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Abstract: We consider a two-stage project supply chain with a downstream project firm producing an engineer-to-

order (ETO) complex product or a make-to-order (MTO), low-volume, customized industrial product as a project, and an

upstream contract supplier supplying a key material to the project. The project faces two uncertainties: project activity

time uncertainty and material consumption uncertainty, which may be positively or negatively correlated. In anticipation

of these uncertainties, the project firm has to carefully decide its promised project due date to its project customer, against

which harsh penalties will be assessed, and his material order quantity to commit to the contract supplier in advance. In

most practical settings, project firms order from contracted suppliers via a flexible wholesale price contract consisting of

a discounted advance order price and a risk-premium adjusted expedite order price. The discounted advance order price

encourages the project firm to take more inventory risk in the supply chain, and the expedite order price incentivizes the

supplier to bear more inventory risk by carrying safety stock in excess of the project firm’s advance material order. We

formulate an optimization model that solves the project firm’s project due date and material order problem, which takes

into account the supplier’s strategic reaction to the project firm’s material order under the flexible wholesale price contract.

We show that for MTO projects, risk-sharing with suppliers on project materials is less important to the project firm,

with the project firm assuming ownership of all material inventory in the channel and setting a deliberate project due date

being the key. On the other hand, for ETO projects, risk-sharing with contracted suppliers assumes critical importance.

Project firms managing ETO projects should fully exploit the flexibility in the material supply contract to optimally drive

the supplier’s safety stock level and set the project due date reflecting the shared risk in the supply chain.

Key words: project supply chains, wholesale price contracts, project due date, supply flexibility, flexible contracts, time

buffers.

History: August 25, 2023.

1 Introduction

Project supply chains are chains that provide unique products or deliver unique solutions for specific cus-

tomers, and as a result are configured-to-order or even designed and engineered-to-order (see similar def-

inition in Seifert and Markoff (2017)). The immediate examples for project supply chains include infras-

tructure projects (buildings, highways, bridges, dams, etc.), airplanes, power stations, defense equipment,
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manufacturing plants, and telecommunication networks. Major companies on the Fortune 500 list, such as

Boeing, General Dynamics, Raytheon Technologies, and General Electrics, have a significant part of their

revenue derived through project supply chains.

In the last 10 years, we have seen an increase in the importance of project supply chains, with compa-

nies that were previously running traditional product chains shifting towards managing complex project

chains. As documented in Dell (2021), the company transitioned from a public-to-private company in an

effort to pursue a transformation away from a pure PC-products business and into a solution strategy, which

encompasses selling end-to-end IT solutions, software, and services. In our own consulting experiences, we

have seen companies in the industrial automation segment adopting similar strategies. Emerson1, with its

industrial automation division (around $12 Billion in revenues), is supporting its customers in major infras-

tructure development industries (oil and gas, power, metals and mining, refining, etc.) via orchestrating

projects that install a complex portfolio of customized products and provide critical services (maintenance,

monitoring, etc.). In a similar fashion, Belden2, a $2 Billion industrial automation company of legacy con-

nectivity products (wires, connection, etc.), is transforming itself into an “Enhanced Solutions Delivery”

business model for customers with needs for smart building and broadband/5G infrastructure applications.

Facing the trend of “Industry 4.0” and the challenges from IT/OT (Operation Technology) convergence,

Belden has launched a digital transformation to provide full-suite solutions to its customers. Since 2019,

the company has shifted its focus from product sales to solution sales by initiating projects that encompass

product installation, software development, and customer support services tailored to meet customer needs

(Cespedes and Klopfenstein (2023)). While the importance of project supply chains is increasing, the topic

of these chains is almost forgotten and is heavily understudied in the supply chain literature. Our paper takes

the first step in developing important concepts in the risk-planning and risk-management of these chains.

We offer fresh insights via a stylized model on the roles and uses of inventory buffers, time buffers, and

backup suppliers’ processing flexibility for the effective management of project supply chains.

Despite the risk-mitigating efforts inserted in managing projects, all projects are still subject to project

delays, which negatively impact the financial performance and the future operation of all parties within a

project supply chain. The 9th Global Project Management Survey (2017) reports that approximately 50% of

projects are completed on time. Calvo et al. (2019) estimate that 42% of public projects in the United States

were behind schedule. Unpredictable variability in activity times and failure to compensate adequately for

activity time variations is a prominent cause of project delay (Hughes (1986)). In addition to activity time

variations, material shortages for key project activities add another layer to project delays. For instance,

the signature Miami bridge construction project has been severely delayed due to the shortages of gantry

1 Discussion with Ryan Meier, Director, Digital Supply Chain Operations, and Eric Carlson, VP-Operations and Supply Chain,
Emerson.
2 Discussion with Roel Vestjens, President & CEO, Belden.
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and concrete (Lauren (2023)). Supply chain bottlenecks and shortages that originated during the pandemic,

although improved, are still reported as being the primary cause of delays for various construction projects

(Simpson (2023)). In several construction project studies, the shortage of construction materials is identified

as a key factor for contractors’ performance delays (Majid and McCaffer (1998), Kazaz et al. (2012), Assaf

and Al-Hejji (2006), Rahman et al. (2017)).

In other business practices, project delays are also frequently encountered and carry significant conse-

quences. Bombardier, one of the world’s largest manufacturers of street cars, experienced multiple rounds

of delivery delays due to material shortages between 2015 and 2017 (Spurr et al. (2017)). Another famous

example of project delays that we have witnessed in the last couple of decades is Boeing’s 787 Dreamliner

project. Since its launch in 2004, a series of delays and mishaps have plagued the aircraft, and one signifi-

cant factor out of the many delay factors is the industry-wide shortage of fasteners (Sanders and Cameron

(2011)). More recently, Airbus struggled to keep up with its scheduled deliveries of airplanes with delays

attributed to availability of components and quality lapses (Katz (2021)). Wind-turbine makers for onshore

projects also reported project completion problems due to material shortages and other supply chain bottle-

necks (Hiller (2021)). While some factors that cause project delays are uncontrollable (e.g., war, pandemics,

and natural disasters), material shortages can be better managed in project supply chains with improved

planning and collaboration strategies.

We seek to study the integrated management of project risks in a project supply chain environment that

tackles both project activity time uncertainty and material consumption uncertainty. To frame our research

question, we use a characteristic project supply chain environment consisting of a project firm that oper-

ates under both types of uncertainties. Nooter/Eriksen (N/E)3, a leading supplier of heat recovery steam

generators, produces engineer-to-order “boilers” that are handled as one-at-a-time projects. These products

are mostly delivered to power plants, utilities, and other industrial customers at price tags in the $15-50

million range. For N/E, setting a project due date that fully reflects product complexity and material sup-

ply uncertainty is the key to customer satisfaction and profitability. According to the company, material

shortages account for over 50% of their project delays. To mitigate material shortages and ensure on-time

deliveries of their products, a common practice by N/E is to use flexible contracts with key suppliers (e.g.,

the supplier accepts advance purchase orders with a price discount and later at-once purchase orders with a

price premium) that incentivize suppliers to carry safety stocks for expensive components, and/or use dual

sourcing with a backup supplier for unforeseeable material shortages. We observe a similar risk manage-

ment practice at China Communications Construction Company (CCCC), a state-owned publicly traded

company delivering engineer-to-order products (projects) including highways, bridges, tunnels, and ports.

Working with customers in a variety of industries, Belden now sells custom solutions that incorporate

products in low but hard-to-predict volumes along with the installation and maintenance of these products.

3 Discussions with Matthew Burns, Executive Vice President, Nooter/Eriksen.
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Belden’s new pricing model charges a one-time fee based on the value created by a solution, which neces-

sitates a make-to-order (MTO) project supply chain (either configure-to-order (CTO) or assemble-to-order

(ATO)) with significant lead times for in-house planning and testing (Cespedes and Klopfenstein (2023)).

Similarly, Emerson delivers make-to-order products (e.g., valves, measurement systems, fluid controls) to

industrial customers in diverse industries. Some of these products may be engineer-to-order when new

applications are developed, but most of them are make-to-order with mature-stage technologies that require

less expensive components. Both Emerson and Belden are subject to contractual penalties for late deliveries

of products beyond negotiated due dates. The main challenges in meeting the due dates include the project

time uncertainty and unplanned material shortages. Executives from both companies have emphasized the

increased importance of material shortages in the last few years, and even before the pandemic.

In this research, we investigate how a project firm should account for and mitigate both project activity

time and material consumption uncertainties when determining the project due date and material planning

decisions. Product design errors, process/product re-engineering, and failed/repeated processes frequently

impact both of these two uncertainties. For example, if the process/product re-engineering activity (that may

take a considerable amount of time) results in a more efficient usage of a particular material in subsequent

production activities, or when a lean practice and material substitution lead to increased/decreased activity

times, we observe correlated project activity time and material consumption uncertainties that must be taken

into account when the project firm decides its project due date and material order decisions.

In our stylized model, we use a general probability distribution to capture the correlation between project

activity time and material consumption uncertainties. We address the project firm’s project due date and

material order decisions in face of these uncertainties. The material order decision is embedded in a two-

stage material supply chain under a flexible wholesale contract. The flexible contract allows the project firm

and the contract supplier to determine material risk allocation in the supply chain. Under this contract, the

project firm first decides its advance order quantity to the supplier, which is followed by the supplier’s pro-

duction decision that must meet the project firm’s advance order quantity. Any excess production quantity

are held by the supplier as safety stock, which can be sold to the project firm later at a predetermined and

higher price if material shortage occurs. If the contract supplier is not able to cover the project firm’s mate-

rial shortage, a backup supplier is used to cover any shortage not covered by the contract supplier, at a must

higher cost with a much longer delay. Taking into account project activity time variation and the possible

delay due to a material shortage, the project firm deliberately decides its promised project due date to its

customer, against which harsh penalties will be assessed. To manage the joint risks in the project supply

chain, the project firm employs an integrated risk management strategy consisting of inventory buffers (e.g.,

order extra materials), incentives for supplier responsiveness (e.g., safety stock at the contracted supplier),

contingent orders from a backup supplier, and built-in time buffers for the project (e.g., inserting slack time



Kouvelis, Chen and Xia: Managing material shortages in project supply chains
Production and Operations Management 00(0), pp. 000–000, © 0000 POMS 5

in the project due date). We aim to understand: (1) what is the most effective usage of these buffers, and (2)

how do these buffering activities impact one another in their most effective usage by the project firm.

In the interpretation of our model results, we find that (1) for projects using standard, commodity type

materials of low cost (e.g., MTO projects, either CTO or ATO), the project firm should bear all material

consumption risk and set a project due date jointly with its material decision; (2) for complex projects using

non-commodity specialty materials of high cost (e.g., ETO projects), the project firm should fully leverage

its relationship with the contract supplier and the flexibility in the supply contract, to effectively share risks

with the supplier and set a project due date according to the safety stock carried by the supplier. From a

risk management perspective, our results suggest that MTO chains should focus on building the project

firm’s own inventory buffer, use market suppliers as a backup for material shortages, and set an appropriate

project due date that is coupled with its own material order decision. For the ETO complex project chains,

our results suggest that the project firm should exploit its contractual relationship with the material supplier

and incentivize the supplier to carry safety stock of needed materials, use a backup market supplier when

needed, and set the project due date reflecting the shared risk with the supplier.

The rest of our paper is organized as follows. In Section 2, we review relevant literature. In Section 3,

we formulate the project firm and the contract supplier’s problems in face of the project activity time and

material consumption uncertainties under the flexible wholesale price contract. In Section 4, we provide the

analytical results for the main model formulated in Section 3. Numerical study of our project supply chain

results are discussed in Section 5, and an extension of our main model is provided in Section 6. In Section

7, we conclude with a summary of our main managerial insights for managing project supply chains in ETO

and MTO environments.

2 Literature Review

Our work relates to three streams of literature: (1) project due date management, (2) supply chain manage-

ment under wholesale price contracts, and (3) project supply chains.

The stream of research on project due date management peripherally relates to our work, but most of the

works in this stream study the due date problem without jointly considering the project activity time varia-

tion and material shortage risks. Early works under project scheduling framework (e.g., Baker and Scudder

1990) study the project due date problem in the context of sequencing project activities with deterministic

activity times. More recent works consider stochastic project activity times (e.g., Zhu et al. 2007, Xia et al.

2008). Most of these works only consider the time aspect of a project when setting a project due date. For

more works under the project scheduling framework, we refer the readers to Baker and Trietsch (2018).

Another class of the due date management problem, known as the lead time quotation problem, studies how

to quote reliable lead times to customers who are sensitive to the quoted lead times. At its core, this problem

investigates how to set due date (e.g., the quoted lead time) that trades off between time-sensitive demand
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and the tardiness cost beyond the lead time. For a comprehensive review of this problem, we refer readers to

Keskinocak and Tayur (2004). Recent works by Savaşaneril et al. (2010) and Chen and Moinzadeh (2018)

study the lead time quotation problem in conjunction with base-stock inventory control policies. Our work

studies how to set project due date that is subject to both project activity time variation and a possible mate-

rial shortage delay in project supply chains. We explore the risk management impact of material shortages

and investigate the use of time and inventory buffers as risk-mitigating strategies for managing projects.

Another research stream also peripherally relating to our work is supply chain management using whole-

sale price contracts, including both single and two-price (flexible) wholesale contracts. The common struc-

ture of a supply chain studied in this stream is a two-stage supply chain with a supplier (or manufacturer)

supplying a downstream “newsvendor” facing uncertain demand. Lariviere and Porteus (2001) first study

the single price wholesale contract in the standard supply chain setup. Cachon (2004) extends the analy-

sis to study a flexible wholesale price contract offering two ordering opportunities under the same supply

chain structure. Dong and Zhu (2007) build upon Cachon (2004) and characterize Pareto efficient contracts

among all flexible wholesale price contracts. Extending these classical works, the flexible wholesale price

contracts have been further investigated and applied to various settings. Xie et al. (2010) study earlier order

commitment on a decentralized supply chain with one manufacturer and multiple retailers. Wang et al.

