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A Derivation of Main Model

For completeness, we start with the foundations of the framework presented in the main

text. Recall that each type of person minimizes expenditure subject to the constraint of

achieving an overall level of consumption.

min ∫
1

0
Pi,tci,a,tdi

subject to (∫
1

0
c

σa−1
σa

i,a,t di)

σa
σa−1

≥ ca,t.

ci,a,t is the consumption of good i of a person of age a at time t. Lower-case letters denote

per-capita variables. The first order condition for for good i is

Pi,t − λa,tc
−1
σa
i,a,tc

1
σa
a,t = 0⇔ ci,a,t = ca,tP

−σa
i,t λσa

a,t

where λa,t is the multiplier on the constraint. Substituting the FOC into the constraint (and

evaluating it at equality) gives

(∫

1

0
c

σa−1
σa

i,a,t di)

σa
σa−1

= λσa
a,tca,t (∫

1

0
P 1−σa
i,t di)

σa
σa−1

= ca,t⇔

λa,t = (∫

1

0
P 1−σa
i,t di)

1
1−σa

= Pa,t

The demand function for a person of age a is

ci,a,t =ca,t (
Pi,t

Pa,t

)

−σa

.

Note that we can write this demand function in aggregate variables as well. Denoting
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Ci,a,t as the aggregate consumption of good i at time t for all people of age a gives

Ci,a,t =Ca,t (
Pi,t

Pa,t

)

−σa

.

Assume that people of every age group are part of a large household. The household planner

puts equal weight on their utility. Let the number of people of age a be given by νa. The

intertemporal utility function is given by

U = Et

∞
∑
t=0

βt [
N

∑
a=1

νa
(ca,t(1 − na,t)

θa)
1−γ

1 − γ
]

where γ is the coefficient of relative risk aversion, θa governs the marginal utility of leisure

for a person of age a.

Letting the general price level be Pt, the household’s budget constraint in real terms is

given by
N

∑
a=1

νaca,t +Bt =
Pt−1
Pt

(1 + it−1)Bt−1 +wt

N

∑
a=1

νana,t +Dt.

Bt is the aggregate quantity of bonds held by the household. Bonds purchased in period t

pay a nominal interest rate of it. Dt are dividends earned by the firm and rebated to the

household.

The first order conditions are given by

ca,t ∶ c
−γ
a,t(1 − na,t)

θa(1−γ) = λt

na,t ∶ θac
1−γ
a,t (1 − na,t)

θa−1−θaγ = λtwt

Bt ∶ λt = βEtλt+1
1 + it
1 + πt+1

.

Denote aggregate variables by big letters. Accordingly,

Ca,t =νaca,t

Na,t =νana,t.
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A.1 Firm Side

Firms, indexed by i, produce a differentiated good, yi,t. The production function for good

i is

Yi,t = At

N

∑
a=1

Na,i,t

The marginal cost of producing another unit of Yi,t is

mct =
wt

At

.

The output produced by firm i gets sold to consumers of different ages:

Yi,t =
N

∑
a=1

Ci,a,t =
N

∑
a=1

Ca,t (
Pi,t

Pa,t

)

−σa

.

The dynamic optimization problem for firms entails choosing Pi,t and Yi,t to maximize

Et

∞
∑
t=0

βtλt

⎡
⎢
⎢
⎢
⎢
⎣

Pi,tYi,t

Pt

−mctYi,t −
ϕ

2
Yt (

Pi,t

Pi,t−1
− 1)

2⎤
⎥
⎥
⎥
⎥
⎦

subject to the constraint

Yi,t =
N

∑
a=1

Ca,t (
Pi,t

Pa,t

)

−σa

.

Let µi,t denote the Lagrangian multiplier on the constraint. The first order conditions are

Yi,t ∶ mct −
Pi,t

Pt

= µi,t

Pi,t ∶
Yi,t

Pt

− ϕ
Yt

Pi,t−1
(

Pi,t

Pi,t−1
− 1)

+µi,t

N

∑
a=1

σaCa,tP
σa
a,tP

−σa−1
i,t

+βEt [
λt+1
λt

ϕYt+1
Pi,t+1

P 2
i,t

(
Pi,t+1

Pi,t

− 1)] = 0.
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Next, combine these two equations to eliminate the multiplier.

