relative frequency; then, we averaged

the day-of-the-week probabilities of peaks and troughs at the market level. Figure 15 shows

the results for our two example markets. Both Chicago’s and Dallas’ gas stations are more

likely to have cycle peaks on Thursdays (Figure 15a). As for the troughs, gas stations

in Chicago are more likely to reach cycle troughs quite similarly either Monday, Tuesday,

or Wednesday; in Dallas, gas stations’ probabilities of trough are concentrated on Monday,

followed by Tuesday and Sunday (Figure 15b). Comparing Figures 15a and 15b, even though

peak probabilities are better lined up on Thursday for both markets, the distributions are

flatter (i.e., there is a mode on Thursday but the average probability does not differ greatly

among days of the week). Contrarily, Chicago and Dallas market average probabilities of

trough are shifted apart, but these distributions are much more concentrated than peak

distributions.

The findings just described for our example markets hold for our entire sample as well.

We calculated these average empirical probability distributions of peaks and troughs for each

market in our sample. Based on that, we defined the market peak (trough) as the day of

the week with highest probability of being a peak (trough); for example, Figures 15a and

15b imply that Chicago’s peak and trough are Thursday and Tuesday, respectively, while

Dallas’ are Thursday and Monday. Table 16a summarizes the results; it shows how many

markets have their peak and trough at each day of the week.17 The majority of the cities

in our sample (59%) are more likely to have cycle peaks on Thursdays. Even though the

market troughs are not that centered around one day of the week, Monday, Tuesday, and

Wednesday contain over 85% of market troughs.

We explore the flatness of peak (trough) distributions using as a measure the maximum

probability of a peak (trough), that is, the average empirical probability of the market

peak (trough) as define above. For example, from Figures 15a and 15b the maximum peak

probability in Dallas is 0.2172 and in Chicago is 0.1930; the maximum trough probability is

0.3258 for Dallas (the average probability of the market trough, which is Monday for Dallas)

and 0.2275 for Chicago. Figure 16b depicts the densities of market maximum probabilities

of peaks and troughs. Just as in the Chicago and Dallas example, peak distributions are

more similar but flatter (maximum probability density has a higher mode, but is centered at

a low probability value), whereas the trough distributions can be more or less concentrated

in different markets (e.g., it is more concentrated in Dallas than in Chicago) but are in

17The total number of markets is 293—instead of 313—because we excluded markets with less than 10
cycling gas stations, as their average empirical probabilities were very noisy.
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general more concentrated than peak distributions (the density of the maximum probability

of troughs is shifted to the right with respect to peaks).

These results indicate that, for a given market, the day of the week for the occurrence

of cycle troughs is easier to predict than for peaks. The importance of these results for the

overall predictability of cycle peaks and troughs is nonetheless played down by the fact that

cycles reach their peaks certainly within a couple of days after a trough, whereas troughs do

not necessarily occur a certain number of days after a peak. The distance between troughs,

however, can be always measured in multiples of weeks. This stresses the importance of un-

derstanding the nature of cycle troughs, rather than the emphasis on cycle peaks commonly

found in the literature.

The issue of why price restoring is triggered at the beginning of some weeks and not others

should be investigated thoroughly. We aim to contribute to that discussion by showing the

relationship between price relenting and changes in costs. As it is well documented in the

literature, the cycle asymmetry in retail gasoline prices is not inherited from asymmetry

in upstream price dynamics. In our data period, for example, the Cycling Ratios of two

common proxies for costs, crude oil prices and New York gasoline futures, are 0.85 and 0.82,

respectively (see Figure B.6). Instead, in Table 5 we explore whether changes in wholesale

prices are likely to trigger retail price restorations of cycling gas stations. The observation

level is a cycling station-day combination; the dependent variable takes a value of one if the

gas station had a trough that day, and zero otherwise. Our results indicate that an increase

in costs either that day, the day before, or two days ago is associated with a higher chance

that the gas station relents (we proxy for cost with the price of crude oil18). We control for

city-day of the week fixed effects, therefore the interpretation holds on average for any given

market-level probability of trough each day of the week. Most importantly, an increase in

cost is twice more likely to trigger a price restoration on the day of the week that corresponds

to the market trough. The results are more pronounced when run only for cycling markets,

where there are many well-synchronized cycling gas stations. This suggests that whether or

not firms face changes in wholesale costs close to the market-level trough might be a key

factor in determining which weeks will mark the beginning of a cycle in a given market.

In this subsection we provided evidence that the standard Edgeworth cycle theory can-

not account for one key feature of asymmetric cycles in retail gasoline markets, which is the

n-week duration of the cycles with troughs systematically aligned by day of the week. We

documented which days of the week are more likely to be peaks and troughs, and discussed

some reasons why new cycles begin some weeks and no others. Left to be addressed is

18Table A.9 in Appendix ?? explores the same analysis using New York gasoline futures instead, with
similar results.
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why Monday, Tuesday, and Wednesday are the days of the week when troughs occur in al-

most every market. Possible explanations can be associated with different price elasticity of

consumers within a week.19 Cycling firms may decrease prices to attract price-searching con-

sumers; when the week starts and demand becomes more inelastic (e.g., because consumers

less-flexibly need gasoline for work commuting) is when they can afford to temporarily charge

higher prices. In line with this reasoning, below we provide evidence on the relationship be-

tween cycling behavior an consumer price search.