(2014) examine how the principles of push and pull contracts can be extended to a three-tier supply chain

consisting of a supplier, a contract manufacturer (CM), and an original equipment manufacturer (OEM). To

evaluate the effectiveness of these contracts, the study compares two supply chain structures: one involving

OEM contracts with both the CM and the supplier, and the other involving OEM contracts with the CM

only. Davis et al. (2014) apply a behavioral model to study the flexible contract in order to compare and

verify supply chain efficiency. Through the analysis of the flexible contract scheme, Guan et al. (2015)

obtain equilibrium strategies of the two suppliers and one buyer supply chain under a flexible contract. Gou

et al. (2016) investigate how an outside market can influence local supplier–retailer contracts by taking into

account the supplier’s production capacity and the outside market barriers. Tang and Girotra (2017) analyze

how to use the discount in advance purchases to incentivize information sharing for a retailer in a supply

chain with a dual-sourcing wholesaler. In a retail supply chain, Hou and Lu (2022) study the allocation of

inventory risks of flexible contracts. Wei and Huang (2022) investigate the effective use of an advance pur-

chase discount to manage stochastic demand in a supply chain subject to carbon emission tax regulations

and in the presence of green technology investments.

Our work focuses on a two-stage project supply chain. The downstream project firm in our two-stage

chain model has an objective function that accounts for project-related costs (e.g., overhead) and contractual

penalties due to late completion, in addition to the usual material ordering costs. While on the surface both

the “newsvendor retailer” chain and our project chain can be analyzed as a two-stage chain, their detailed

operations, objective functions, and subsequent mathematical analysis are substantially different. We seek
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to understand how risk management of material shortages within project supply chains can be effectively

handled. Such issues have not been studied in the above-mentioned “newsvendor” supply chain literature.

The stream of research closest to our work is the study of project supply chains. As we have emphasized

before and will become apparent from the briefness of the related literature, the topic is heavily understud-

ied. Kwon et al. (2010) study delayed payment contracts between a manufacturer (project manager) and

n independent suppliers (contractors) in the context of parallel project tasks to investigate suppliers’ effort

levels and the manufacturer’s net profit under the payment scheme. Chen and Lee (2017) investigate the

material delivery problem between an upstream supplier and a downstream manufacturer in a two-stage

project supply chain, and they focus on designing time-based incentive contracts that coordinate the two-

stage chain from a project time perspective. Our work employs a project supply chain structure similar to

Chen and Lee (2017). In contrast with their work, we do not study contract designs for time coordination.

Instead, we focus on optimizing the project due date decision together with the material planning deci-

sions under a flexible supply contract in the presence of both project activity time and material shortage

risks. Our work is among the first to explicitly model project supply chains with both time and inventory

considerations, and we offer fresh risk management insights on managing project supply chains.

3 Model

We study a two-stage project supply chain with an upstream material supplier supplying a key material to a

downstream project firm, in which the project firm executes a designated project subject to project activity

time and material consumption uncertainties. The project revenue is fixed and denoted by V . Due to project

uncertainties, the project firm needs to make careful planning decisions on the project due date and material

order decisions, against which mismatch costs will be incurred and is detailed below.

Material order decision. We assume the project is subject to uncertain material consumption x1
4, which

has a known distribution f1(x). The project firm sources the project material from a contracted supplier using

a flexible wholesale price contract, and from a backup supplier if needed. The contracted supplier offers a

flexible wholesale price contract that allows two ordering opportunities: an advance order opportunity at a

discounted unit price w and a later expedite order opportunity at a premium unit price w1, satisfying w ≤ w1.

Under this contract, the project firm first places an advance order quantity Qm to the supplier well before the

project starts. The supplier then decides a production quantity Qs subject to Qs ≥ Qm. The supplier delivers

Qm to the project firm by the project’s starting time, and any excess (e.g., Qs − Qm) serves as safety stock

held by the supplier that can be used by the project firm against material shortages through expedited orders.

After the project’s material consumption level gets realized in the project’s execution phase (we denote

the realization by x1) and if it exceeds the project firm’s own inventory Qm, the firm encounters a material

4 We use bold letters to denote random variables in order to differentiate from the realization of the variables.
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shortage x1 −Qm, which must be fulfilled. The project firm then sends an expedited order to the contracted

supplier to cover as much shortage as it can, up to the supplier’s reserved safety stock Qs − Qm. If the

supplier cannot fully cover the shortage (e.g., x1 −Qm > Qs −Qm), the project firm has to resort to a backup

supplier to cover the remaining shortage, i.e., (x1 − Qs)
+, at a higher expected spot price w2. Expedited

orders fulfilled by the contracted or backup suppliers can incur significant supply delays to the project.

Effective total supply delay. The supply delay in expediting from the contracted supplier (who holds

readily available inventory for expedited shipping) is in general much shorter than that from the backup

supplier (who may not have readily available inventory). For tractability considerations, we consider a linear

delay function for the supply lead-time in receiving expedited inventory from the contracted or backup

supplier: (1) the supply delay from the contracted supplier is modeled by a1 ·min((Qs −Qm), (x1 −Qm)
+),

where min((Qs − Qm), (x1 − Qm)
+) is the expedited quantity, and (2) the supply delay from the backup

supplier is a2 · (x1 −Qs)
+, where (x1 −Qs)

+ is the expedited quantity. Both a1 and a2 are known parameters

with a1 < a2. In our main model below, we consider the effective total supply delay to be the maximum of the

two delays (e.g., the two delays overlap with each other). To account for the difference of the responsiveness

of the suppliers, we further impose 0 = a1 < a2, i.e., the delay from the contracted supplier is negligible. As

a result, the effective total supply delay caused by material shortages is equal to the supply delay from the

backup supplier and modeled by a2 · (x1 − Qs)
+. In Section 6, we extend our work to model the effective

total supply delay by the summation of the two delays (e.g., the two delays do not overlap with each other).

We derive structurally similar results for this model variant in the later section.

Project due date decision. We assume the project completion time is equal to the sum of the uncertain

project activity time x2, which has a known probability density function f2(·), and the effective total supply

delay a2 ·(x1−Qs)
+. The uncertain activity time x2 captures the inherent unpredictability of activity duration

in a project, which is independent of the material planning decision of the project. The effective total supply

delay, when it materializes due to material shortages not planned for by the project firm, will extend the

project’s overall completion time. Under the maximum delay model described above, material shortages not

planed for by the project firm (in this case not planed for by the two-stage supply chain) extends the project

completion time by a2 · (x1 − Qs)
+, where Qs is the total material quantity in the two-stage supply chain.

We note that a2 · (x1 − Qs)
+ is endogenous to the production decision (Qs) of the contracted supplier, and

Qs is the best response of the supplier under the incentives provided in the flexible wholesale price contract

(w,w1), subject to meeting the project firm’s advance order quantity Qm. In face of the unpredictable project

completion time x2 + a2 · (x1 − Q∗
s)

+, the project firm decides a project due date Tm that will most likely

deviate from the realization of the random project completion time. Following the project due date literature

(Baker and Trietsch (2018)), we impose a linear cost function to capture the mismatch cost between the

realized project completion time and the set project due date. Specifically, the mismatch cost is modeled by

the sum of project overhead cost and project delay cost. The project overhead cost is modeled by b1Tm and
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the project delay cost is modeled by b2[x2 + a2 · (x1 −Q∗
s)

+ −Tm]
+, where b1 is the unit time overhead cost,

b2 is the unit time delay cost, and [x2 + a2 · (x1 −Q∗
s)

+ −Tm]
+ is the project delay time.

Based on the above discussion, we can express the project firm’s expected material cost Cq(Qm) and

expected time cost Ct(Qm,Tm) by:

Cq(Qm) = Ex1 {wQm +w1 ·min(Q∗
s −Qm, (x1 −Qm)

+)+w2 · (x1 −Q∗
s)

+} (1a)

Ct(Qm,Tm) = Ex1,x2 {b1Tm + b2[x2 + a2 · (x1 −Q∗
s)

+ −Tm]
+} (1b)

where Q∗
s is the supplier’s optimal production quantity subject to meeting Qm and is formally defined shortly

after. The expected profit of the project firm is therefore expressed by

πm(Qm,Tm) = V −Cq(Qm)−Ct(Qm,Tm) (2)

For the contracted supplier, assuming her marginal production cost of material is constant and denoted by

c, her expected profit from supplying the project material to the project firm is expressed by

πs(Qs) =Ex1 {wQm +w1 ·min(Qs −Qm, (x1 −Qm)
+)− cQs} (3)

where Qs ≥ Qm. We denote the supplier’s optimal production by Q∗
s ≜ arg max{Qs:Qs≥Qm} πs(Qs).

Additional notations. We assume that x1 and x2 are arbitrarily correlated in our work. As such, we

denote their joint probability density function by f (x1, x2), whose support is R2
+ = (0,+∞)× (0,+∞). For

presentation convenience, we write
∫ +∞

0

∫ +∞

0 g(·) f (x1, x2)dx1dx2 as
∫∫

g(·) f (x1, x2)dx1dx2 for any function

g(·). To further ease the presentation of our analytical results, we introduce the Heaviside function as below

(for more information about this function, please refer to Appendix EC.1):

u(x) =

{
1 if x ≥ 0

0 if x < 0

By using u(x), we define five functions Hi(·) : i ∈ {1,2, ...,5} that will be applied to characterize our ana-

lytical results. The detailed definitions of the Hi(·) functions are provided in Table 1. Intuitively, each of the

Hi functions represents the probability of (x1,x2) falling in a certain area, and we provide an illustration of

these areas by Figure EC.1 in Appendix EC.2.

4 Analysis

In this section, we analyze the problems faced by the project firm and the contracted supplier embedded in a

project supply chain as formulated in Section 3. In the analysis below, we first derive the supplier’s optimal

production decision (Q∗
s ) contingent on the advance order quantity Qm of the project firm (Section 4.1).

We then derive the project firm’s optimal advance order (Qm) and project due date (Tm) decisions jointly

(Section 4.2). While our project supply chain model cannot be derived from a newsvendor supply chain,

we discuss in Section 4.3 how the newsvendor supply chain can be treated as a special case of our project

supply chain model and highlight the difference between the analytical results for these chains.
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Table 1 Model parameters & defined functions.

Parameters:
w The per unit advance order cost from the contracted supplier (variable cost)
w1 The per unit expedited order cost from the contracted supplier (variable cost)
w2 The per unit expedited order cost from a backup supplier (variable cost)
a1 The lead time for expedited orders from the contracted supplier (variable time)
a2 The lead time for expedited orders from a backup supplier (variable time)
b1 The per unit time overhead cost of a project (variable cost)
b2 The per unit time delay penalty of a project (variable cost)
c The production cost for the contracted supplier (variable cost)
x1 A random variable for the material consumption of a project
x2 A random variable for the activity time of a project
Functions:
u(x) Heaviside function (univariate step function)
f (x1, x2) The joint probability density function of (x1,x2)
fi(x) The marginal probability density function of xi, i ∈ {1,2}
Defined Hi(·) Functions:
H1(q) =

∫∫
[u(x1 − q)] f (x1, x2)dx1dx2

H2(q, t) =
∫∫

[u(x1 − q) · u(x2 + a2(x1 − q)− t)] f (x1, x2)dx1dx2
H3(q, t) =

∫∫
[(1− u(x1 − q)) · u(x2 − t)] f (x1, x2)dx1dx2

H4(q, t) =
∫∫

[u(x1 − q) · (1− u(x1 − q̃s)) · u(x2 + a1(x1 − q)− t)] f (x1, x2)dx1dx2
H5(q, t) =

∫∫
[u(x1 − q̃s) · u(x2 + a1(x1 − q)+ (a2 − a1)(x1 − q̃s)− t)] f (x1, x2)dx1dx2

4.1 The Contracted Supplier’s Optimal Production

Given the project firm’s advance order quantity Qm, the supplier chooses her production quantity Qs to

maximize πs(Qs), subject to Qs ≥ Qm. The supplier’s problem is a classic newsvendor problem subject to a

production constraint. Her uncertain demand is the unknown expedited order coming from the project firm

due to material shortages in the project’s execution phase. To decide her production decision in face of this

uncertainty, she assesses a marginal production cost c as the overage cost and uses the profit margin w1 − c

(based on the expedited order price) as the underage cost. Under a demand distribution characterized by

f (x1, x2), the supplier chooses her production quantity q̃s that solves the newsvendor fractile by H1(Qs) =
c

w1
,

which is then compared with her production constraint Qs ≥ Qm. We characterize the supplier’s optimal

production decision Q∗
s formally in the following proposition.

PROPOSITION 1. πs(Qs) is concave. Given an advance order Qm from the project firm, the supplier’s opti-

mal production quantity is decided by Q∗
s = max{Qm, q̃s}, where q̃s is the unique solution to the following

equation

w1H1(q̃s)− c = 0 (4)

We refer to q̃s as the supplier’s unconstrained optimal production quantity. Since the supplier’s production

quantity has to meet the project firm’s order quantity Qm, the optimal production is set to max{Qm, q̃s}.

This indicates that, when Qm ≥ q̃s, the supplier will follow the project firm’s order quantity. Following the

standard supply chain literature terminology (see Cachon (2004)), the resulting chain is a “push” supply
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chain. When Qm < q̃s, the supplier will carry excess stock (q̃s − Qm) as safety stock for the project firm,

and by the standard terminology the resulting chain is a “push-pull” one. A higher order price w1 leads to a

higher q̃s, and it serves as the main incentive for the supplier to carry more safety stock in the supply chain.

4.2 The Project Firm’s Optimal Solution

The project firm seeks to find (Qm,Tm) that maximizes his expected profit πm(Qm,Tm). In order to find

the optimal decision, we divide the decision space of (Qm,Tm) into two regions (based on the supplier’s

production decision): A = {(Qm,Tm) : Qm ≥ q̃s,Tm ≥ 0} and B = {(Qm,Tm) : 0 ≤ Qm ≤ q̃s,Tm ≥ 0}. Next

we first derive the project firm’s optimal decisions in region A and B separately, and then compare the

optimal profit across the two regions to derive the project firm’s overall optimal decision. As the analysis

will reveal, these two regions are not only distinct mathematically, but they also imply different project

execution strategy for the project supply chain. In region A, the project supply chain is a “Push” one, and

in region B it is a “Push-Pull” one.

4.2.1 The optimal solution in region A (Push region).

We denote the project firm’s expected profit in region A by πA
m(Qm,Tm), and the optimal solution in this

region by (QA
m,T

A
m ) = arg max(Qm,Tm)∈A πA

m(Qm,Tm). By Proposition 1, when (Qm,Tm)∈ A, we have Q∗
s = Qm.