Yi,t

Pt

− ϕ
Yt

Pi,t−1
(

Pi,t

Pi,t−1
− 1)

+(mct −
Pi,t

Pt

)
N

∑
a=1

σaCa,tP
σa
a,tP

−σa−1
i,t

+βEt [
λt+1
λt

ϕYt+1
Pi,t+1

P 2
i,t

(
Pi,t+1

Pi,t

− 1)] = 0.

Focusing on the symmetric equilibrium in which firms choose the same price and quantity

implies that the price indexes across different age groups are the same, Pj,t = Pt ). Let

Pi,t = Pt. Inflation is Pt

Pt−1
= 1 + πt. The (non-linear) Phillips curve is:

N

∑
a=1
(σa − 1)Ca,t + ϕYtπt(1 + πt) =mct

N

∑
a=1

σaCa,t +Etβ
λt+1
λt

ϕπt+1(1 + πt+1)Yt+1.

A.2 Aggregation

Because each firm chooses the same price, they also produce the same level of output.

The aggregate production function is therefore given by

Yt = At

N

∑
a=1

Na,t.

Dividends are given by

Dt = Yt −wt

N

∑
a=1

Na,t −
ϕ

2
Ytπ

2
t .

Substituting this into the household budget constraint and assuming that bonds are in

zero net supply gives

N

∑
a=1

Ca,t +Bt =
Pt−1
Pt

(1 + it−1)Bt−1 +wt

N

∑
a=1

Na,t +Dt⇔

N

∑
a=1

Ca,t = wt

N

∑
a=1

Na,t + Yt −wt

N

∑
a=1

Na,t −
ϕ

2
Ytπ

2
t ⇔

N

∑
a=1

Ca,t +
ϕ

2
Ytπ

2
t = Yt.

To close the model, assume that the central bank follows the following rule in setting the

nominal interest rate.

it = iss + φπt
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with the parameter φ > 1 satisfying the Taylor principle.

A.3 Summarizing Equilibrium Conditions

The endogenous variables are: ca,t, na,t,Ca,t,Na,t, λt,mct,wt, Yt, πt, it.

c−γa,t(1 − na,t)
θa(1−γ) =λt (1)

θac
1−γ
a,t (1 − na,t)

θa−1−θyγ =λtwt (2)

λt =βEtλt+1
1 + it
1 + πt+1

(3)

Ca,t =νaca,t (4)

Na,t =νana,t (5)

mct =
wt

At

(6)

N

∑
a=1
(σa − 1)Ca,t + ϕYtπt(1 + πt) =mct

N

∑
a=1

σaCa,t +Etβ
λt+1
λt

ϕπt+1(1 + πt+1)Yt+1. (7)

Yt =At

N

∑
a=1

Na,t (8)

N

∑
a=1

Ca,t +
ϕ

2
Ytπ

2
t =Yt (9)

it =iss + φπt (10)

A.4 Rotemberg Pricing: Log-linear approximation

As mentioned, we assume steady-state inflation rate is 0. A couple notes. First, the

resource constraint is

Yt =
N

∑
a=1

Ca,t +
ϕ

2
π2
t Yt.

In steady state,

Yss =
N

∑
a=1

Ca,ss.

Let sa be the share of output consumed by people of age a in steady state. So

Ca,ss = saYss.

Second, evaluating the Phillips curve in steady state shows that steady-state marginal cost is

mcss =
∑

N
a=1(σa − 1)Ca,ss

∑
N
a=1 σaCa,ss

.
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This can be simplified to

mcss =
∑

N
a=1(σa − 1)sa

∑
N
a=1 σasa

.

Noting that ∑
N
a=1 sa = 1 and letting ∑

N
a=1 saσa = σ̄ be the weighted average of the elasticities,

we can write steady-state marginal cost as

mcss =
σ̄ − 1

σ̄
.

We then take the natural log of both sides of the Phillips curve. This gives

ln [
N

∑
a=1
(σa − 1)Ca,t + ϕYtπt(1 + πt)]

= ln [mct
N

∑
a=1

σaCa,t +Etβ
λt+1
λt

ϕπt+1(1 + πt+1)Yt+1] .

Now, taking a first-order Taylor series expansion around the steady state gives

∑
N
a=1(σa − 1)(Ca,t −Ca,ss) + ϕYssπt

∑
N
a=1(σa − 1)Ca,ss

=
(mct −mcss)∑

N
a=1 σaCa,ss

mcss∑
N
a=1 σaCa,ss

+
mcss∑

N
a=1 σa(Ca,t −Ca,ss)

mcss∑
N
a=1 σaCa,ss

+
βϕYssπe

t+1
mcss∑

N
a=1 σaCa,ss

.