6.3 Consumer Search and Price Sensitivity

We have shown so far that asymmetric cycling strategies seem to be the realization of some

form of imperfect competition rather than the result of collusion. We also showed that

Maskin and Tirole (1988)’s theory of Edgeworth cycles and its few available extensions are

inadequate to fully account for the patterns found in our results: n-week duration of the

cycles and high degree of cycling heterogeneity within markets. In this last subsection,

we contribute to the discussion of what explains these cycles and their heterogeneity with

new evidence indicating that gas stations might be dividing markets up by choosing pricing

strategies that target different types of consumers.

Some of the results from previous sections hint in the direction of cycling and non-cycling

stations following different strategies to attract consumers. The negative cycling price gap

and the fact that cycling stations concentrate lower prices in certain days of the week could

be the result of these stations targeting price-sensitive consumers more inclined to price

search or willing to restrict their gas purchases to particular days. If this were the case, one

would expect non-cycling stations aiming at more inelastic consumers. In Subsection 5.2 we

showed how non-cycling stations are strongly more likely to offer cash or loyalty discounts,

which indicates that they may actually be dividing up the pricing space in a different way.

These discounts work as a laid-back search strategy for consumers not willing to actively

search for low prices, but willing to incur the hassles of carrying station cards or cash.

For consumers not willing to do so, they charge much higher prices. Because of their low

propensity to search, these consumers will also be attracted to non-cycling stations’ fewer

and milder changes in prices. In contrast, cycling stations aim to attract attentive, price-

sensitive consumers, also drawn by cyclers’ frequent and sizable changes in price. In what

follows, we provide evidence in favor of this source of heterogeneity in cycling behavior. First,

some scattered indications of the relationship between price search and cycling behavior are

presented; we then delve into a more systematic measure of that relationship.

19This phenomenon has been proven to exist in other industries; see Puller and Taylor (2012) for an
example of day-of-the-week price discrimination by U.S. airlines.
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Table 6 contains findings that align with the hypothesis of cycling stations targeting

more elastic consumers. In Table 6a, cycling stations are shown to be less likely to be

found on state borders, but if in the border they tend to locate on the lower-state tax

side. Gas stations have been proven to bunch on the lower side of the border (Hurtado,

2018); consumers using those gas stations will be comparatively more prone to be looking

for cheaper prices. Table 6b analyzes the surcharge for premium (or midgrade) gasoline

applied by gas stations when facing different demand preferences. The results indicate that

cycling stations charge a lower price differential for premium or midgrade gasoline in higher

income neighborhoods. Wealthier consumers are more prone to search for cheaper premium

(or midgrade) gas prices,20 since they are more likely to actually demand that product; then,

the finding in Table 6b can be the consequence of cycling gas stations intending to capture

those high-income, search-oriented consumers.

To assess the relationship between firm cycling strategies and consumer price sensitivity

in U.S. retail gasoline markets in a more definite and systematic fashion, we construct a

measure of search activity using the nature of our data. As described in Section 3, we use

consumer-reported data retrieved at the same time every day and we observe how long ago

each price was reported. Gas stations with prices reported more frequently will tend to have

lower ‘how long ago’ values; therefore, a measure of reporting frequency would be inversely

related to that variable. We define such a measure simply as 24-‘how long ago’21 and use

this ‘popularity’ index as a proxy for the level of search activity, since price reports are the

result of consumers searching for cheap prices through the app.22

The average popularity of U.S. cycling and non-cycling stations over our sample period is

presented in Figure 17. For both types of gas stations, the reporting frequency seems to drop

in general right before the shaded areas, that is, during the weekends. Most interestingly, in

this raw comparison cycling gas stations have arguably more reports than non-cycling ones.

Some identification concerns need to be addressed, however, before claiming that this purely

reflects more price-searching of cycling station’s consumers. First, users of the app might be

more prone to report the price of the gas station they actually end up buying gas from, which

will most likely be the one with the lowest price. Since we found that cycling gas stations

generally charge lower prices than non-cycling ones, part of the difference in reporting from

Figure 17 may merely reflect that difference in price and not the cycling strategy itself.

Second, users can report a price they spot both if it is different than in the app (i.e., correct

20We confirm that relationship using the measure of price search frequency that we introduce later.
21We chose that measure because ‘how long ago’ is expressed in hours, and we preferred a linear transfor-

mation. The value of the variable itself does not have a meaningful interpretation, but its usefulness comes
from its direct relationship with reporting and search.

22See Byrne et al. (2015) for another example of the use of report frequency as a proxy for search intensity.
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or update a price), as well as if it is unchanged (i.e., check or confirm a price). If they are

more likely to report in the former case, this would bias the effect of cycling on consumer

search behavior upwards, because cycling gas stations change their prices more often.