Therefore, by setting Q∗
s = Qm in πm(Qm,Tm), we obtain πA

m(Qm,Tm) as follows:

π
A
m(Qm,Tm) = Ex1,x2 {V −wQm −w2(x1 −Qm)

+ − b1Tm − b2[x2 + a2(x1 −Qm)
+ −Tm]

+}

Our next proposition characterizes the project firm’s optimal solution (QA
m,T

A
m ) in region A. To facilitate

presentation of our result, we define t̃s as the unique solution to the following equation:

b2H2(q̃s, t̃s)+ b2H3(q̃s, t̃s)− b1 = 0 (5)

where q̃s is defined in Proposition 1. As will be revealed shortly, t̃s is the project firm’s optimal project due

date decision that couples with an advance order decision q̃s. Both q̃s and t̃s vary with w1, but not with w.

PROPOSITION 2. πA
m(Qm,Tm) is concave in (Qm,Tm). Let wa = w2H1(q̃s) + a2b2H2(q̃s, t̃s). For any contract

(w,w1): if w ≥ wa, the optimal decision of the project firm in region A is (QA
m,T

A
m ) = (q̃s, t̃s); otherwise,

(QA
m,T

A
m ) = (qA, tA), where (qA, tA) is the unique solution to the following system of equations:{

w2H1(qA)+ a2b2H2(qA, tA)−w = 0

b2H2(qA, tA)+ b2H3(qA, tA)− b1 = 0
(6)

and they satisfy qA > q̃s, tA < t̃s. In addition, wa is decreasing in w1.
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Figure 1 The project firm’s optimal solutions for Region A, B and A∪B.
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We first note that (qA, tA) is an interior solution of region A, and (q̃s, t̃s) is a boundary solution of region

A. Proposition 2 states that for every w1, there exists a wa such that when w < wa, the project firm should

order qA that is greater than q̃s (qA > q̃s), and set the project due date at tA that is smaller than t̃s (tA < t̃s).

That is, for w < wa, the project firm pushes the supply chain with an inventory level that is greater than

the supplier’s unconstrained production quantity, and hence the project firm bears all inventory risks in the

chain. In return he enjoys the benefit of a shorter project due date. On the other hand, when w ≥ wa, the

project firm would just order q̃s, with the coupling optimal project due date set at t̃s. In other words, the

project firm adopts the ordering decision on the boundary (QA
m = q̃s) when w ≥ wa. Since wa is decreasing in

w1, the project firm is more inclined to operating at the boundary decision q̃s (which will eventually result

in a push-pull mode) for a wider range of w (e.g., w > wa), as the expedite price w1 increases.

The optimal solution (QA
m,T

A
m ) is illustrated in Figure 1 by the solid lines5. In Figure (1a), we illustrate the

optimal advance order (QA
m) in region A, and in Figure (1b), we illustrate the optimal project due date(T A

m )

in region A. We show these two optimal decisions as a function of advance order price (w), by fixing the

expedite order price (w1) at some level. As is illustrated in Figure (1a), the optimal advance order QA
m is

decreasing in w until w reaches wa, after which QA
m stays on the boundary q̃s due to the constraint Qm ≥ q̃s.

Similarly in Figure (1b), we see that the optimal project due date T A
m increases with w until w reaches wa,

after which T A
m stays put at t̃s. The substituting relationship between QA

m and T A
m as w increases is quite

intriguing, as it sheds light how the project firm should leverage its control over inventory and time buffers

to mitigate increasing material cost.

5 The benchmark wholesale price w̃ in Figure 1 will be formally defined in Section 4.2.3 (see Theorem 1).
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Next, we formally characterize the relationship between QA
m and T A

m when the cost parameters in the

studied model change. We focus on studying the impact of four parameters (w,w1,b1,b2) and summarize

the results below.

PROPOSITION 3. The impact of w,w1,b1,b2 on (QA
m,T

A
m ) are characterized as follows:

(1) dqA

dw < 0, dtA

dw > 0, dq̃s
dw = 0, dt̃s

dw = 0. As a result, dQA
m

dw ≤ 0, dT A
m

dw ≥ 0.

(2) dqA

dw1
= 0, dtA

dw1
= 0, dq̃s

dw1
> 0, dt̃s

dw1
< 0. As a result, dQA

m
dw1

≥ 0, dT A
m

dw1
≤ 0.

(3) dqA

db1
> 0, dtA

db1
< 0, dq̃s

db1
= 0, dt̃s

db1
< 0. As a result, dQA

m
db1

≥ 0, dT A
m

db1
≤ 0.

(4) dqA

db2
> 0, dtA

db2
> 0, dq̃s

db2
= 0, dt̃s

db2
> 0. As a result, dQA

m
db2

≥ 0, dT A
m

db2
≥ 0.

A general observation is that as w,w1, or b1 increases, the optimal advance order (QA
m) and project due

date (T A
m ) decisions of the project firm move in opposite directions. This implies that the two decisions

substitute for each other when any of these parameters changes. More specifically, as the advance order

price w increases, the project firm should decrease its advance order quantity QA
m and increase the project

duration T A
m . As the project’s overhead cost b1 increases, the firm should shorten the project duration T A

m and

increase the material order quantity QA
m. As the expedited order price w1 increases, since the project firm’s

decision QA
m can be viewed as QA

m = max{qA, q̃s}, where qA is not affected by w1 and q̃s increases with w1,

the decision QA
m increases. In the meantime, the project firm’s due date decision T A

m decreases.

An interesting observation is that as the project delay parameter b2 increases, the optimal advance order

(QA
m) and project due date (T A

m ) decisions of the project firm move in the same direction. This implies that

the two decisions complement each other as b2 changes. More specifically, as the project delay cost rate

b2 increases, the project firm should increase both his project due date and material order decisions, as

an effective risk-mitigating strategy for the increased delay penalty cost. As b2 decreases, the project firm

should decrease both decisions. This is in contrast to the observations from the other three parameters.

Our results for the “push” project supply chain imply clear roles for the inventory buffer (the project

firm’s own inventory) and time buffer (available slack time in project completion). As the advance order

price (w) increases, the project firm favors lower buffer inventory and more slack time in project execution.

For increases in project overhead cost (b1), the project firm favors less available time slack but higher

inventory. However, for increased penalties (b2) in project completion failures, both buffers are needed in

higher amount to effectively manage project risks.

4.2.2 The optimal solution in region B (Push-Pull region).

We denote the project firm’s expected profit in region B by πB
m(Qm,Tm), and the optimal solution in this

region by (QB
m,T

B
m ) = arg max(Qm,Tm)∈B πB

m(Qm,Tm). By Proposition 1, when (Qm,Tm) ∈ B, we have Q∗
s = q̃s.

Therefore, by setting Q∗
s = q̃s in πm(Qm,Tm), we obtain πB

m(Qm,Tm) as follows:

π
B
m(Qm,Tm) =Ex1,x2 {V −wQm −w1 ·min(q̃s −Qm, (x1 −Qm)

+)−w2(x1 − q̃s)
+

−b1Tm − b2[x2 + a2(x1 − q̃s)
+ −Tm]

+}
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Looking at the above πB
m(Qm,Tm), it is clear that the optimization of Qm and Tm can be decoupled, since

the Tm decision depends on q̃s rather than Qm. Below we summarize the project firm’s optimal decision in

region B.

PROPOSITION 4. πB
m(Qm,Tm) is concave in (Qm,Tm). For any w ∈ [c,w1], the optimal decision of the project

firm in region B is (QB
m,T

B
m ) = (qB, tB), where (qB, tB) is the unique solution to the following equations:{

w1H1(qB)−w = 0

b2H2(q̃s, tB)+ b2H3(q̃s, tB)− b1 = 0
(7)

We first note that the optimal solution of region B satisfies qB ≤ q̃s and tB = t̃s (by the definition of t̃s, as

long as w ≥ c), with the inequality becoming binding if w = c. Since Q∗
s = q̃s in this region, we have that

QB
m ≤ Q∗

s . By the supply chain terminology, the project supply chain is a push-pull one and the inventory

risk is shared between the two firms in the chain. Second, we note that (QB,T B) can always be solved from

the first order condition of πB
m(Qm,Tm) through Eqn (7), and the two equations in (7) are independent.

Behind the above mathematical result, there is a powerful cross-functional managerial insight for manag-

ing project executions within project supply chains. In general, project firms are functionally organized with

project managers dealing with project execution time and procurement managers placing material orders.

According to our result, in a push-pull chain the project and procurement managers are able to work inde-

pendently to optimize their project due date and material ordering decisions that align with each other’s

interests. In other words, the push-pull chain does not require compulsory internal collaboration between

different functional areas of a firm, and coordination is naturally achieved. However, the push-pull chain

calls for a deeper external collaboration between the project firm and the supplier, since the project firm’s

project due date decision tB is heavily dependent on the supplier’s safety stock set through her production

decision q̃s. As can be seen through the cost function Ct(Qm,Tm), a supplier that carries a higher safety stock

by setting a larger q̃s can help the project firm reduce the time buffer needed towards minimizing Ct(Qm,Tm),

which will result in a reduced optimal cost of Ct(Qm,Tm) for the project firm.

The optimal solution (QB
m,T

B
m ) is illustrated in Figure 1 by the dashed lines. In Figure (1a), the optimal

advance order QB
m is decreasing in w, starting with QB

m = q̃s when w = c. In Figure (1b), we see that the

optimal project due date T B
m does not change with w. This is because w only impact the risk allocation of

materials between the supplier and the project firm, and does not impact the project delay risk that is due to

material shortages within the chain. The project delay risk due to material shortages in the chain depends

on the total material supply of the chain, which is q̃s in this case and is independent of w.

Below we characterize the impact of the cost parameters (w,w1,b1,b2) on (QB
m,T

B
m ), in a similar fashion

to what we have shown for (QA
m,T

A
m ). Since in region B we have (QB

m,T
B

m ) = (qB, tB) by Proposition 4, we

present the impact of (w,w1,b1,b2) on (QB
m,T

B
m ) directly.
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Figure 2 Illustration of the non-concavity of πm(Qm,Tm)
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Figure parameters: c = 1, w = 1.5, w1 = 4, w2 = 5, b1 = 4, b2 = 10, a2 = 1. (x1,x2) follows a bivariate Gaussian distribution with

µ = (100,100), σ = (20,20), and ρ = 0.

PROPOSITION 5. The impact of w,w1,b1,b2 on on (QB
m,T

B
m ) are characterized as follows:

(1) dQB
m

dw < 0, dT B
m

dw = 0; (2) dQB
m

dw1
> 0, dT B

m
dw1

< 0; (3) dQB
m

db1
= 0, dT B

m
db1

< 0; (4) dQB
m

db2
= 0, dT B

m
db2

> 0.

We first note that w only impacts QB
m, b1 and b2 only impact T B

m , and w1 impact both QB
m and T B

m . The

impact of w,b1,b2 on (QB
m,T

B
m ) are quite intuitive. A higher advance order price w decreases the advance

order QB
m, a higher project overhead cost b1 reduces the planned project due date T B

m , and a higher project

penalty b2 increases the due date T B
m . The impact of w1 is relatively more involved. First, a higher w1

increases the project firm’s advance order quantity QB
m, and it also increases the supplier’s unconstrained

production quantity q̃s. Since the project firm’s project due date tB is set to satisfy Eqn (7), we can easily

verify that a smaller tB is needed when q̃s is increased. In other words, the increased safety stock held by

the supplier partially substitutes for the time buffer held by the project firm.

4.2.3 The unified optimal solution in region A∪B.

Although we have shown that πA
m(Qm,Tm) and πB

m(Qm,Tm) are both concave functions in region A and region

B, respectively, πm(Qm,Tm) is in general not a concave function in the unified region A∪B. In Figure 2, we

illustrate the non-concavity of πm(Qm,Tm) using a specific example, the parameters of which are provided

underneath the figure. It is obvious that πm(Qm,Tm) is bimodal in the shown example.

In order to find the project firm’s optimal decision in A∪B, we are going to compare the firm’s optimal

profits in region A and B. We let ∆(w,w1) = πA
m(Q

A
m,T

A
m )− πB

m(Q
B
m,T

B
m ) be the difference of optimal profits

obtained by the locally optimal decisions of region A and B. In our following analysis, we will treat ∆ as a
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function of (w,w1), where (w,w1) can have both a direct effect (through the price effect in the Cq(Qm) term)

and an indirect effect (through their impact on the ordering and production decisions of the firms) on πA
m

and πB
m, and hence on ∆. It is worthwhile to point out that when Qm = q̃s (e.g., the project firm’s advance

order quantity is set on the boundary line between A and B), we have πB
m(q̃s,Tm) = πA

m(q̃s,Tm) for all Tm. This

continuity result is useful when we compare the optimal profits of region A and B. In our main theorem

below, we show that ∆(w,w1) possesses a monotone property, and we characterize the project firm’s optimal

decision in the unified region A∪B based on this property.

THEOREM 1. ∆(w,w1) is decreasing in w. The optimal solution (Q∗
m,T

∗
m) of the project firm can be charac-

terized as follows: for any w1, there exists some unique w̃ ∈ (c,wa) such that ∆(w̃,w1) = 0, and as a result,

we have

(1) for contracts in {(w,w1) : w < w̃}, (Q∗
m,T

∗
m) = (qA, tA);

(2) for contracts in {(w,w1) : w = w̃}, (Q∗
m,T

∗
m) = (qA, tA) or (Q∗

m,T
∗

m) = (qB, tB);

(3) for contracts in {(w,w1) : w > w̃}, (Q∗
m,T

∗
m) = (qB, tB).

We note that when w = w̃, there exist two optimal solutions; one is an interior point in region A, and the

other is an interior solution in region B. Both solutions generate the same optimal profit for the project firm.

We refer to w̃ as the “benchmark price”, which satisfies ∆(w̃,w1) = 0. We would like to point out that w̃

is effectively a function of w1 (e.g., w̃ is implicitly determined by w1 through ∆(w̃,w1) = 0). Moreover, in

the detailed expression for ∆(w,w1) = 0, (qA, tA) and (qB) are also present and they are all impacted by w

(see Eqn (6) - (7)). Therefore, to solve w̃, one needs to jointly solve ∆(w,w1) = 0 with Eqn (6) - (7). Since

the detailed expression for ∆(w,w1) = 0 is rather lengthy, we refer the readers to Appendix EC.3 within the

proof of Theorem 1 for the full specification.

The optimal solution (Q∗
m,T

∗
m) is illustrated in Figure 1 by the dark circled segments of the solid and

dashed lines, where the two lines represent the optimal solution of region A and B, respectively. In Figure

(1a), we see that Q∗
m = QA

m when w ≤ w̃, indicating that the project firm should push the project chain, and

Q∗
m = QB

m when w ≥ w̃, indicating the project firm should push-pull (risk-sharing with supplier). Similarly,

in Figure (1b), we see that T ∗
m = T A

m when w ≤ w̃, and T ∗
m = T B

m when w ≥ w̃. The optimal project due date

decision aligns with the optimal material order decision, based on the push or push-pull strategy that should

be adopted by the project firm and is determined by the relationship between w and w̃.