Note that the multipliers completely disappear because we are approximating around an

inflation rate of 0. Then, we can write the log-linearized Phillips curve as

ϕπt

∑
N
a=1(σa − 1)sa

+At = m̃ct +Bt +
βϕπe

t+1
mcss∑

N
a=1 σasa

where m̃ct is marginal cost’s percent deviation from steady state.1 Using the steady-state

condition for marginal cost, we can write this as

ϕπt

∑
N
a=1(σa − 1)sa

+At = m̃ct +Bt +
βϕπe

t+1

∑
N
a=1(σa − 1)sa

.

Doing some cross multiplication yields

πt =
∑

N
a=1(σa − 1)sa

ϕ
m̃ct + βπ

e
t+1 +Ht

1At and Bt are given by At =
∑

N
a=1(σa−1)(Ca,t−Ca,ss)

∑
N
a=1(σa−1)Ca,ss

and Bt =
∑

N
a=1 σa(Ca,t−Ca,ss)

∑
N
a=1 σaCa,ss

.
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where Ht =
∑N

a=1(σa−1)sa
ϕ (Bt −At).

Finally, we can write the Phillips curve as

πt =
σ̄ − 1

ϕ
m̃ct + βπ

e
t+1 +Ht.

If σa is constant across ages, then Ht = 0, and this collapses to the usual log-linearized Phillips

curve under Rotemberg pricing:

πt =
σ − 1

ϕ
m̃ct + βπ

e
t+1.

Returning to our Phillips curve, the slope with respect to marginal cost is

σ̄ − 1

ϕ
. (11)

To the extent that older people have a lower σa, an older population will flatten the Phillips

curve.

B Menu Cost Pricing

With Rotemberg pricing, a lower elasticity of substitution flattens the Phillips curve.

This result is derived in a model in which firms face a quadratic cost of adjustment. With

quadratic costs, it is optimal for firms to adjust their price every period, but stop short of

the optimal (frictionless) reset price.

The leading alternative to Rotemberg is the Calvo model in which firms get to reset

their prices with some exogenous probability. However, under Calvo pricing, the elasticity of

substitution parameter does not show up directly in the slope of the Phillips curve. In what

follows, we argue that the probability of price adjustment itself likely depends on the value

of σ. Specifically, we assume that firms pay a fixed cost, i.e. a menu cost, to update prices.

For most parameterizations we find that, for a given menu cost, firms will be more likely to

change prices when demand is relatively elastic. As demand becomes more inelastic, firms

change prices less frequently which means that prices will be “stickier” à la Calvo. So the

probability of price adjustment, which is commonly given as a structural parameter in these

models, will actually be affected by the age distribution – also consistent with the message in

Rubio-Ramirez and Fernández-Villaverde (2007). All else equal, an older population maps to

a lower probability of price adjustment which, in the Calvo framework, flattens the Phillips

curve.
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Consider a monopolist who faces a CES demand curve given by Q = AP −σ where σ > 1 is

the price elasticity of demand and A represents market size. Assume a linear cost function,

C(Q) = ϕQ.

A constant returns to scale production function maps into a linear cost function, so this is

without loss of generality. From a firm’s perspective, this demand function is equivalent up

to a constant of the monopolistic competition demand curve (because the firm takes the

aggregate price level and aggregate income as exogenous).

Profit maximization implies an optimal price of

P ∗ =
σ

σ − 1
ϕ

which is the typical markup over marginal cost.

Suppose that the firm comes into the period with a preset price of P̄ , i.e. the price on the

menu that was presumably selected in an earlier period. The firm’s profit under P̄ is

Πfixed = AP̄
1−σ − ϕAP̄ −σ.

If marginal cost changes between periods (i.e. a productivity shock), then P̄ is no longer

optimal. Suppose the firm faces a menu cost, f , of adjusting prices. If it pays the adjustment

cost, the firm will adjust prices all the way to P ∗. In the case that the firm adjusts to the

optimal price, profit is given by

Π∗var = AP
∗1−σ − ϕAP ∗

−σ

− f.

It follows that the firm will adjust its price if an only if

Π∗var > Πfixed⇔ AP ∗
1−σ

− ϕAP ∗
−σ

− (AP̄ 1−σ − ϕAP̄ −σ) > f.