Table 7 shows how much search activity differs for consumers of cycling and non-cycling

stations, accounting for the identification issues previously pointed out. The day-of-the-

week fixed effects included in the estimation are displayed in Figure B.7, where the drop

in reporting activity during the weekends is confirmed. The results in Table 7 indicate

that, indeed, consumer search is higher for cycling than for non-cycling stations, even after

controlling for the price level and the frequency with which stations change their prices. We

additionally considered if consumers change their report intensity in different stages of the

cycle (peaks and troughs). We find that search activity is higher right before and during

peaks, and lower at troughs. Since we control for day of the week and price level, this finding

can solely be attributed to the awareness of consumers of when peaks and troughs are more

likely to happen in each market, which in turn translates into the recognition of gains from

search being higher (lower) at peaks (troughs). Notice also that this effect is intensified

for cycling stations’ consumers, because they are more attentive and knowledgeable of the

structure of the cycles.

7 Conclusion

This paper identifies the presence of asymmetric cycles in individual gas station price dynam-

ics, and classifies firms in retail gasoline markets according to their cycling and non-cycling

strategies. The cycling indicator we propose represents a methodological contribution since,

unlike the one previously used in the literature, it is suited to the identification of cycles at

the station level and it is robust to the presence of price trends and short periods of data. The

coexistence of both types of gas stations found within markets contrasts with previous work

on asymmetric cycles in retail gasoline markets, where asymmetric cycles were regarded as a

market-level phenomenon. In this sense, the focus on market-level price dynamics has so far

prevented this literature from contributing to the explanation of the equally puzzling intra-

market, cross-sectional price variability. Indeed, we find that cycling behavior is a significant

determinant of gas stations’ price level: stations that engage in asymmetric-cycle strategies

charge on average 3.43 cents less than non-cycling stations. On the other hand, our results

invite to revisit the discussion on asymmetric cycles and market-level price dispersion. It

has been recently argued that these cycles are associated with high price dispersion (Noel,

2018). An exploratory analysis in Figure 18, however, suggests that markets with higher

share of cycling stations—which tend to be cycling markets—present a relatively low and
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systematic daily overall price dispersion. Market-level price cycle asymmetry does not seem

to induce price dispersion in the cross-section; if anything, a high share of well-synchronized

cycling stations seem to guarantee relatively low levels of dispersion compared to an average

non-cycling market. This issue deserves further and more careful research left for future

work.

In terms of the reasons behind these cycles and the heterogeneity in cycling behavior,

a setting where gas stations choose a pricing strategy depending on the type of consumers

they intend to target is consistent with our data. The Edgeworth cycle model that, with

little exception, has served as the theoretical foundation of the empirical literature in retail

gasoline price cycles, finds no support in our results, as we find that one of the testable

predictions of its standard version does not hold in light of our new evidence. Our negative

cycle-induced price gap also rules out recent concerns that these cycles could be collusive

in nature, which have led to investigations by competition authorities. Since the lack of a

valid identification strategy for the estimation of the effect of cycles on price levels restricted

the ability of previous work to test this fundamental empirical prediction of conventional

forms of collusion, the intra-market variability in cycling behavior that we exploit for such

estimation is also a valuable contribution in that sense. Our results indicate that the presence

of asymmetric cycles in retail gasoline markets do not pose a threat to competition and

therefore are not a public policy issue to be addressed. On the contrary, these cycles make

price changes easier to predict and are associated with lower prices and lower market-level

price dispersion, all of which benefit consumer welfare.
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Tables

Table 1: New vs Old Indicator Comparison at the Market Level

Old indicator
New indicator Non-cycler Cycler Total

Non-cycler 159 0 159
Cycler 73 81 154

Total 232 81 313

Note: The new indicator classifies cities according to their Cycling Ratio and percent price jump; the old indicator refers to
the median price change, using -0.5 cents as cutoff.
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Table 2: Contribution of Cycling Heterogeneity to Cross-Sectional Price Level Variability

(1) (2)
Pricing strategy

Cycler -3.429∗∗∗ -6.157∗∗∗

(0.007) (0.010)
Location characteristics

Income (log) 0.206∗∗∗ 0.242∗∗∗

(0.010) (0.011)
Population density -0.022∗∗∗ -0.011∗∗∗

(0.001) (0.001)
On highway 0.184∗∗∗ 0.188∗∗∗

(0.010) (0.012)
No. of neighboring stations -0.241∗∗∗ -0.151∗∗∗

(0.003) (0.004)
No. of neighbors (sq) 0.008∗∗∗ 0.003∗∗∗

(0.000) (0.000)
Station characteristics

Offers loyalty discount 0.586∗∗∗ 0.375∗∗∗

(0.010) (0.012)
Offers cash discount 3.535∗∗∗ 3.488∗∗∗

(0.011) (0.014)
Has convenience store -0.115∗∗∗ -0.163∗∗∗

(0.010) (0.012)
Has restaurant 0.341∗∗∗ 0.207∗∗∗

(0.010) (0.011)
Has car wash -0.304∗∗∗ -0.312∗∗∗

(0.008) (0.009)
Has service station 1.730∗∗∗ 1.726∗∗∗

(0.012) (0.015)
Has truck stop -0.587∗∗∗ -0.547∗∗∗

(0.020) (0.023)
R2 0.9599 0.9620
Observations 10,113,008 7,184,024
Date-Zip FE Yes Yes
City-Brand FE Yes Yes
Sample Full Rest.