According to Theorem 1, when the advance order price w is low relative to the benchmark price w̃, the

project firm prefers to order more than the supplier’s unconstrained production quantity in the advance order

and use his own inventory in dealing with material risks. As a result, the project firm runs a push supply

chain. When the advance order price w is high relative to the benchmark price w̃, the project firm leverages

the flexibility in the supply contract and risk shares with the supplier. The project firm in this case prefers

to have the supplier carry safety stock that will help him mitigate material shortage risks. In both cases,
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the corresponding project due date will be set according to the total material supply level in the supply

chain, which is equal to the project firm’s own order quantity in the former case and equal to the supplier’s

unconstrained production quantity in the latter.

To derive further insights on project supply chain management of ETO vs. MTO projects, we embellish

into differences between the management of these project types. ETO projects address unique nature engi-

neering challenges and rely on new technologies or stretch the application of existing technologies. As a

result, ETO projects commonly require high quality, specially engineered expensive materials sourced from

specialized suppliers. On the other hand, MTO projects for most cases use standard technologies and exist-

ing, often commoditized, materials sourced from an ample, competitive, and less expensive supply base.

Within our modeling environment, we translate the above observation into material-related cost and price

parameters, i.e., the parameter vector (c,w,w1,w2), with higher magnitude values of a vector standing for

ETO projects and lower values for MTO projects.

We proceed to obtain further analytical results in support of richer managerial insights for managing

these two types of projects as follows. Project firm 1 manages a project supply chain for a project with a

parameter vector (c,w,w1,w2). Project firm 2 manages a project supply chain with a parameter vector that

is β times that of the above, i.e., (βc,βw,βw1,βw2), with β > 1 representing a more expensive material and

β < 1 a less expensive one. We keep the relative ratio between the components of the vector constant in

order to focus on the average effect of an increase or decrease in material costs. We refer to the project of

firm 1 as the “benchmark project”. Project firm 1 may be managing the project supply chain optimally either

as a “push” chain or as a “push-pull” chain (according to Theorem 1). We next characterize the optimal

supply chain management strategy for project firm 2, with its material cost parameter vector β-scaled that

of project firm 1 and the optimal strategy contingent on the β magnitude.

THEOREM 2. There exists some β̄ ∈ [0,+∞] such that

1. if β > β̄, project firm 2 should operate a “push-pull” supply chain;

2. if β < β̄, project firm 2 should operate a “push” supply chain;

3. if β = β̄, project firm 2 is indifferent between operating a “push-pull” or “push” supply chain.

In particular, if the optimal decision of project firm 1 is to operate a “push-pull” supply chain, then β̄ ≤ 1;

if the optimal decision of project firm 1 is to operate a “push” supply chain, then β̄ ≥ 1.

According to the above result, if project firm 1 managing the “benchmark project” should optimally use

a “push-pull” chain, project firm 2 with a more expensive material vector (i.e., β > 1) should also use a

“push-pull” chain. If project firm 1 optimally uses a “push” chain, then project firm 2 with a less expensive

material vector (i.e., β < 1) should also use a “push” chain. Allowing for some loose interpretation of the

result, and assuming we can identify a “benchmark project” for an application environment that could be

optimally managed in either a “push” or “push-pull” approach (i.e., β = β̄ for it), then ETO projects for that
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application environment with β > β̄ should be optimally managed in a “push-pull” fashion. Similarly, MTO

projects for that application environment with β < β̄ should be managed in a “push” fashion.

Our results provide the following managerial implications for managing project supply chains in practice.

For complex ETO projects delivering unique and highly customized products using exotic and expensive

materials, project firms should leverage the flexible contract in their relationship with the contracted supplier

and rely on the safety stock of the supplier when determining its project due date. When N/E produces

expensive (priced at $50 million) boilers for power plants, they sign flexible contracts with key suppliers

and expect them to carry safety stock for unexpected material requirement. MTO projects use mostly push

strategies in creating CTO/ATO products that are built on mature technologies via standardized modules

and commodity type materials. For example, Emerson’s flow control division (the Fisher brand), which

installs valves and measurement systems for industrial customers, runs mostly push supply chains. The use

of standardized materials of low prices reduces the inventory risk for a project firm, and their typically lower

costs make it affordable for the project firm to bear all inventory risk in the supply chain.

Taking a supplier’s perspective, the material’s prices are in general cheaper across all stages of the mate-

rial supply chain, or a higher discount of the advance order price may be accepted by a supplier, when

the material technology is mature and there are more qualified suppliers in the material supply market, as

evidenced in the MTO examples. As a result, we anticipate that a “push” supply chain will be adopted as a

stackelberg game equilibrium between the project firm and the contract supplier. On the other hand, when

the material technology is niche and there is limited availability of qualified suppliers, the material’s prices

are most likely more expensive across the supply chain and a supplier is less likely to accept an aggressive

discount for the advance order price. The project firm should then share the material inventory risk with the

supplier via the flexible wholesale contract. The higher project material cost relative to project time cost

is driving the project firm to enable material risk-sharing with the supplier. The extra material safety stock

carried by a contract supplier is extremely valuable to a project firm when the material cost is high. N/E and

Emerson, for their selected ETO projects, use a carefully selected set of “preferred suppliers” in managing

the supply of certain expensive materials in their supply chains. These suppliers are rewarded over time for

their product availability with more orders allocated to them under some premium-priced flexible contracts.

4.3 Special Case: Newsvendor Supply Chain.

The project supply chain problem formulated in Section 3 (see equations (1) - (3)) has to deal with the

unique aspect of the project firm’s objective function that incorporates project overhead costs and delay

penalties while accounting for uncertain project time and material consumption. It also accounts for the

flexible supply contract and the intricacies of logistical delays in expediting materials from the contracted

or the backup supplier. These unique attributes of the problem are not captured in, and do not follow from,
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the newsvendor with flexible wholesale contract model and its related literature (Cachon (2004), Dong and

Zhu (2007)).

However, some newsvendor with flexible wholesale contract model (referred to as the newsvendor supply

chain) can be viewed as a special case of our project supply chain model under the following interpreta-

tion and assumptions. The downstream firm of a newsvendor supply chain, a newsvendor, faces uncertain

product demand that has the same distribution as x1 in our model. The newsvendor orders product invento-

ries from an upstream supplier under a flexible wholesale price contract (w,w1), and he fulfills the product

demand either through his own inventories (that are ordered in advance at w) or through an expedited order

to the supplier for her safety stock (at w1). In this newsvendor variant, we impose the further restriction that

any product shortages not covered by the above execution of the contract are always covered by a backup

supplier at a unit price w2. WLOG, we assume w1 ≤ w2. We note that such a further restriction on meeting

demand shortages via a backup source has also been considered in prior supply chain works; see Lee et al.

(2000), Xie et al. (2010), and references therein. The retail price of the product is fixed and given by p.

Now let us see the reduction of the project supply chain to the newsvendor supply chain. We use a

superscript φ to indicate profit functions and decisions in a newsvendor chain and use the same subscripts

{m, s} to indicate the downstream and upstream firms in the chain. Based on the above description, the

expected profit of the firms in the newsvendor supply chain can be formulated as

π
φ

m(Qm) = Ex1

{
p · x1 −wQm −w1 ·min{Qφ

s −Qm, (x1 −Qm)
+}−w2 · (x1 −Qφ

s )
+
}

π
φ

s (Qs) = Ex1 {wQm +w1 ·min(Qs −Qm, (x1 −Qm)
+)− cQs}

where Qφ

s = arg maxQs≥Qm
πφ

s (Qs). We note that the supplier (upstream firm) faces a problem that is identical

to the one faced by the supplier in our project supply chain model. As a result, Qφ

s = Q∗
s . The newsvendor

(downstream firm) faces a problem that can be viewed as a special case of the problem faced by a project

firm, by setting V = p · E(x1) and b1,b2 → 0 (in the extreme, b1 = b2 = 0). As such, the newsvendor firm

can be regarded as a project firm who makes his material order decision when his project time related costs

are negligible. Since this is a special case of our studied model (by setting b1 = b2 = 0), Theorem 1 can

be applied and we present an updated result on the newsvendor’s optimal decision, which constitutes a

contribution of our work to the newsvendor literature.

COROLLARY 1. The optimal advance order Qφ

m of the newsvendor can be characterized as follows: for any

w1, there exists some unique w̃φ such that

(1) for contracts in {(w,w1) : w < w̃φ}, Qφ

m = qφ,A;

(2) for contracts in {(w,w1) : w > w̃φ}, Qφ

m = qφ,B;

(3) for contracts in {(w,w1) : w = w̃φ}, Qφ

m = qφ,A or Qφ = qφ,B.
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qφ,A and qφ,B satisfy the following equations. Moreover, qφ,A < qA and qφ,B = qB.

w2H1(qφ,A)−w = 0 (8)

w1H1(qφ,B)−w = 0 (9)

Given the optimal decisions of the newsvendor supply chain and the project supply chain, the first inter-

esting comparison that we would like to make is how the push vs. pull-pull (risk-sharing) contract space

changes across the two chains. This comparison is done by comparing w̃ and w̃φ in the two respective

models, and we summarize our finding with the following proposition.

PROPOSITION 6. w̃φ < w̃.

Proposition 6 implies that the project firm pushes the supply chain in more contract regions than the

newsvendor firm. For any fixed w1: if w < w̃φ, both the project firm and the newsvendor would push the

supply chain; if w̃φ < w < w̃, the project firm would push the supply chain while the newsvendor would

push-pull; if w > w̃, both firms would push-pull the supply chain. Figure 3 illustrates the push and push-pull

regions, with the highlighted area depicting the region in which the newsvendor would push-pull but the

project firm would push the supply chain.

Next, we compare the material order and production decisions between the project and newsvendor sup-

ply chains. As will be revealed shortly, the project firm’s advance order quantity is always greater than

or equal to that of the newsvendor firm, and so is the contracted supplier’s production quantity. The next

proposition summarizes the result.

PROPOSITION 7. The project firm’s order is no less than the newsvendor, and so is the supplier’s production

quantity. Specifically,

(1) for contracts in {(w,w1) : w < w̃}, Q∗
m > Qφ

m and Q∗
s > Qφ

s ;

(2) for contracts in {(w,w1) : w > w̃}, Q∗
m = Qφ

m and Q∗
s = Qφ

s ;

(3) for contracts in {(w,w1) : w = w̃}, Q∗
m ≥ Qφ

m and Q∗
s ≥ Qφ

s .

In the contract region where the project firm strictly pushes the supply chain (case 1), the project firm

orders strictly more than the newsvendor, and the supplier follows the advance order. In the contract region

where the project firm strictly push-pulls (case 2), the project supply chain behaves identically to the

newsvendor chain. When the project firm is indifferent between push and push-pull (case 3), he orders

strictly more than the newsvendor if he pushes the chain, and orders the same if he push-pulls. The proposi-

tion also implies that material inventories are more valuable to the project firm than to the newsvendor. As

a result, the project firm always carries more inventories, and so does the project supply chain.
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Figure 3 Illustration of the relationship between w̃ and w̃φ.
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5 Numerical Study

In this section, we conduct numerical experiments to illustrate how the project firm responds to operational

changes in the operating environment. We highlight the firm’s response to each operational change by com-

paring the contract regions in which push or push-pull strategies are optimal, and by comparing the shifts

in the optimal quantities (e.g., Q∗
m, T ∗

m ). Our numerical experiments are conducted by varying the following

parameters that represent unique operational changes of an environment: (1) the correlation between project

time and material consumption uncertainties (ρ); (2) the responsiveness of the back supplier (a2); (3) the

project delay penalty (b2), and (4) the project overhead cost (b1).

5.1 The Impact of the Correlation between the Project Uncertainties (ρ).

We first investigate how the correlation between the project time and material uncertainties impact the

project firm’s optimal decisions and profit. We consider a bivariate Gaussian distribution of (x1,x2) with

mean µ = (100,100) and standard deviation σ = (20,20), and we vary the correlation ρ ∈ {−0.8,0,0.8}.

We fix the other parameters at c = 1, w2 = 5, b1 = 4, b2 = 10, a2 = 5, and V = 1200.

First, our numerical results show that as ρ increases, the project firm pushes the supply chain more often

over a wider range of contracts. This is illustrated by Figure 4, in which the white area (region A) represents

the contract regions where the project supply chain operates in a push mode. Figure 4 shows the area of

region A enlarges as ρ increases from −0.8 to 0.8 (from left to right). The result indicates that when the two

project uncertainties are more positively correlated, the project firm is going to push the supply chain under

more contracts. We also observe that the supply chain operates in a push-pull mode (region B) when w is

high, regardless of the ρ and w1 values. However, the area of region B enlarges when ρ get smaller. This

indicates that when the two project uncertainties are more negatively correlated, the project firm is more

inclined to share material risks with the contract supplier in the supply chain.
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Figure 4 The impact of ρ on the risk-sharing strategy of the supply chain.
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Solution Region: A B

We next investigate the impact of ρ on the project firm’s optimal decisions and profit. We seek to under-

stand how the firm is going to adjust his material order and project due date quantities as ρ changes, and how

the firm’s profit is impacted by ρ. We present the numerical results on the project firm’s optimal decisions

and profit in Table 2. In this table, each row gives the optimal decisions (Q∗
m and T ∗

m ) and the associated

profit for a given wholesale price contract (indicated by the w,w1 columns). The “OPT Region” columns

indicate whether the project supply chain operates in a push mode (indicated by “A”) or in a push-pull mode

(indicated by “B”).

We observe that as ρ increases, for all contracts, the optimal advance order Q∗
m increases, the optimal

project due date T ∗
m decreases, and the optimal profit decreases. This shows that inventory buffers and

time buffers substitute for each other as ρ changes. Besides, we observe the changes in Q∗
m and T ∗

m are

mild when the firm’s decisions remain in one region and much wilder when the firm’s decisions switch

regions. For example, when (w,w1) = (2.5,3.0), the project firm’s optimal decisions remain in region A as

ρ changes from 0 to 0.8. The firm’s Q∗
m decision increases slightly from 132.01 to 133.79, and T ∗

m decision

decreases slightly from 106.32 to 105.09. For another example, when (w,w1) = (3.5,4.5), the project firm’s

optimal decisions switch from region A to region B as ρ changes from 0 to 0.8. The firm’s Q∗
m decision

increases significantly from 84.71 to 130.46, and T ∗
m decision decreases from 111.67 to 105.13. Finally,

when (w,w1) = (4.0,4.5), the project firm’s optimal decisions remain in region B as ρ changes from 0 to

0.8. The firm’s Q∗
m decision barely changes, but the T ∗

m decision changes from 111.67 to 106.41.