Define f̂ as the menu cost where the firm is indifferent to adjusting prices. Formally,

f̂ = AP ∗
1−σ

− ϕAP ∗
−σ

− (AP̄ 1−σ − ϕAP̄ −σ).

If f̂ is increasing in σ then a firm facing a more price-sensitive demand curve will require a

larger f to keep its prices the same. That is, for a given f , the firm will be more likely to

change the price the larger the elasticity (σ). Intuitively, the more price sensitive is a firm’s

demand curve the more willing they will be to pay the fixed cost and update prices. The
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derivative is
∂f̂

∂σ
=
∂Π∗var
∂σ

−
∂Πfixed

∂σ
.

Applying the envelope theorem to the first derivative on the right-hand side and simplifying

results in
∂f̂

∂σ
= AP ∗

−σ

lnP ∗ [−P ∗ + ϕ] −AP̄ −σ ln P̄ [−P̄ + ϕ] .

The sign of this derivative is ambiguous. Intuitively, as long as P̄ > ϕ, profits under the

optimal price and the fixed price are both decreasing in σ and it is not obvious which profit

function decreases faster. Assuming P̄ is five percent below the optimal price, Figure 1 shows

how f̂ depends on σ and ϕ.2
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Figure 1: P̄ = 0.95P ∗

Likewise, the Figure 2 shows plot when the P̄ is five percent too high.

2Because A does not affect the sign of the derivative, we assume A = 1 in all of the exercises in this
Appendix.
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Figure 2: P̄ = 1.05P ∗

We can discipline ϕ to be in a quantitatively relevant range to see the role of σ. When

prices are flexible, the profit-to-output ratio reduces to ϕ/(σ − 1). In the data, profit share of

GDP is between 5 and 10 percent. The plot below shows how f̂ changes when ϕ = 0.5 over

the range of 6 < σ < 11, the empirically relevant range of σ. The profit share in this case is

between 5 and 10 percent. In the empirically relevant range for ϕ, Figure 3 shows that f̂

increases with σ for several different values of P̄ which is consistent with a flatter Phillips

curve.
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Figure 3: f̂ as a Function of σ

C Summary of Data

Table 1 summarizes the NielsenIQ Homescan data sample in the main analysis. Table 2

shows the number of estimated product module σms by age group and by age-income category.

In our analysis, we require that at least 20 households purchase a product in each group

to be included in the estimation. At younger and lower income households, there are fewer

observations that match this criteria and thus there are fewer elasticities estimated within

each product module.

Table 1: Summary of Data

Ave. Households per year 57,355

Number of Observations
6,402,134

(summed at age-period-barcode)

Number of Product Modules 1,117

Ave. Total Expenditures per year
$314,392,448,666

(projection factor weighted)
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Table 2: Number of estimated Product Module σms by Group

Income and Age
by Age lower 50% upper 50%

25-34 378 187 220

35-44 632 383 529

45-54 743 459 667

55-64 768 471 688

65+ 742 481 655

C.1 Income groups

One issue with the Homescan data is that incomes are reported in discrete bins at a two-year

lag. To estimate relative income, we follow Faber and Fally (2022) to estimate expenditures

per capita as a proxy for income group. For this, we obtain per capita expenditures by year

regressing log total expenditures on household size dummies and household-level attributes.

We then adjust household expenditures by netting our household size dummy coefficients

to get per capita expenditure estimates. While expenditures may not accurately measure

actual income, they do appear to identify relative income levels. Table 3 regresses the log

adjusted per capita expenditures we constructed on income dummies and household size

controls for 2004, 2009, 2014, and 2019 (every 5 years in our sample). Note that with only few

exceptions, the coefficients on the income dummies are monotonically increasing even though

the income bin is reported from 2 years prior. This pattern suggests that the expenditures are

monotonically increasing with reported income levels. Thus, estimated expenditures appear

to be appropriate for capturing relative income.
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Table 3: Per Capita Consumption Estimate and Income Bin

2004 2009 2014 2019

$5000-7999 -0.0170 -0.0104 -0.0102 -0.0604
(0.0355) (0.0351) (0.0354) (0.0367)

$8000-9999 0.0156 -0.00577 -0.0405 -0.0782*
(0.0366) (0.0352) (0.0315) (0.0337)

$10,000-11,999 0.0230 -0.0255 0.0121 -0.0251
(0.0342) (0.0323) (0.0292) (0.0305)