Note: Dependent variable: price of regular gasoline, in cents; the observation level is a station-day combination. Standard
errors in parenthesis. The symbol *** denote significance at the 99% level.
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Table 3: Cycling Behavior, Cycling Price Gap, and Discounts

Loyalty card: No Loyalty card: Yes

% cyclers cycling-gap % cyclers cycling-gap

Cash discount: No 61% -3.14 55% -3.46

Cash discount: Yes 39% -3.33 36% -4.42

Note: The table tabulates the proportion of cycling stations that offer loyalty cards and cash discounts. The table also shows
the cycling-induced price gap for the corresponding subgroup.

Table 4: The Effect of Asymmetric Price Cycles on Gasoline Price Levels

(1) (2) (3) (4) (5) (6)

Cycling indicator -11.446∗∗∗ -4.910∗∗∗ -3.429∗∗∗ -2.710∗∗∗

(0.019) (0.008) (0.007) (0.010)
Cycling intensity -0.315∗∗∗

(0.003)
Varying cycling ind. -0.576∗∗∗ -0.442∗∗∗

(0.006) (0.007)
Varying cycling int. -0.047∗∗∗

(0.001)

R2 0.2594 0.9359 0.9599 0.9600 0.9862 0.9862
Obs 10,113,008 10,113,008 10,113,008 10,113,008 7,141,398 7,141,398
Ȳ 256.080 256.080 256.080 256.080 254.119 254.119
Date FE Yes
Date-Zip FE No Yes Yes Yes Yes Yes
City-Brand FE No No Yes Yes
Station FE No No No No Yes Yes

Note: Dependent variable: price of regular gasoline, in cents; the observation level is a station-day combination. Cycling
indicator is the full-sample indicator of cycling behavior; cycle intensity is the full-sample Cycling Ratio. Varying cycle indicator
and intensity are the date-level versions of those two variables. Standard errors in parenthesis. The symbol *** denote
significance at the 99% level.
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Table 5: Price Restoration and Changes in Cost for Cycling Stations

Full sample Cycling markets

∆costt > 0 0.023∗∗∗ 0.034∗∗∗

(0.000) (0.000)
∆costt−1 > 0 0.020∗∗∗ 0.030∗∗∗

(0.000) (0.000)
∆costt−2 > 0 0.013∗∗∗ 0.019∗∗∗

(0.000) (0.000)
Market trough=1 × ∆costt > 0=1 0.023∗∗∗ 0.029∗∗∗

(0.001) (0.001)
Market trough=1 × ∆costt−1 > 0=1 0.026∗∗∗ 0.040∗∗∗

(0.001) (0.001)
Market trough=1 × ∆costt−2 > 0=1 0.002∗∗ -0.002

(0.001) (0.001)

R2 0.1006 0.1027
Observations 5,820,508 3,313,895
Week-Zip FE Yes Yes
Brand FE Yes Yes
City-dow FE Yes Yes

Note: Dependent variable: 1(station-level trough); the observation level is a cycling station-day combination. Standard errors
in parenthesis. The symbols **,*** denote significance at the 95% and 99% levels, respectively.

Table 6: Some Evidence on Station Cycling Behavior and Propensity of Consumer Search

Cycling indicator
In border -0.064∗∗∗

(0.011)
Lower-tax side 0.003

(0.008)
In border=1 × Lower-tax side=1 0.031∗∗

(0.015)
R2 0.3826
Obs 58,497
Location char. Yes
Station char. Yes
City-Brand FE Yes

(a) Cycling behavior at the state border.

Premium Midgrade
Cycler=1 0.602∗∗∗ 0.520∗∗∗

(0.085) (0.075)
Income (log) -0.017∗∗ -0.005

(0.007) (0.007)
Cycler=1 × Income (log) -0.040∗∗∗ -0.042∗∗∗

(0.008) (0.007)
R2 0.8469 0.7110
Obs 7,130,388 6,943,466
Ȳ 20.561 10.744
Date-Zip FE Yes Yes
City-Brand FE Yes Yes

(b) Premium/midgrade surcharge.