In the final example above, we observe that although the material order decision Q∗
m barely changes, the

project due date decision T ∗
m changes (decreases) much more significantly. This is very surprising as one

would think a high positive correlation (ρ) would increase both decisions. We provide a brief explanation

on why T ∗
m may actually decrease as ρ increases below.
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Table 2 Summary of the project firm’s optimal decision and expected profit for ρ ∈ {−0.8,0,0.8}.

OPT Region Q∗
m T ∗

m Expected Profit

w w1 −0.8 0 0.8 −0.8 0 0.8 −0.8 0 0.8 −0.8 0 0.8

1.0 3.0 A A A 135.18 140.18 141.85 105.90 105.54 105.07 581.03 575.24 573.62
1.5 3.0 A A A 132.11 136.72 138.44 106.35 105.79 105.07 514.25 506.06 503.60
2.0 3.0 A A A 129.79 134.13 135.87 106.80 106.05 105.08 448.80 438.36 435.04
2.5 3.0 A A A 127.89 132.01 133.79 107.26 106.32 105.09 384.39 371.79 367.65
3.0 3.0 A A A 126.27 130.21 132.01 107.72 106.59 105.11 320.86 306.23 301.21

1.0 3.5 A A A 135.18 140.18 141.85 105.90 105.54 105.07 581.03 575.24 573.62
1.5 3.5 A A A 132.11 136.72 138.44 106.35 105.79 105.07 514.25 506.06 503.60
2.0 3.5 A A A 129.79 134.13 135.87 106.80 106.05 105.08 448.80 438.36 435.04
2.5 3.5 A A A 127.89 132.01 133.79 107.26 106.32 105.09 384.39 371.79 367.65
3.0 3.5 A A A 126.27 130.21 132.01 107.72 106.59 105.11 320.86 306.23 301.21
3.5 3.5 B A A 0.00 128.61 130.46 116.36 106.88 105.13 278.95 241.57 235.59

1.0 4.0 A A A 135.18 140.18 141.85 105.90 105.54 105.07 581.03 575.24 573.62
1.5 4.0 A A A 132.11 136.72 138.44 106.35 105.79 105.07 514.25 506.06 503.60
2.0 4.0 A A A 129.79 134.13 135.87 106.80 106.05 105.08 448.80 438.36 435.04
2.5 4.0 A A A 127.89 132.01 133.79 107.26 106.32 105.09 384.39 371.79 367.65
3.0 4.0 B A A 86.51 130.21 132.01 114.48 106.59 105.11 324.24 306.23 301.21
3.5 4.0 B A A 77.00 128.61 130.46 114.48 106.88 105.13 283.20 241.57 235.59
4.0 4.0 B B B 0.00 0.00 0.00 114.48 112.84 106.91 249.65 204.98 173.39

1.0 4.5 A A A 135.18 140.18 141.85 105.90 105.54 105.07 581.03 575.24 573.62
1.5 4.5 A A A 132.11 136.72 138.44 106.35 105.79 105.07 514.25 506.06 503.60
2.0 4.5 A A A 129.79 134.13 135.87 106.80 106.05 105.08 448.80 438.36 435.04
2.5 4.5 A A A 127.89 132.01 133.79 107.26 106.32 105.09 384.39 371.79 367.65
3.0 4.5 B A A 91.38 130.21 132.01 113.12 106.59 105.11 331.78 306.23 301.21
3.5 4.5 B B A 84.70 84.71 130.46 113.12 111.67 105.13 287.70 246.36 235.59
4.0 4.5 B B B 75.60 75.59 75.60 113.12 111.67 106.41 247.45 206.11 178.55
4.5 4.5 B B B 0.00 0.00 0.00 113.12 111.67 106.41 214.48 173.16 145.58

1.0 5.0 A A A 135.18 140.18 141.85 105.90 105.54 105.07 581.03 575.24 573.62
1.5 5.0 A A A 132.11 136.72 138.44 106.35 105.79 105.07 514.25 506.06 503.60
2.0 5.0 A A A 129.79 134.13 135.87 106.80 106.05 105.08 448.80 438.36 435.04
2.5 5.0 B A A 100.00 132.01 133.79 112.08 106.32 105.09 385.64 371.79 367.65
3.0 5.0 B A A 94.93 130.21 132.01 112.08 106.59 105.11 336.91 306.23 301.21
3.5 5.0 B B A 89.51 89.51 130.46 112.08 110.80 105.13 290.78 252.28 235.59
4.0 5.0 B B B 83.17 83.17 83.17 112.08 110.80 106.08 247.55 209.05 184.60
4.5 5.0 B B B 74.38 74.37 74.38 112.08 110.80 106.08 207.99 169.50 145.04
5.0 5.0 B B B 0.00 0.00 0.00 112.08 110.80 106.08 175.52 137.04 112.57

Other parameters: c = 1, w2 = 5, b1 = 4, b2 = 10, a2 = 5. (x1,x2) follows a Gaussian distribution with µ = (100,100), σ = (20,20),

and ρ ∈ {−0.8,0,0.8}.

Note: Q∗
m = 0 indicates the project firm strictly pulls materials from the supplier (for some wholesale contract where w = w1).

First, we note that in the final example above, Q∗
m lies in region B. As a result, T ∗

m = tB. For Gaussian

distributions, it is fully anticipated that Q∗
m (and also Q∗

s ) does not change with ρ 6. For T ∗
m (or tB), it is not

obvious to infer how it changes with ρ. In Figure 5, we provide a graphical solution for tB, which has to

satisfy Eqn (7). Using the graphical solution we will explain why tB may decrease when ρ is increased. By

Eqn (7), the solution of tB is a point on the vertical axis such that the probability of (x1,x2) falling in the gray

area equals b1
b2

in Figure 5. Now suppose ρ increases from 0 to 0.8. What this means is that the increased

correlation between x1 and x2 is going to “push” more probability density mass toward the diagonal line

that represents perfect correlation. This implies that it is quite likely that the probability of the white area

is going to increase, and hence the probability of the gray area is going to decrease. Since our choice of tB

6 In region B, we have Q∗
m = qB,Q∗

s = q̃s. Both of them can be solved from the marginal distribution of a bivariate Gaussian. The
marginal distribution of a bivariate Gaussian does not depend on ρ.
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Figure 5 Explanation for decreasing T ∗
m as the uncertainty correlation (ρ) increases.
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tB

q~s
x1

x 2

is such that the probability of the gray area equals b1
b2

, we must expand the gray area. Note that q̃s does not

change with ρ, and q̃s dictates the intersection of the boundary lines dividing the gray and white areas. The

only way to expand the gray area then is to move the boundary lines down, which is illustrated by the red

dashed line in Figure 5. This implies tB should be decreased and explains why we may observe a decreased

project due date when the project uncertainty correlation ρ changes from 0 to 0.8.

Intuitively, the project supply chain uses two buffers (time and inventory) to mitigate project completion

time and material consumption uncertainties. The inventory buffer assumes a dual role in mitigating these

uncertainties. As the correlation ρ between the project activity time and material consumption uncertainties

increases, the inventory buffer may cover more risk from project activity time variation. Therefore, the same

amount of inventory buffer can carry a bigger probability in meeting the project due date, which can lead

the project firm to choose a decreased project due date T ∗
m . Similarly, When ρ is negative and decreases,

the inventory buffer carries a smaller probability in meeting project due date, and the project firm has to

increase the amount of time buffers in order to meet its project due date with a target probability.

On the profit front, we observe that the project firm’s optimal profit decreases as ρ increases. In other

words, the project firm is going to benefit from more negatively correlated (or less positively correlated)

uncertainties between project time and material demand. This observation is consistent with the risk-pooling

results (e.g., market, location) that have been derived in the supply chain management literature.

5.2 The Impact of the Responsiveness of the Backup Supplier (a2).

We next investigate how the responsiveness of the backup supplier (a2) impacts the project firm’s optimal

decision and profit. We consider three levels of a2 ∈ {1,5,10}, and fix other parameters at c = 1, w2 = 5,

b1 = 4, b2 = 10, µ = (100,100), σ = (20,20), ρ = 0, and V = 1200. Our numerical results show that as

a2 increases: (1) the project firm should push the supply chain more often over a wider range of contracts;

and (2) the project firm should always try to drive the supply chain inventories up (e.g., he is pushing the
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supply chain and carries all inventory in the channel), but may increase or decrease its project due date. A

summary of the numerical results is provided in Table 3.

When a2 increases, the project firm faces a longer project delay (and penalty) when he has to resort to

the backup supplier for materials. This puts the project firm at a disadvantageous position, and to deal with

such consequences, the project firm should either carry more inventory or set a longer project due date that

absorbs some of the financial impact of a prolonged delay. Our results show that the project firm should

always carry more inventory if he can, that is, when the firm is pushing the supply chain. The firm may

increase or decrease his project due date, depending on whether he is able to drive channel inventories

up. For example, when the supply chain operates in a push mode, the project firm can drive the channel

inventories up so that it reduces his chance of resorting to the backup supplier. As a result, he may reduce his

project due date. When the supply chain operates in a push-pull mode, the channel inventory is determined

by q̃s and the project firm’s own ordering decision will not impact it, and as a result, the firm cannot reduce

his chance of resorting to the backup supplier and hence must increase his project due date as a way to

mitigate the financial impact. In the latter case, the project firm may also consider taking control of the

supply chain by switching it to a push mode. We do observe that the project supply chain is switched from

the push-pull mode to the push mode at many contracts, as a2 is increased. As a final remark, the project

firm’s profit is always decreased as a2 is increased.

5.3 The Impact of Project Overhead Cost (b1) and Project Delay Penalty (b2).

We next investigate how the project overhead cost (b1) and project delay penalty (b2) impact the project

firm’s optimal decision and the corresponding profit.

For project overhead cost (b1), we consider three levels of b1 ∈ {1,4,8} and fix other parameters at c = 1,

w2 = 5, b2 = 10, a2 = 5, µ = (100,100), σ = (20,20), ρ = 0, and V = 1200. Our numerical results show

that as the project overhead cost b1 increases, (1) the project firm should push the supply chain more often

over a wider range of contracts, and (2) the project firm should always reduce its project due date (T ∗
m ) and

increase the advance material order quantity (Q∗
m). The latter observation was shown analytically for region

A and B separately in Proposition 3 and 5. Intuitively, a higher project overhead cost incentivizes the project

firm to reduce its time buffers and in return increase its material buffers. The optimal expected profit of the

project firm decreases as b1 increases. We relegate the detailed numerical results for b1 to Appendix EC.4.

For project delay penalty (b2), we consider three levels of b2 ∈ {5,10,20} and fix other parameters at

c = 1, w2 = 5, b1 = 4, a2 = 5, µ = (100,100), σ = (20,20), ρ = 0, and V = 1200. Our numerical results

show that as b2 increases, (1) the project firm should push the supply chain more often over a wider range of

contracts, and (2) the project firm should increase both his project due date and material order decisions. The

latter observation was shown analytically for region A and B separately in Proposition 3 and 5. Intuitively,

a harsh delay penalty makes time buffers and material buffers more valuable to the project firm. As a result,
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Table 3 Summary of the project firm’s optimal decision and expected profit for a2 ∈ {1,5,10}.

OPT Region Q∗
m T ∗

m Expected Profit

w w1 1 5 10 1 5 10 1 5 10 1 5 10

1.0 3.0 A A A 126.28 140.18 145.95 105.93 105.54 105.34 587.20 575.24 570.03
1.5 3.0 A A A 121.51 136.72 142.83 106.47 105.79 105.48 525.31 506.06 497.87
2.0 3.0 B A A 91.39 134.13 140.51 109.36 106.05 105.62 474.57 438.36 427.06
2.5 3.0 B A A 80.65 132.01 138.64 109.36 106.32 105.76 438.67 371.79 357.28
3.0 3.0 B A A 0.00 130.21 137.05 109.36 106.59 105.91 413.24 306.23 288.38

1.0 3.5 A A A 126.28 140.18 145.95 105.93 105.54 105.34 587.20 575.24 570.03
1.5 3.5 A A A 121.51 136.72 142.83 106.47 105.79 105.48 525.31 506.06 497.87
2.0 3.5 B A A 96.40 134.13 140.51 108.54 106.05 105.62 474.73 438.36 427.06
2.5 3.5 B A A 88.68 132.01 138.64 108.54 106.32 105.76 432.92 371.79 357.28
3.0 3.5 B A A 78.65 130.21 137.05 108.54 106.59 105.91 396.16 306.23 288.38
3.5 3.5 B A A 0.00 128.61 135.68 108.54 106.88 106.05 367.64 241.57 220.22

1.0 4.0 A A A 126.28 140.18 145.95 105.93 105.54 105.34 587.20 575.24 570.03
1.5 4.0 A A A 121.51 136.72 142.83 106.47 105.79 105.48 525.31 506.06 497.87
2.0 4.0 B A A 100.00 134.13 140.51 107.97 106.05 105.62 474.67 438.36 427.06
2.5 4.0 B A A 93.63 132.01 138.64 107.97 106.32 105.76 429.42 371.79 357.28
3.0 4.0 B A A 86.51 130.21 137.05 107.97 106.59 105.91 387.89 306.23 288.38
3.5 4.0 B A A 76.99 128.61 135.68 107.97 106.88 106.05 350.57 241.57 220.22
4.0 4.0 B B A 0.00 0.00 134.45 107.97 112.84 106.20 320.58 204.98 152.70

1.0 4.5 A A A 126.28 140.18 145.95 105.93 105.54 105.34 587.20 575.24 570.03
1.5 4.5 B A A 108.61 136.72 142.83 107.55 105.79 105.48 525.31 506.06 497.87
2.0 4.5 B A A 102.79 134.13 140.51 107.55 106.05 105.62 474.36 438.36 427.06
2.5 4.5 B A A 97.21 132.01 138.64 107.55 106.32 105.76 426.76 371.79 357.28
3.0 4.5 B A A 91.39 130.21 137.05 107.55 106.59 105.91 382.24 306.23 288.38
3.5 4.5 B B A 84.71 84.71 135.68 107.55 111.67 106.05 340.89 246.36 220.22
4.0 4.5 B B A 75.59 75.59 134.45 107.55 111.67 106.20 303.30 206.11 152.70
4.5 4.5 B B A 0.00 0.00 133.35 107.55 111.67 106.36 272.66 173.16 85.75

1.0 5.0 A A A 126.28 140.18 145.95 105.93 105.54 105.34 587.20 575.24 570.03
1.5 5.0 B A A 110.49 136.72 142.83 107.24 105.79 105.48 526.22 506.06 497.87
2.0 5.0 B A A 105.07 134.13 140.51 107.24 106.05 105.62 473.88 438.36 427.06
2.5 5.0 B A A 100.00 132.01 138.64 107.24 106.32 105.76 424.52 371.79 357.28
3.0 5.0 B A A 94.93 130.21 137.05 107.24 106.59 105.91 377.86 306.23 288.38
3.5 5.0 B B A 89.51 89.51 135.68 107.24 110.80 106.05 333.84 252.28 220.22
4.0 5.0 B B A 83.17 83.17 134.45 107.24 110.80 106.20 292.69 209.05 152.70
4.5 5.0 B B A 74.37 74.37 133.35 107.24 110.80 106.36 255.07 169.50 85.75
5.0 5.0 B B B 0.00 0.00 0.00 107.24 110.80 111.94 224.18 137.04 25.72

Other parameters: c = 1, w2 = 5, b1 = 4, b2 = 10, V = 1200. (x1,x2) follows a Gaussian distribution with µ = (100,100), σ =

(20,20), ρ = 0.

the firm should increase both type of buffers. The project firm should also consider switching to take control

of the supply chain by pushing the chain as b2 increases. Not surprisingly, the optimal expected profit of the

project firm decreases as b2 increases. We relegate the detailed numerical results for b2 to Appendix EC.4.