$12,000-14,999 0.0598 0.0274 0.00461 -0.0434
(0.0318) (0.0291) (0.0265) (0.0271)

$15,000-19,999 0.0971** 0.0421 0.0246 0.00580
(0.0304) (0.0276) (0.0245) (0.0249)

$20,000-24,999 0.119*** 0.0555* 0.0705** 0.0183
(0.0299) (0.0267) (0.0235) (0.0236)

$25,000-29,999 0.149*** 0.0837** 0.0913*** 0.0524*
(0.0301) (0.0266) (0.0234) (0.0235)

$30,000-34,999 0.171*** 0.125*** 0.109*** 0.0711**
(0.0299) (0.0264) (0.0233) (0.0232)

$35,000-39,999 0.181*** 0.134*** 0.146*** 0.0991***
(0.0301) (0.0266) (0.0234) (0.0234)

$40,000-44,999 0.196*** 0.143*** 0.147*** 0.0753**
(0.0301) (0.0266) (0.0236) (0.0233)

$45,000-49,999 0.235*** 0.165*** 0.165*** 0.104***
(0.0303) (0.0266) (0.0233) (0.0232)

$50,000-59,999 0.237*** 0.193*** 0.169*** 0.115***
(0.0296) (0.0258) (0.0226) (0.0223)

$60,000-69,999 0.248*** 0.203*** 0.189*** 0.131***
(0.0298) (0.0261) (0.0229) (0.0226)

$70,000-99,999 0.290*** 0.221*** 0.199*** 0.143***
(0.0294) (0.0254) (0.0221) (0.0217)

$100,000 + 0.329*** 0.212*** 0.177***
(0.0299) (0.0223) (0.0217)

$100,000 - 124,999 0.249***
(0.0262)

$125,000 - 149,999 0.224***
(0.0289)

$150,000-199,999 0.237***
(0.0300)

$200,000+ 0.212***
(0.0329)

Household size controls Yes Yes Yes Yes
N 39,577 60,502 61,554 61,480

Notes: Standard errors in parentheses. ∗ denotes 10%, ∗∗ 5%, and ∗∗∗ 1%
significance.
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C.2 Elasticity of substitution estimates by year and age

Table 4 gives the estimates of the elasticity of substitution within product modules by

each age group and each year in our sample.

Table 4: σ estimates by year and age

Age
25-34 35-44 45-54 55-64 65+

2004 6.380 6.101 6.562 6.246 5.642
(0.088) (0.056) (0.061) (0.081) (0.046)

2005 6.388 6.108 6.564 6.244 5.656
(0.092) (0.055) (0.060) (0.084) (0.046)

2006 6.351 6.066 6.566 6.230 5.665
(0.094) (0.053) (0.060) (0.081) (0.045)

2007 9.720 8.554 8.886 8.562 7.153
(0.149) (0.113) (0.106) (0.114) (0.090)

2008 10.745 9.231 9.312 9.124 7.769
(0.156) (0.121) (0.111) (0.120) (0.100)

2009 10.740 8.916 9.122 8.917 7.735
(0.157) (0.118) (0.108) (0.118) (0.099)

2010 11.155 9.306 9.464 9.238 8.135
(0.161) (0.122) (0.110) (0.119) (0.104)

2011 11.509 9.721 9.657 9.551 8.611
(0.162) (0.127) (0.112) (0.121) (0.110)

2012 8.029 7.257 7.547 7.276 6.460
(0.131) (0.089) (0.084) (0.095) (0.070)

2013 7.730 7.168 7.468 7.263 6.458
(0.132) (0.088) (0.082) (0.093) (0.069)

2014 7.584 7.166 7.492 7.344 6.573
(0.127) (0.087) (0.083) (0.093) (0.072)

2015 7.614 7.173 7.476 7.378 6.702
(0.125) (0.087) (0.083) (0.093) (0.075)

2016 7.459 7.176 7.484 7.399 6.716
(0.118) (0.085) (0.083) (0.092) (0.075)

2017 7.486 7.211 7.495 7.469 6.817
(0.119) (0.086) (0.083) (0.093) (0.076)

2018 7.584 7.284 7.551 7.490 6.799
(0.122) (0.088) (0.084) (0.094) (0.076)

2019 7.697 7.322 7.549 7.497 6.792
(0.128) (0.089) (0.084) (0.094) (0.075)

Notes: Standard errors in parentheses.
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