Note: (a) Dependent variable: cycling indicator; the observation level is a gas station. In border = 1(station located within
5 miles of the state border). For measures of state taxes see Hurtado (2018). (b) Dependent variable: premium and
midgrade price differentials with respect to regular gasoline price, in percentage points; the observation level is a station-date
combination. Standard errors in parenthesis. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 7: Price Search and Cycling Strategies

Report frequency

Price -0.012∗∗∗

(0.000)
% of ∆p = 0 -4.389∗∗∗

(0.024)
Cycler=1 0.092∗∗∗

(0.010)
Peaks and troughs

Peak today=1 0.019∗∗∗

(0.007)
Peak tomorrow=1 0.024∗∗∗

(0.007)
Trough today=1 0.000

(0.007)
Trough tomorrow=1 -0.022∗∗∗

(0.007)
Cycler=1 × Peak today=1 -0.008

(0.010)
Cycler=1 × Peak tomorrow=1 0.010

(0.010)
Cycler=1 × Trough today=1 -0.034∗∗∗

(0.009)
Cycler=1 × Trough tomorrow=1 -0.023∗∗

(0.009)

R2 0.2027
Obs 9,968,687
Day-of-the-week FE Yes
Week-zip FE Yes
City-Brand FE Yes

Note: p-values in parenthesis. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figures

Figure 1: Retail Gasoline Price Dynamics: Markets with and Without Asymmetric Cycles
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Note: The figure shows the average price of retail gasoline for Los Angeles, California, and Chicago, Illinois. Chicago shows an
asymetric pricing behavior. Los Angeles shows a smooth average price of retail gasoline.

Figure 2: Maskin and Tirole (1988)’s Edgeworth Cycles

Note: The figure shows the Edgeworth cycles form Maskin and Tirole (1988) paper.
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Figure 3: Station-Level Price Dynamics for Two Selected Gas Stations in Chicago, IL
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(a) Non-cycling gas station.
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(b) Cycling gas station.

Note: Panel (a) of the figure shows the pricing strategy of a gasoline retailer that does not changes prices as frequently. Panel
(b) of the figure shows the reported price of a gasoline retailer that changes prices frequently.
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Figure 4: A New Cycling Indicator: Cycling Ratio and Average Percent Price Increase

(a) Cycling Ratio and average price jump. (b) Cycling indicator definition.

Note: A point in these panels represent a gas station according to its combination of Cycling Ratio and average percent increase
in price (price jump). For the purposes of illustration, only gas stations in Chicago are displayed.
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Figure 5: Indicators’ Performance in the Presence of Price Trends or Short Data Span

(a) No trend. (b) Increasing trend.

(c) Short data span. (d) Decreasing trend.

Note: The Cycling Ratio is robust to the presence of price trends and short data periods: it equals 2 for panels (a), (b), and (c)
regardless of those circumstances because the patterns come from the same asymmetric-cycling data process. If the decreasing
phase of the cycles is under of overrepresented, the median price change can falsely reject (panels (b) and (c)) or falsely confirm
(panel (d)) the presence of asymmetric cycles.
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Figure 7: Heterogeneous Price Strategies Within Markets

(a) Chicago, IL. (b) Dallas, TX.

(c) Boston, MA. (d) Los Angeles, CA.

Note: Blue points represent non-cycling gas stations. Red and orange indicate different levels of cycling asymmetry.
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Figure 8: Close-By Gas Stations with Different Price Strategies

(a) Two cycling stations and one non-cycling station yards away in the Chicago area.

(b) Price differential between gas stations with different price strategies.

Note: Images were screenshotted from Google Maps and Street view (captured in November 2017). Panel (a) shows heteroge-
neous price dynamics types of three gas stations in Park Ridge IL, located yards away from each other. Panel (b) shows very
different posted prices for two of these stations at the same time.
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Figure 9: Price Dynamics of Cycling and Non-Cycling Stations Within Markets
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(b) Dallas, TX.

Note: Both panel (a) and (b) of the figure show the average retail gasoline price for non-cyclers and cyclers. The average price
of noncyclers is above the average price of non-cyclers for both Chicago, Illinois, and Dallas, Texas.
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Figure 10: Varying Pricing Strategies
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(a) Share of cycling stations across time, U.S.

# stations

Always no-cycler 4,988

Mostly no-cycler 24,918

Mostly cycler 22,906

Always cycler 11,990

Total 64,802

(b) Station strategy switching.

Note: For each gas station, cycling indicators were calculated at every day in the sample using a two-month window. Panel (a)
shows the resulting share of cycling and non-cycling stations in the U.S. over time. Panel (b) breaks down the firms according
to whether they changed strategies during the sample period or not.
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Figure 11: Identification Strategies for the Estimation of the Cycle-Induced Price Gap
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(a) Average market price of cycling and non-cycling markets, U.S.
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(b) Cycling vs. non-cycling stations in the same market, Chicago IL.

Note: Panel (a) shows the average retail gasoline price for non-cyclers and cyclers in the United States. Panel (b) shows the
reported price for 3 gasoline stations in Chicago. In panel (b), the doted line shows a non-cycling station and the solid lines
show two different cycling stations.
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Figure 12: The Effect of Cycles on Price Level over Time
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Note: The coefficients plotted are the date-cycler fixed effect on price, controlling for zipcode and brand.

Figure 13: Cycling Price Gap Across Markets

0
10

20
30

40
M

ar
ke

ts

-20 -15 -10 -5 0 5
Price gap

(a) Ditribution of market price gaps.