6 Extension: Additive Delay Model

In this section, we consider the case of additive material delay when using the contracted supplier and the

backup supplier in meeting project material shortages. As is discussed in Section 3, the delay from using

the contracted supplier is a1 ·min{(Qs −Qm), (x1 −Qm)
+} and the delay from using the backup supplier is

a2 ·(x1−Q∗
s)

+. When the two delays are additive, the effective total supply delay is a1 ·min{(Q∗
s −Qm), (x1−

Qm)
+}+ a2 · (x1 −Q∗

s)
+ −Tm]

+. This additive delay model may better capture a project environment where

the material consumption uncertainty is resolved gradually in distinct phases. Assuming a1 < a2, the project
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firm’s expected time cost Ct(Qm,Tm) is altered as

Ĉt(Qm,Tm) = E(x1,x2) {b1Tm + b2[x2 + a1 ·min{(Q∗
s −Qm), (x1 −Qm)

+}+ a2 · (x1 −Q∗
s)

+ −Tm]
+} ,

and the expected material cost Cq(Qm) stays the same as defined in Eqn (1b). For the project firm’s profit

function and optimal solutions in this additive delay model, we apply a hat accent (“ˆ”) to differentiate them

from the previous model. Hence the project firm’s expected profit is denoted by π̂m(Qm,Tm) =V −Cq(Qm)−

Ĉt(Qm,Tm). We note that the supplier’s problem remains the same as before, and therefore we keep using

the same notation of πs(Qm) and Q∗
s to denote the supplier’s expected profit and production decision in this

additive model.

To find the project firm’s optimal decisions in this model, we let region A and B be the same as is

defined in Section 4. When the project firm’s decision is constrained in region A, the contracted supplier

will set its production quantity to be equal to the project firm’s advance order, that is, Q∗
s = Qm. As a result,

we have Ĉt(Qm,Tm) = Ct(Qm,Tm) and π̂A
m(Qm,Tm) = πA

m(Qm,Tm). Therefore (Q̂A
m, T̂

A
m ) = (QA

m,T
A

m ). In other

words, when the project firm pushes the supply chain (taking a decision from region A), the delay from

the contracted supplier is immaterial (no safety stock is held by the supplier). Therefore the additive delay

model and the maximum delay model are identical. Below we give an update of the optimal decision of the

project firm for region B (Proposition 8) and region A∪B (Theorem 3).

PROPOSITION 8. π̂B
m(Qm,Tm) is concave in (Qm,Tm). Let wb = c + a1b2H2(q̃s, t̃s). If w ≤ wb, the optimal

decision of the project firm in region B is (Q̂B
m, T̂

B
m ) = (q̃s, t̃s); otherwise, (Q̂B

m, T̂
B

m ) = (q̂B, t̂B) where (q̂B, t̂B)

is the unique solution of (q, t) to the following system of equations:{
w1H1(q)+ a1b2H4(q, t)+ a1b2H5(q, t)−w = 0

b2H3(q, t)+ b2H4(q, t)+ b2H5(q, t)− b1 = 0
(10)

Moreover, (q̂B, t̂B)> (qB, tB).

Proposition 8 indicates that the two decisions of the project firm, Qm and Tm, can no longer be decoupled

in region B, and they have to be jointly solved from Eqn (10). The proposition also indicates that under the

additive delay model, the project firm would bear more inventory risk in the chain (q̂B > qB) and set a longer

project due date (t̂B > tB) when the supply chain is restricted to operate under the risk-sharing mode. Next

we provide the unified optimal solution of the project firm for region A∪B in Theorem 3.

THEOREM 3. The optimal solution (Q̂∗
m, T̂

∗
m) of the project firm can be characterized as follows: for any

w1, there exists some unique ŵ ∈ (wb,wa) satisfying ŵ > w̃ such that

(1) for contracts in {(w,w1) : w < ŵ}, (Q̂∗
m, T̂

∗
m) = (qA, tA);

(2) for contracts in {(w,w1) : w = ŵ}, (Q̂∗
m, T̂

∗
m) = (qA, tA) or (Q̂∗

m, T̂
∗

m) = (q̂B, t̂B);

(3) for contracts in {(w,w1) : w > ŵ}, (Q̂∗
m, T̂

∗
m) = (q̂B, t̂B).
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7 Conclusion

Project firms, whether producing complex ETO products, such as Nooter/Eriksen (N/E), or producing MTO

products, such as Emerson (flow control division) and Belden (industrial automation), heavily depend on

outsourced critical materials for on-time completion of their projects. Projects are not only subject to activity

time variations, but also to other forms of disruptions, such as engineering design changes, quality problems,

and low-yield occurrences. These disruptions often impact the material consumption level and may induce

additional activity time for a project. If additional materials are caused by these disruptions and they are not

planned for, material shortages will occur that can further extend the project duration. As a result, successful

project execution needs to encompass an integrated risk management framework that mitigates both activity

time and material consumption uncertainties that are prominent in various project settings.

Risk management of project supply chains has been understudied in the supply chain and project man-

agement literature. In our paper, we employ a highly stylized model to examine the management of project

supply chains facing project activity time and material consumption uncertainties. We allow an arbitrary

level of correlation between these uncertainties, which is able to capture all types of disruptions and risks

in a project supply chain environment. We provide valuable insights on how a portfolio of risk manage-

ment strategies, such as time buffers, firm inventory, supplier safety stock, and expedited capacity, can be

deployed collectively to effectively mitigate project uncertainties and risks in disruptive environments.

Our model analyzes a two-stage project supply chain consisting of a project firm delivering a custom

project that requires a key material supplied by a main supplier under a flexible wholesale price contract. In

anticipation of the project activity time and material consumption uncertainties, the project firm decides its

project due date and advance material order for the project. Once receiving the advance order, the supplier

decides on its production and any safety stock that allows for risk-sharing with the project firm and protects

the firm from severe material shortages and project delays.

We start our analysis with the supplier’s optimal production decision given an arbitrary advance order

quantity from the project firm. We find that the supplier’s optimal production is governed by a newsvendor

solution with a production constraint. Incorporating the supplier’s optimal production decision, we then

derive the optimal decisions of the project firm. To do this, we take advantage of the fact that the opti-

mization problem naturally decomposes into two optimization problems in two regions defined as A and B,

with region A representing a push supply chain and region B a push-pull chain. Each region represents a

unique risk management strategy in dealing with challenging project environments. The strategies in the two

regions are differentiated mainly by the use (or not use) of risk-sharing with the supplier (e.g., the supplier

produces in excess of the advance order and carries safety stock for the project firm), and the requirement

(or no requirement) of interdependent optimization of the project due date and the material order decisions.

By comparing the two local optimal decisions in the A and B regions, we then derive the unified optimal

solution for the project firm across regions.
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We further take the liberty to interpret our model results as managerial insights for two major project

supply chain environments. For MTO projects, which are often characterized by low product/process com-

plexity using standardized, mature technology and cheap-to-source materials, our results suggest that the

project firm relies on its own levers to manage project risks arising from project activity time and material

consumption uncertainties. The project firm uses his own inventory obtained via an advance order from the

contract supplier and adjusts his project due date based on project costs and the remaining material shortage

risks beyond what his inventory buffer can cover. For ETO projects, which are characterized by complex

engineer-to-order products using niche technology and expensive and exotic materials, our results suggest

that the project firm should fully leverage his relationship with the contract supplier and exploit the flexibil-

ity in the supply contract to induce appropriate risk-sharing within the supply chain. The project firm should

set the project due date by taking into account project overhead cost, project delay cost, and the safety stock

of the expensive material carried by himself and the contract supplier.

In addition to the above analysis and results, we also discuss how our project supply chain model encom-

passes the newsvendor supply chain as a special case. Our comparison of the models suggests that project

supply chains place a greater emphasis on material availability, which results in the chain (and also the

project firm) carrying more inventories when compared with the newsvendor chain.

Our extensive numerical study offers interesting and counter-intuitive managerial insights for project

supply chains. First, we find that the correlation between the project activity time and material consumption

uncertainties has a great impact on the project firm’s decision and profit. A higher correlation between the

two project uncertainties makes the risk-sharing strategy less appealing to the project firm. While a higher

correlation always leads to a higher advance order quantity and less overall profit for the project firm, we

find that the increased correlation may increase or decrease project due date, which is quite counter-intuitive

as one would expect the due date decision to be positively correlated with the material order decision. In

addition, we find that responsiveness of the backup supplier has interesting implications for the management

of project supply chains, too. As the backup supplier becomes less responsive in supplying project material

to the project firm, the project firm should always hold more inventory of his own, but he may increase or

decrease the project due date. The increased material inventory carried by the project firm can help himself

reduce the chance of encountering a material shortage and hence resorting to the backup supplier, to such

an extent that the firm may be able to shorten the project due date.

Finally, we provide an extension of the project supply chain model by considering additive total supply

delay when both the contract and backup suppliers are effectively used to cover material shortages in a

project. We find that in this model, the project firm is willing to bear even more material risk within the

supply chain, and there is more dependency between the advance material order and the project due date

decisions of the project firm, especially when a push-pull strategy is preferred by the firm.
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E-Companion
The following is an E-Companion for the article titled “Managing material shortages in project supply

chains: inventories, time buffers and supplier flexibility”.

EC.1 The Heaviside function and its properties.

The Heaviside function:

u(x) =

{
1 if x ≥ 0

0 if x < 0

The derivative of u(x) is the Dirac delta function δ(x), which satisfies the following two properties:

(1) δ(x) is almost 0 everywhere except at x = 0;

δ(x) =

{
+∞ if x = 0

0 if x ̸= 0

(2) for any ε > 0,
∫ x0+ε

x0−ε
δ(x− x0)g(x)dx = g(x0). In particular, if g(x)≡ 1, we have

∫ +∞

−∞
δ(x− x0)dx = 1.

EC.2 An illustration of the Hi functions.

We provide an illustration of the Hi(·) functions in Figure EC.1. The value of a Hi(·) function equals the

probability that (x1,x2) falls into the shaded area in the corresponding figure for the Hi(·) function.

EC.3 Proofs of results.

Proof of Proposition 1. We restrict Qs to Qs ≥ Qm throughout this proof. When Qs ≥ Qm, we have

min(Qs − Qm, (x1 − Qm)
+) = (x1 − Qm)

+ − (x1 − Qs)
+. Hence, the contracted supplier’s profit function

πs(Qs) can be simplied as

πs(Qs) = Ex1 {wQm +w1(x1 −Qm)
+ −w1(x1 −Qs)

+ − cQs}

= Ex1 {wQm +w1(x1 −Qm)
+ −w1u(x1 −Qs)(x1 −Qs)− cQs}

dπs(Qs)

dQs
= Ex1 {−w1δ(x1 −Qs)(−1)(x1 −Qs)−w1u(x1 −Qs)(−1)− c}

= Ex1 {w1u(x1 −Qs)− c}

= w1

∫∫
u(x1 −Qs) f (x1, x2)dx1dx2 − c

d2πs(Qs)

dQ2
s

= w1

∫∫
[δ(x1 −Qs)(−1)] f (x1, x2)dx1dx2

= −w1

∫
f (Qs, x2)dx2

≤ 0
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Figure EC.1 An illustration of the Hi functions
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Hence πs(Qs) is concave. The unconstrained optimal solution that maximizes πs(Qs) is denoted by q̃s, which

can be solved by the first order condition dπs(Qs)
dQs

= 0. As a result, the constrained optimal solution where

Q∗
s ≥ Qm is Q∗

s = max{Qm, q̃s}.

■

Proof of Proposition 2. We write out πA
m(Qm,Tm) explicitly as follows

π
A
m(Qm,Tm) =Ex1,x2 {V −wQm −w2(x1 −Qm)

+ − b1Tm − b2[x2 + a2(x1 −Qm)
+ −Tm]

+}

=Ex1,x2 {V −wQm −w2u(x1 −Qm)[x1 −Qm]− b1Tm

−b2u(x1 −Qm)[x2 + a2(x1 −Qm)−Tm]
+ − b2[1− u(x1 −Qm)][x2 −Tm]

+}

=Ex1,x2 {V −wQm −w2u(x1 −Qm)[x1 −Qm]− b1Tm

−b2u(x1 −Qm)u(x2 + a2(x1 −Qm)−Tm)[x2 + a2(x1 −Qm)−Tm]

−b2[1− u(x1 −Qm)]u(x2 −Tm)[x2 −Tm]} (EC.1)

Concavity of πA
m(Qm,Tm). We show the concavity of πA

m(Qm,Tm) by showing its Hessian matrix is negative

semi-definite. We first derive the first order derivative of πA
m(Qm,Tm) below.

∂πA
m(Qm,Tm)

∂Qm
= Ex1,x2 {−w−w2δ(x1 −Qm)(−1)x1 −Qm]−w2u(x1 −Qm)[−1]
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−b2δ(x1 −Qm)(−1)u(x2 + a2(x1 −Qm)−Tm)[x2 + a2(x1 −Qm)−Tm]

−b2u(x1 −Qm)δ(x2 + a2(x1 −Qm)−Tm)(−a2)[x2 + a2(x1 −Qm)−Tm]

−b2u(x1 −Qm)u(x2 + a2(x1 −Qm)−Tm)[−a2]

−b2[−δ(x1 −Qm)(−1)]u(x2 −Tm)[x2 −Tm]}

= Ex1,x2 {−w+w2u(x1 −Qm)+ a2b2u(x1 −Qm)u(x2 + a2(x1 −Qm)−Tm)}

= −w+w2

∫∫
u(x1 −Qm) f (x1, x2)dx1dx2

+a2b2

∫∫
u(x1 −Qm)u(x2 + a2(x1 −Qm)−Tm) f (x1, x2)dx1dx2

where the first equality holds by interchanging derivative and expectation, the second equality holds due to

(1) Ex1{δ(x1 −Qm)[x1 −Qm]}= 0. This is because

Ex1{δ(x1 −Qm)[x1 −Qm]} =
∫∫

δ(x1 −Qm)(x1 −Qm) f (x1, x2)dx1dx2

=
∫
(Qm −Qm) f (Qm, x2)dx2

= 0

(2) Similarly, Ex1,x2{a2b2u(x1 −Qm)δ(x2 + a2(x1 −Qm)−Tm)[x2 + a2(x1 −Qm)−Tm]}= 0.

(3) In addition, we have

Ex1,x2 {b2δ(x1 −Qm)u(x2 + a2(x1 −Qm)−Tm)[x2 + a2(x1 −Qm)−Tm]

−b2δ(x1 −Qm)u(x2 −Tm)[x2 −Tm]}

=
∫∫

b2δ(x1 −Qm)u(x2 + a2(x1 −Qm)−Tm)[x2 + a2(x1 −Qm)−Tm] f (x1, x2)dx1dx2

−
∫∫

b2δ(x1 −Qm)u(x2 −Tm)[x2 −Tm] f (x1, x2)dx1dx2

=
∫

b2u(x2 + a2 · 0−Tm)[x2 + a2 · 0−Tm] f (Qm, x2)dx2 −
∫

b2u(x2 −Tm)[x2 −Tm] f (Qm, x2)dx2

=0

and the last equality holds by writing the expectation as integration. By applying the same technique, for

the first order derivative with respect to Tm, we have

∂πA
m(Qm,Tm)

∂Tm
= Ex1,x2 {−b1 − b2u(x1 −Qm)δ(x2 + a2(x1 −Qm)−Tm)(−1)[x2 + a2(x1 −Qm)−Tm]

−b2u(x1 −Qm)u(x2 + a2(x1 −Qm)−Tm)[−1]

−b2[1− u(x1 −Qm)]δ(x2 −Tm)(−1)[x2 −Tm]

−b2[1− u(x1 −Qm)]u(x2 −Tm)[−1]}

= Ex1,x2 {−b1 + b2u(x1 −Qm)u(x2 + a2(x1 −Qm)−Tm)+ b2[1− u(x1 −Qm)]u(x2 −Tm)}

= −b1 + b2

∫∫
u(x1 −Qm)u(x2 + a2(x1 −Qm)−Tm) f (x1, x2)dx1dx2

+b2

∫∫
[1− u(x1 −Qm)]u(x2 −Tm) f (x1, x2)dx1dx2
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Next we show that πA
m(Qm,Tm) is concave by showing its Hessian matrix HA is negative semi-definite. The

Hessian matrix of πA
m(Qm,Tm) is defined as

HA =


∂2πA

m(Qm,Tm)

∂Q2
m

∂2πA
m(Qm,Tm)

∂Qm∂Tm

∂2πA
m(Qm,Tm)

∂Tm∂Qm

∂2πA
m(Qm,Tm)

∂T 2
m


The elements of HA are derived below:

∂2πA
m(Qm,Tm)

∂Q2
m

= Ex1,x2 {w2δ(x1 −Qm)(−1)+ a2b2δ(x1 −Qm)(−1)u(x2 + a2(x1 −Qm)−Tm)

+a2b2u(x1 −Qm)δ(x2 + a2(x1 −Qm)−Tm)(−a2)}

= −w2

∫
f (Qm, x2)dx2 − a2b2

∫
u(x2 −Tm) f (Qm, x2)dx2

−a2
2b2

∫
u(x1 −Qm) f (x1,Tm − a2(x1 −Qm))dx1

∂2πA
m(Qm,Tm)

∂T 2
m

= Ex1,x2 {b2u(x1 −Qm)δ(x2 + a2(x1 −Qm)−Tm)(−1)+ b2[1− u(x1 −Qm)]δ(x2 −Tm)(−1)}

= −b2

∫
u(x1 −Qm) f (x1,Tm − a2(x1 −Qm))dx1 − b2

∫
[1− u(x1 −Qm)] f (x1,Tm)dx1

∂2πA
m(Qm,Tm)

∂Qm∂Tm
= Ex1,x2 {−a2b2u(x1 −Qm)δ(x2 + a2(x1 −Qm)−Tm)}

=
∫∫

−a2b2u(x1 −Qm)δ(x2 + a2(x1 −Qm)−Tm) f (x1, x2)dx1dx2

= −a2b2

∫
u(x1 −Qm) f (x1,Tm − a2(x1 −Qm))dx1

∂2πA
m(Qm,Tm)

∂Tm∂Qm
= −a2b2

∫
u(x1 −Qm) f (x1,Tm − a2(x1 −Qm))dx1

To show HA is negative semi-definite, it is sufficient to show zT HAz ≤ 0 for any z = (z1, z2) ∈ R2. This is

completed below.

zT HAz = (
∂2πA

m(Qm,Tm)

∂Q2
m

)z2
1 + 2(

∂2πA
m(Qm,Tm)

∂Qm∂Tm
)z1z2 +(

∂2πA
m(Qm,Tm)

∂T 2
m

)z2
2

= −
[

w2

∫
f (Qm, x2)dx2 + a2b2

∫
u(x2 −Tm) f (Qm, x2)dx2

]
z2

1

−
[

b2

∫
[1− u(x1 −Qm)] f (x1,Tm)dx1

]
z2

2

−
[

b2

∫
u(x1 −Qm) f (x1,Tm − a2(x1 −Qm))dx1

]
(a2z1 + z2)

2

≤ 0

Convex Optimization. Now that we have shown πA
m(Qm,Tm) is convave, since the constraint (Qm,Tm)∈ A

is a convex set, we can solve the constrained maximization problem by applying the lagrangian approach.
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Specifically, let L(Qm,Tm,λQ,λT ) = πA
m(Qm,Tm) + λQ(Qm − q̃s) + λT Tm, where λQ,λT are the lagrangian

multipliers. The optimal solution (QA
m,T

A
m ) can be found by solving the following equations:

∂πA
m(Qm,Tm)

∂Qm
+ λQ = 0 (EC.2a)

∂πA
m(Qm,Tm)

∂Tm
+ λT = 0 (EC.2b)

λQ(Qm − q̃s) = 0 (EC.2c)

λT Tm = 0 (EC.2d)

λQ,λT , (Qm − q̃s),Tm ≥ 0 (EC.2e)

Let (QA
m,T

A
m ,λ

A
Q,λ

A
T ) be a solution satisfying eqn (EC.2a) - (EC.2e). The solution must satisfy the follow-

ing conditions:

(a) λA
T = 0. We prove this by contradiction. Suppose λA

T > 0, since λA
T T A

m = 0, we must have T A
m = 0.

Therefore,

∂πA
m(Qm,Tm)

∂Tm
+ λ

A
T

= −b1 + b2

∫∫
u(x1 −QA

m)u(x2 + a2(x−QA
m)−T A

m ) f (x1, x2)dx1dx2

+b2

∫∫
[1− u(x1 −QA

m)]u(x2 −T A
m ) f (x1, x2)dx1dx2 + λ

A
T

= −b1 + b2 + λ
A
T

> 0

which contradicts with Eqn (EC.2b).

(b) λA
Q > 0 if and only if w > cw2

w1
+a2b2

∫∫
u(x1 − q̃s)u(x2 +a2(x1 − q̃s)− t̃s) f (x1, x2)dx1dx2, where t̃s is the

unique solution of t to the following equation:

− b1 + b2

∫∫
u(x1 − q̃s)u(x2 + a2(x1 − q̃s)− t) f (x1, x2)dx1dx2

+ b2

∫∫
[1− u(x1 − q̃s)]u(x2 − t) f (x1, x2)dx1dx2 = 0

First we show λA
Q > 0 ⇒ w > cw2

w1
+a2b2

∫∫
u(x1 − q̃s)u(x2 +a2(x1 − q̃s)− t̃s) f (x1, x2)dx1dx2. From Eqn

(EC.2c), we get QA
m = q̃s. Then from Eqn (EC.2a), we get the w inequality.

Second we show λA
Q > 0 ⇐ w > cw2

w1
+ a2b2

∫∫
u(x1 − q̃s)u(x2 + a2(x1 − q̃s)− t̃s) f (x1, x2)dx1dx2. We

prove by contradiction. Suppose λA
Q > 0 does not hold, e.g., λA

Q = 0. If this is the case, then (QA
m,T

A
m )

satisfy Eqn (EC.3). Therefore,

w = w2

∫∫
u(x1 −QA

m) f (x1, x2)dx1dx2 +

a2b2

∫∫
u(x1 −QA

m)u(x2 + a2(x1 −QA
m)−T A

m ) f (x1, x2)dx1dx2
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≤ w2

∫∫
u(x1 − q̃s) f (x1, x2)dx1dx2 +

a2b2

∫∫
u(x1 − q̃s)u(x2 + a2(x1 − q̃s)− t̃s) f (x1, x2)dx1dx2

=
cw2

w1
+ a2b2

∫∫
u(x1 − q̃s)u(x2 + a2(x1 − q̃s)− t̃s) f (x1, x2)dx1dx2

where the inequality holds by exploiting the relationship between (QA
m,T

A
m ) and (q̃s, t̃s) (It can be shown

by a graphical approach and is omitted). This contradicts with the w condition.

Combining the above (a) - (b) results, we have that: if w > cw2
w1

+ a2b2
∫∫

u(x1 − q̃s)u(x2 + a2(x1 − q̃s)−

t̃s) f (x1, x2)dx1dx2, we have QA
m = q̃s, and T A

m = t̃s; otherwise, (QA
m,T

A
m ) can be obtained by solving a system

of equations: ∂πA
m(Qm,Tm)

∂Qm
= 0, ∂πA

m(Qm,Tm)

∂Tm
= 0, which is the unique (q, t) to the following system of equations:

w2

∫∫
u(x1 − q) f (x1, x2)dx1dx2

+ a2b2

∫∫
u(x1 − q)u(x2 + a2(x1 − q)− t) f (x1, x2)dx1dx2 −w = 0

b2

∫∫
u(x1 − q)u(x2 + a2(x1 − q)− t) f (x1, x2)dx1dx2

+ b2

∫∫
[1− u(x1 − q)]u(x2 − t) f (x1, x2)dx1dx2 − b1 = 0

(EC.3)

By the definition of H1, H2 and H3, it completes the proof of the proposition.

■

Proof of Proposition 3. We first note that QA
m = max{qA, q̃s}, T A

m = min{tA, t̃s}. Before we prove the

proposition, we first prove the following claim that we will make use of.

CLAIM EC.1. For the (qA, tA) satisfying Eqn. (6), we have

(1) ∂H1(qA)

∂qA < 0, ∂H1(qA)

∂tA = 0;

(2) ∂H2(qA,tA)

∂qA < 0, ∂H2(qA,tA)

∂tA < 0;

(3) ∂H3(qA,tA)

∂qA > 0, ∂H3(qA,tA)

∂tA < 0.

Proof of Claim EC.1. We prove case (3) only. The other cases can be proved by the same approach.

∂H3(qA, tA)

∂qA
=

∫∫
[−δ(x1 − qA)(−1)]u(x2 − tA) f (x1, x2)dx1dx2

=
∫

u(x2 − tA) f (qA, x2)dx2 > 0

∂H3(qA, tA)

∂tA
=

∫∫
[1− u(x1 − qA)]δ(x2 − tA)(−1) f (x1, x2)dx1dx2

= −
∫
[1− u(x1 − qA)] f (x1, tA)dx1 < 0

Next we prove the proposition by considering the following cases:
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(1) dqA

dw < 0, dtA

dw > 0, dq̃s
dw = 0, dt̃s

dw = 0. As a result, dQA
m

dw ≤ 0, dT A
m

dw ≥ 0. To show this, we take the derivative

with respect to w in Eqn (6) and get
∂

∂qA
[w2H1(qA)+ a2b2H2(qA, tA)] · dqA

dw
+

∂

∂tA
[w2H1(qA)+ a2b2H2(qA, tA)] · dtA

dw
− 1 = 0

∂

∂qA
[b2H2(qA, tA)+ b2H3(qA, tA)] · dqA

dw
+

∂

∂tA
[b2H2(qA, tA)+ b2H3(qA, tA)] · dtA

dw
= 0

(EC.4)

For ease of presentation, we suppress the qA, tA in Hi. From the second equation in (EC.4), we have

dtA

dw
=−

∂H2
∂qA + ∂H3

∂qA

∂H2
∂tA + ∂H3

∂tA

· dqA

dw
(EC.5)

Plug it in the first equation of (EC.4), we have[
w1

∂H1

∂qA
+ a2b2

∂H2

∂qA
− (a2b2

∂H2

∂tA
)

∂H2
∂qA + ∂H3

∂qA

∂H2
∂tA + ∂H3

∂tA

]
· dqA

dw
− 1 = 0

which is equivalent to[
w1

∂H1

∂qA
+ a2b2

∂H2

∂qA

∂H3
∂tA

∂H2
∂tA + ∂H3

∂tA

− (a2b2
∂H2

∂tA
)

∂H3
∂qA

∂H2
∂tA + ∂H3

∂tA

]
· dqA

dw
− 1 = 0

By Claim EC.1, we have the term [·]< 0. Therefore dqA

dw < 0. To prove dtA

dw > 0, we also show

∂H2

∂qA
+

∂H3

∂qA
=

∫∫
[δ(x1 − qA)(−1)]u(x2 + a2(x1 − qA)− tA) f (x1, x2)dx1dx2

+
∫∫

u(x1 − qA)[δ(x2 + a2(x1 − qA)− tA)(−a2)] f (x1, x2)dx1dx2

+
∫∫

[−δ(x1 − qA)(−1)]u(x2 − tA) f (x1, x2)dx1dx2

= −
∫

u(x2 − tA) f (qA, x2)dx2

−a2

∫
u(x1 − qA) f (x1, tA − a2(x1 − qA))dx1

+
∫

u(x2 − tA) f (qA, x2)dx2

< 0

Therefore by (EC.5), we have dtA

dw > 0. Finally dq̃s
dw = 0, dt̃s

dw = 0 are trivial and thus omitted.