-2
0

-1
5

-1
0

-5
0

5
M

ar
ke

t-l
ev

el
 p

ric
e 

ga
p

.2 .4 .6 .8 1
Share of cycling stations

Non-cycling markets Cycling markets

(b) Market price gap and share of cyclers.

Note: The market price gap is the coefficient of the market-cycler fixed effect, controlling for date, zipcode, and brand.
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Figure 14: Weekly Patterns in Asymmetric Price Cycles, Chicago and Dallas
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Note: These price dynamics correspond to the average price of cycling stations in each market.

Figure 15: Distribution of Troughs and Peaks Across Day of the Week, Chicago and Dallas

(a) Peaks. (b) Troughs.

Note: For each cycling gas station, the relative frequency of peaks and troughs by day of the week was calculated. Depicted is
the average of those empirical probabilities at the market level.

42



Figure 16: Market-Level Peaks and Troughs

Day-of-week Peaks % Troughs %
Monday 27 9.22 78 26.62
Tuesday 34 11.60 103 35.15
Wednesday 21 7.17 72 24.56
Thursday 173 59.04 27 9.22
Friday 17 5.80 2 .68
Saturday 4 1.37 1 .34
Sunday 17 5.80 10 3.41
Total 293 100.00 293 100.00

(a) Peaks and troughs by day of the week.
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(b) Max. prob. of peaks and troughs.

Note: (a) 293 markets broken down according to the day of the week they more likely have peaks and troughs. (b) The
maximum probability of peak (trough) is the probability of peak (trough) of the market day-of-the-week peak (trough).

Figure 17: Price Reporting Activity for Cycling and Non-Cycling Stations, U.S.
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Note: Report frequency proxied for with a popularity measure constructed based on how long ago prices were reported.
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Figure 18: Market-Level Cross-Sectional Price Dispersion and Asymmetric Cycles

Note: Each point represent a market in our sample; price dispersion is measured as the average of daily standard deviations of
prices.

44



Appendices of Tables and Figures

Tables

Table A.1: Cycling, Location Characteristics, and Neighbors’ Behavior

All w/neighbors
Location characteristics

Income (log) 0.004 -0.001
(0.005) (0.005)

Population density -0.001∗∗∗ -0.001∗∗

(0.000) (0.000)
No. of neighboring stations 0.013∗∗∗ 0.002

(0.002) (0.002)
No. of neighbors (sq) -0.001∗∗∗ -0.000

(0.000) (0.000)
Neighbors’ behavior

Avg. neighbors’ ind. 0.248∗∗∗

(0.009)
Closest neighbor’s ind. 0.136∗∗∗

(0.007)
Dist. closest neigh. (100m) 0.004∗∗∗

(0.001)
Closest neighbor’s ind.=1 × Dist. closest neigh. (100m) -0.011∗∗∗

(0.001)
R2 0.3821 0.4301
Observations 58,497 50,764
Station char. Yes Yes
City-brand FE Yes Yes

Note: Dependent variable: cycling indicator (linear probability model); the observation level is a gas station. Results in the
first column include all the stations in our sample; second column includes gas stations with at least one neighboring station.
Neighbors are defined as gas stations within a 1-mile radius. Standard errors in parenthesis. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table A.2: Cycling, Location Characteristics, and Neighbors’ Behavior: Restricted Sample

All w/neighbors
Location characteristics

Income (log) 0.010∗∗ 0.004
(0.005) (0.005)

Population density -0.001∗∗ -0.000∗

(0.000) (0.000)
No. of neighboring stations 0.013∗∗∗ 0.003

(0.002) (0.002)
No. of neighbors (sq) -0.001∗∗∗ -0.000

(0.000) (0.000)
Neighbors’ behavior

Avg. neighbors’ ind. 0.234∗∗∗

(0.009)
Closest neighbor’s ind. 0.124∗∗∗

(0.008)
Dist. closest neigh. (100m) 0.004∗∗∗

(0.001)
Closest neighbor’s ind.=1 × Dist. closest neigh. (100m) -0.011∗∗∗

(0.001)
R2 0.3849 0.4334
Observations 41,033 35,787
Station char. Yes Yes
City-brand FE Yes Yes

Note: Dependent variable: cycling indicator (linear probability model); the observation level is a gas station. Results in the
first column include all the stations in our restricted sample; second column includes (restricted sample) gas stations with at
least one neighboring station. Neighbors are defined as gas stations within a 1-mile radius. Standard errors in parenthesis. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A.3: Cycling Behavior, Brand Size, and Station Characteristics

All brands Small Med-small Med-big Big
Brand size

Med-small 0.085∗∗∗

(0.010)
Med-big 0.151∗∗∗

(0.008)
Big 0.022∗∗∗

(0.007)
Station characteristics

Loyalty discount -0.044∗∗∗ 0.024 -0.017 -0.004 -0.048∗∗∗

(0.004) (0.032) (0.021) (0.009) (0.005)
Cash discount -0.075∗∗∗ 0.001 0.007 -0.063∗∗∗ -0.087∗∗∗

(0.006) (0.023) (0.025) (0.016) (0.007)
Convenience store 0.049∗∗∗ 0.064∗∗∗ 0.052∗∗∗ 0.064∗∗∗ 0.045∗∗∗

(0.005) (0.019) (0.019) (0.009) (0.008)
Restaurant -0.029∗∗∗ -0.007 -0.009 -0.002 -0.048∗∗∗

(0.006) (0.026) (0.023) (0.012) (0.007)
Car wash -0.006 -0.030 0.019 0.002 -0.006

(0.005) (0.026) (0.022) (0.012) (0.006)
Service station -0.077∗∗∗ -0.072∗∗∗ -0.029 -0.158∗∗∗ -0.072∗∗∗

(0.007) (0.024) (0.029) (0.021) (0.008)
Truck stop 0.014 -0.027 -0.025 0.036∗ 0.005

(0.010) (0.038) (0.038) (0.019) (0.015)
R2 0.2370 0.2077 0.2564 0.2249 0.2533
Observations 58,497 4,354 4,172 12,489 37,482
Location char. Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes

Note: Dependent variable: cycling indicator (linear probability model); the observation level is a gas station. Brand sizes are
defined as follows: small, up to 10 gas stations; med-small, more than 10 and less than 100; med-large, more than 100 and less
than 1000; big, more than 1000. Standard errors in parenthesis. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A.4: Cycling Behavior, Brand Size, and Station Characteristics: Restricted Sample

All brands Small Med-small Med-big Big
Brand size

Med-small 0.091∗∗∗

(0.010)
Med-big 0.139∗∗∗

(0.008)
Big 0.022∗∗∗

(0.008)
Station characteristics

Loyalty discount -0.046∗∗∗ 0.007 -0.018 -0.004 -0.051∗∗∗

(0.005) (0.036) (0.022) (0.007) (0.006)
Cash discount -0.081∗∗∗ 0.045 0.036 -0.063∗∗∗ -0.102∗∗∗

(0.006) (0.028) (0.026) (0.015) (0.008)
Convenience store 0.029∗∗∗ 0.081∗∗∗ 0.035∗ 0.022∗∗∗ 0.034∗∗∗

(0.006) (0.022) (0.020) (0.008) (0.009)
Restaurant -0.029∗∗∗ -0.027 -0.014 -0.001 -0.047∗∗∗

(0.006) (0.029) (0.023) (0.011) (0.008)
Car wash -0.006 -0.036 0.008 0.001 -0.006

(0.005) (0.030) (0.022) (0.010) (0.007)
Service station -0.104∗∗∗ -0.092∗∗∗ -0.101∗∗∗ -0.161∗∗∗ -0.097∗∗∗

(0.008) (0.028) (0.029) (0.019) (0.010)
Truck stop 0.013 -0.010 -0.032 0.025 0.002

(0.011) (0.044) (0.038) (0.017) (0.016)
R2 0.2109 0.2315 0.2562 0.1948 0.2293
Observations 41,033 2,912 2,928 9,557 25,636
Location char. Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes

Note: Dependent variable: cycling indicator (linear probability model); the observation level is a gas station. Brand sizes are
defined as follows: small, up to 10 gas stations; med-small, more than 10 and less than 100; med-large, more than 100 and less
than 1000; big, more than 1000. Standard errors in parenthesis. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A.5: The Effect of Asymmetric Price Cycles on Gas Price Levels: Restricted Sample

(1) (2) (3) (4) (5) (6)
Cycling indicator -11.986∗∗∗ -8.112∗∗∗ -6.157∗∗∗ -5.498∗∗∗

(0.025) (0.011) (0.010) (0.013)
Cycling intensity -0.282∗∗∗

(0.003)
Varying cycling ind. -0.728∗∗∗ -0.603∗∗∗

(0.009) (0.010)
Varying cycling int. -0.045∗∗∗

(0.001)
R2 0.2572 0.9423 0.9620 0.9621 0.9873 0.9873
Obs 7,184,024 7,184,024 7,184,024 7,184,024 5,248,969 5,248,969
Ȳ 253.352 253.352 253.352 253.352 252.961 252.961
Date FE Yes
Date-Zip FE No Yes Yes Yes Yes Yes
City-Brand FE No No Yes Yes
Station FE No No No No Yes Yes

Note: Dependent variable: price of regular gasoline, in cents; the observation level is a station-day combination. Cycling
indicator is the full-sample indicator of cycling behavior; cycle intensity is the full-sample Cycling Ratio. Varying cycle indicator
and intensity are the date-level versions of those two variables. Standard errors in parenthesis. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.

Table A.6: Cycling Price Strategy Effect on Price Level: Premium and Midgrade Gasoline

Premium Midgrade
Cycler -3.592∗∗∗ -3.619∗∗∗

(0.013) (0.012)
R2 0.9057 0.9271
Obs 7,130,388 6,943,466
Ȳ 309.212 285.096
Date-Zip FE Yes Yes
City-Brand FE Yes Yes

Note: Dependent variables: price of premium and midgrade gasoline, in cents; the observation level is a station-day combination.
Cycler is the full-sample indicator of cycling behavior. Standard errors in parenthesis. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A.7: The Effect of Asymmetric Price Cycles on Gas Price Levels: Four-Month
Rolling Window

(1) (2) (3) (4) (5) (6)
Cycling indicator -11.446∗∗∗ -4.910∗∗∗ -3.429∗∗∗ -2.710∗∗∗

(0.019) (0.008) (0.007) (0.010)
Cycling intensity -0.315∗∗∗

(0.003)
Varying cycling ind. -0.170∗∗∗ -0.123∗∗∗

(0.006) (0.008)
Varying cycling int. -0.021∗∗∗

(0.002)
R2 0.2594 0.9359 0.9599 0.9600 0.9862 0.9862
Obs 10,113,008 10,113,008 10,113,008 10,113,008 7,129,088 7,129,088
Ȳ 256.080 256.080 256.080 256.080 254.100 254.100
Date FE Yes
Date-Zip FE No Yes Yes Yes Yes Yes
City-Brand FE No No Yes Yes
Station FE No No No No Yes Yes

Note: Dependent variable: price of regular gasoline, in cents; the observation level is a station-day combination. Cycling
indicator is the full-sample indicator of cycling behavior; cycle intensity is the full-sample Cycling Ratio. Varying cycle indicator
and intensity are the date-level versions of those two variables. Standard errors in parenthesis. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table A.8: The Effect of Asymmetric Price Cycles on Gas Price Levels: Controlling for
Neighbor Strategies

(1) (2) (3) (4) (5) (6)
Cycling indicator -8.209∗∗∗ -4.940∗∗∗ -3.418∗∗∗ -2.728∗∗∗

(0.022) (0.009) (0.008) (0.011)
Cycling intensity -0.302∗∗∗

(0.003)
Varying cycling ind. -0.594∗∗∗ -0.456∗∗∗

(0.006) (0.007)
Varying cycling int. -0.048∗∗∗

(0.001)
R2 0.2777 0.9370 0.9612 0.9613 0.9866 0.9866
Obs 8,863,627 8,863,627 8,863,627 8,863,627 6,217,738 6,217,738
Ȳ 256.366 256.366 256.366 256.366 254.370 254.370
Date FE Yes
Date-Zip FE No Yes Yes Yes Yes Yes
City-Brand FE No No Yes Yes
Station FE No No No No Yes Yes

Note: Dependent variable: price of regular gasoline, in cents; the observation level is a station-day combination. Cycling
indicator is the full-sample indicator of cycling behavior; cycle intensity is the full-sample Cycling Ratio. Varying cycle indicator
and intensity are the date-level versions of those two variables. Standard errors in parenthesis. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table A.9: Price Restoration and Changes in Cost for Cycling Stations: New York
Gasoline Futures

Full sample Cycling markets
∆costt > 0 0.013∗∗∗ 0.020∗∗∗

(0.000) (0.000)
∆costt−1 > 0 0.023∗∗∗ 0.033∗∗∗

(0.000) (0.000)
∆costt−2 > 0 0.005∗∗∗ 0.008∗∗∗

(0.000) (0.000)
Market trough=1 × ∆costt > 0=1 0.012∗∗∗ 0.016∗∗∗

(0.001) (0.001)
Market trough=1 × ∆costt−1 > 0=1 0.032∗∗∗ 0.043∗∗∗

(0.001) (0.001)
Market trough=1 × ∆costt−2 > 0=1 -0.004∗∗∗ 0.001

(0.001) (0.001)
R2 0.1007 0.1024
Observations 5,820,508 3,313,895
Week-Zip FE Yes Yes
Brand FE Yes Yes
City-dow FE Yes Yes

Note: Dependent variable: 1(station-level trough); the observation level is a cycling station-day combination. Standard errors
in parenthesis. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figures

Figure B.1: Increasing and Decreasing Stages in Station-Level Price Dynamics
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(a) Non-cycling station.
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(b) Cycling station.

Note: Dashed lines delimit the dates included in τ+ and τ− for the station-level price dynamic examples of Figure 3.
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Figure B.2: Cycling Ratio and Average Percent Price Increase, Chicago IL: Restricted
Sample

Note: Each Chicago gas station in our sample is represented by a point in these panels, according to their combination of
Cycling Ratio and average percent increase in price (price jump).
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Figure B.4: The Effect of Cycles on Price Level over Time: Restricted Sample
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Note: The coefficients plotted are the date-cycler fixed effect on price, controlling for zipcode and brand.

Figure B.5: Cycling Ratio Distribution and Switching Pricing Strategies
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(a) Full sample.
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(b) Restricted sample.

Note: The market price gap is the coefficient of the market-cycler fixed effect, controlling for date, zipcode, and brand.
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Figure B.6: Cost Proxies Dynamic Patterns during the Sample Period
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Note: These price dynamics correspond to the average price of cycling stations in each market.

Figure B.7: Price Reporting Activity by Day of the Week

Note: Plotted are the day-of-the-week fixed effects on reporting frequency from the estimation of Table 7.
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