(2) dqA

dw1
= 0, dtA

dw1
= 0, dq̃s

dw1
> 0, dt̃s

dw1
< 0. As a result, dQA

m
dw1

≥ 0, dT A
m

dw1
≤ 0. The former two cases are trivial as

w1 does not appear in Eqn (6). To show the latter two, we first take the derivative with respect to w1

for the equation w1H1(q̃s) = c and get

H1(q̃s)+w1
dH1(q̃s)

dq̃s

dq̃s

dw1
= 0

where dH1(q̃s)
dq̃s

=−
∫

f (q̃s, x2)dx2 =− f1(q̃s). Hence

dq̃s

dw1
=

H1(q̃s)

w1 f1(q̃s)
> 0 (EC.6)
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To show dt̃s
dw1

< 0, we take derivative with respect to w1 for Eqn (5) and get

∂

∂q̃s
[b2H2(q̃s, t̃s)+ b2H3(q̃s, t̃s)− b1] ·

dq̃s

dw1
+

∂

∂t̃s
[b2H2(q̃s, t̃s)+ b2H3(q̃s, t̃s)− b1] ·

dt̃s

dw1
= 0

It is easy to verify that ∂

∂q̃s
[b2H2(q̃s, t̃s)+b2H3(q̃s, t̃s)−b1]< 0 and ∂

∂t̃s
[b2H2(q̃s, t̃s)+b2H3(q̃s, t̃s)−b1]<

0. As a result, dt̃s
dw1

< 0.

(3) dqA

db1
> 0, dtA

db1
< 0, dq̃s

db1
= 0, dt̃s

db1
< 0. As a result, dQA

m
db1

≥ 0, dT A
m

db1
≤ 0. To show this, we take the derivative

with respect to b1 in Eqn (6) and get
∂

∂qA
[w2H1 + a2b2H2] ·

dqA

db1
+

∂

∂tA
[w2H1 + a2b2H2] ·

dtA

db1
= 0

∂

∂qA
[b2H2 + b2H3] ·

dqA

db1
+

∂

∂tA
[b2H2 + b2H3] ·

dtA

db1
− 1 = 0

(EC.7)

From the first equation, we get

dqA

db1
=−

a2b2
∂H2
∂tA

w2
∂H1
∂qA + a2b2

∂H2
∂qA

· dtA

db1
(EC.8)

Plug it in to the second equation, we have

b2 ·

[
−(

∂H2

∂qA
+

∂H3

∂qA
) ·

a2b2
∂H2
∂tA

w2
∂H1
∂qA + a2b2

∂H2
∂qA

+
∂H2

∂tA
+

∂H3

∂tA

]
· dtA

db1
− 1 = 0

which is equivalent to

b2 ·

[
∂H2

∂tA
·

w2
∂H1
∂qA

w2
∂H1
∂qA + a2b2

∂H2
∂qA

− ∂H3

∂qA
·

a2b2
∂H2
∂tA

w2
∂H1
∂qA + a2b2

∂H2
∂qA

+
∂H3

∂tA

]
· dtA

db1
− 1 = 0

By Claim EC.1, we have the term [·]< 0. Therefore dqA

db1
< 0. By (EC.10), dtA

db1
> 0.

dq̃s
db1

= 0 is trivial as q̃s does not depend on b1. To show dt̃s
db1

< 0, we take derivative with respect to w1

for Eqn (5) and get

∂

∂q̃s
[b2H2(q̃s, t̃s)+ b2H3(q̃s, t̃s)− b1] ·

dq̃s

db1
+

∂

∂t̃s
[b2H2(q̃s, t̃s)+ b2H3(q̃s, t̃s)− b1] ·

dt̃s

db1
− 1 = 0

which is equivalent to [
b2

∂H2

∂t̃s
+ b2

∂H3

∂t̃s

]
· dt̃s

db1
− 1 = 0

By Claim EC.1, we have the term [·]< 0. Therefore dt̃s
db1

< 0.

(4) dqA

db2
> 0, dtA

db2
> 0, dq̃s

db2
= 0, dt̃s

db2
> 0. As a result, dQA

m
db2

≥ 0, dT A
m

db2
≥ 0. To show this, we take the derivative

with respect to b2 in Eqn (6) and get
∂

∂qA
[w2H1 + a2b2H2] ·

dqA

db2
+

∂

∂tA
[w2H1 + a2b2H2] ·

dtA

db2
+ a2H2 = 0

∂

∂qA
[b2H2 + b2H3] ·

dqA

db2
+

∂

∂tA
[b2H2 + b2H3] ·

dtA

db2
+H2 +H3 = 0

(EC.9)
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From the first equation, we get

dqA

db2
=− a2H2

w2
∂H1
∂qA + a2b2

∂H2
∂qA

−
a2b2

∂H2
∂tA

w2
∂H1
∂qA + a2b2

∂H2
∂qA

· dtA

db2
(EC.10)

Plug it in to the second equation, we have

b2 ·
[

∂H2

∂qA
+

∂H3

∂qA

]
·

[
− a2H2

w2
∂H1
∂qA + a2b2

∂H2
∂qA

−
a2b2

∂H2
∂tA

w2
∂H1
∂qA + a2b2

∂H2
∂qA

· dtA

db2

]
+ b2 ·

[
∂H2

∂tA
+

∂H3

∂tA

]
· dtA

db2

+H2 +H3 = 0

which is equivalent to [
H2 ·

w2
∂H1
∂qA

w2
∂H1
∂qA + a2b2

∂H2
∂qA

− ∂H3

∂qA
· a2b2H2

w2
∂H1
∂qA + a2b2

∂H2
∂qA

+H3

]

+b2

[
−∂H3

∂qA
·

a2b2
∂H2
∂tA

w2
∂H1
∂qA + a2b2

∂H2
∂qA

+
∂H2

∂tA
·

w2
∂H1
∂qA

w2
∂H1
∂qA + a2b2

∂H2
∂qA

+
∂H3

∂tA

]
· dtA

db2
= 0

By Claim EC.1, we have the first term [·]> 0, the second term [·]< 0. Therefore dtA

db2
> 0. Similarly we

can show dqA

db2
> 0. Moreover, dq̃s

db2
= 0, dt̃s

db2
> 0. We omit these proofs.

■

Proof of Proposition 4. Let g(Tm, x1, x2) = x2 + a2(x1 − q̃s)− Tm. For simplicity, we write g instead of

g(Tm, x1, x2) in the following proof. We can write the project firm’s expected profit πB
m(Qm,Tm) as

π
B
m(Qm,Tm) = Ex1,x2 {V −wQm −w1(x1 −Qm)

+ − (w2 −w1)(x1 − q̃s)
+

−b1Tm − b2[x2 + a2(x1 − q̃s)
+ −Tm]

+}

= Ex1,x2 {V −wQm −w1u(x1 −Qm)[x1 −Qm]− (w2 −w1)u(x1 − q̃s)[x1 − q̃s]

−b1Tm − b2(1− u(x1 − q̃s))u(x2 −Tm)[x2 −Tm]− b2u(x1 − q̃s)u(g)[g]}(EC.11)

Concavity of πB
m(Qm,Tm). We show the concavity of πB

m(Qm,Tm) by showing its Hessian matrix is negative

semi-definite. We first derive the first order derivative of πB
m(Qm,Tm) below.

∂πB
m(Qm,Tm)

∂Qm
= Ex1,x2 {−w−w1δ(x1 −Qm)(−1) [x1 −Qm]−w1u(x1 −Qm)(−1)}

= −w+w1

∫∫
u(x1 −Qm) f (x1, x2)dx1dx2

∂πB
m(Qm,Tm)

∂Tm
= Ex1,x2 {−b1 − b2(1− u(x1 − q̃s))δ(x2 −Tm)(−1) [x2 −Tm]− b2(1− u(x1 − q̃s))u(x2 −Tm) [−1]

−b2u(x1 − q̃s)δ(g)(−1)[g]− b2u(x1 − q̃s)u(g)[−1]}

= −b1 + b2

∫∫
(1− u(x1 − q̃s))u(x2 −Tm) f (x1, x2)dx1dx2

+b2

∫∫
u(x1 − q̃s)u(g(Tm, x1, x2)) f (x1, x2)dx1dx2
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Second Order Condition. Next we show that πB
m(Qm,Tm) is concave by showing its Hessian matrix,

denoted by HB, is negative semi-definite. The Hessian HB is defined by

HB =


∂2πB

m(Qm,Tm)

∂Q2
m

∂2πB
m(Qm,Tm)

∂Qm∂Tm

∂2πB
m(Qm,Tm)

∂Tm∂Qm

∂2πB
m(Qm,Tm)

∂T 2
m


where

∂2πB
m(Qm,Tm)

∂Q2
m

= w1

∫∫
δ(x1 −Qm)(−1) f (x1, x2)dx1dx2

= −w1

∫
f (Qm, x2)dx2

∂2πB
m(Qm,Tm)

∂T 2
m

= b2

∫∫
(1− u(x1 − q̃s))δ(x2 −Tm)(−1) f (x1, x2)dx1dx2

+b2

∫∫
u(x1 − q̃s)δ(g(Qm,Tm, x1, x2))(−1) f (x1, x2)dx1dx2

= −b2

∫
(1− u(x1 − q̃s)) f (x1,Tm)dx1

−b2

∫
u(x1 − q̃s) f (x1,Tm − a2(x1 − q̃s))dx1

∂2πB
m(Qm,Tm)

∂Qm∂T
= 0

To show HB is negative semi-definite, it is sufficient to show zT HBz ≤ 0 for any z = (z1, z2)∈R2.

zT HBz = (
∂2πB

m(Qm,Tm)

∂Q2
m

)z2
1 + 2(

∂2πB
m(Qm,Tm)

∂Qm∂Tm
)z1z2 +(

∂2πB
m(Qm,Tm)

∂T 2
m

)z2
2

= −
[

w1

∫
f (Qm, x2)dx2

]
z2

1

−
[

b2

∫
(1− u(x1 − q̃s)) f (x1,Tm)dx1 + b2

∫
u(x1 − q̃s) f (x1,Tm − a2(x1 − q̃s))dx1

]
z2

2

≤ 0

Convex Optimization. Let

L(Qm,Tm,λQ,1,λQ,2,λT ) = π
B
m(Qm,Tm)+ λQ,1Qm + λQ,2(q̃s −Qm)+ λT Tm

The optimal solution in Region B has to satisfy the following equations:
∂πB

m(Qm,Tm)

∂Qm
+ λQ,1 − λQ,2 = 0 (EC.12a)

∂πB
m(Qm,Tm)

∂Tm
+ λT = 0 (EC.12b)

λQ,1Qm = 0 (EC.12c)

λQ,2(q̃s −Qm) = 0 (EC.12d)

λT Tm = 0 (EC.12e)

λQ,1,λQ,2,λT ,Qm, (q̃s −Qm),Tm ≥ 0 (EC.12f)



ec11

Let (QB
m,T

B
m ,λ

B
Q,1,λ

B
Q,2,λ

B
T ) be any solution satisfying Eqn (EC.16a) - (EC.16f). The solution must satisfy the

following conditions:

(a) λB
T = 0. We prove this by contradiciton. Suppose λB

T > 0, then by Eqn (EC.16e), it must hold that

T B
m = 0. Then

∂πB
m(Qm,Tm)

∂Tm
+ λT

= −b1 + b2

∫∫
(1− u(x1 − q̃s))u(x2) f (x1, x2)dx1dx2

+b2

∫∫
u(x1 − q̃s)u(x2 + a2(x1 − q̃s)) f (x1, x2)dx1dx2 + λ

B
T

= −b1 + b2

∫∫
(1− u(x1 − q̃s)) f (x1, x2)dx1dx2 + b2

∫∫
u(x1 − q̃s) f (x1, x2)dx1dx2 + λ

B
T

= −b1 + b2 + λ
B
T

> 0

which contracdicts with Eqn (EC.16b).

(b) λB
Q,1 = 0. We prove this by contradiciton. Suppose λB

Q,1 > 0, then it must hold that QB
m = 0 (by Eqn

(EC.16c)) and λB
Q,2 = 0 (by Eqn (EC.16d)) . Then

∂πB
m(Qm,Tm)

∂Qm
+ λQ,1 − λQ,2

= −w+w1

∫∫
u(x1 − 0) f (x1, x2)dx1dx2 + λ

B
Q,1 − 0

= −w+w1 + λ
B
Q,1

> 0

which contracdicts with Eqn (EC.16a).

(c) λB
Q,2 > 0 ⇐⇒ w < c. First we prove λB

Q,2 > 0 ⇒ w < c. Since λB
Q,2 > 0, we have QB

m = q̃s and T B
m = t̃s.

Then from Eqn (EC.16a) we have

−w+w1

∫∫
u(x1 − q̃s) f (x1, x2)dx1dx2 − λ

B
Q,2 = 0

Note that by Proposition 1, we have w1
∫∫

u(x1− q̃s) f (x1, x2)dx1dx2 = c. Hence we have w = c−λB
Q,2 <

c. Second, we prove λB
Q,2 > 0 ⇐ w < c. We prove by contradiction. Suppose λB

Q,2 > 0 does not hold,

then it must be λB
Q,2 = 0. Note from Eqn (EC.16a), we have

−w+w1

∫∫
u(x1 − q̃s) f (x1, x2)dx1dx2 − λ

B
Q,2 = 0

It gives w = w1
∫∫

u(x1 − q̃s) f (x1, x2)dx1dx2 = c, which contradicts with the induction assumption.

Combining the above (a) - (c) cases, we have that: for all w ≥ c, (QB
m,T

B
m ) can be obtained by solving a

system of equations: ∂πB
m(Qm,Tm)

∂Qm
= 0, ∂πB

m(Qm,Tm)

∂Tm
= 0, which gives T B

m = t̃s and QB
m is the solution to w1H1(q)−

w = 0.

■
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Proof of Proposition 5. The proof can be done by taking derivatives with respect to the parameters in

Eqn (7), similar to the proof provided for Proposition 3. It is omitted.

■

Proof of Theorem 1. We treat ∆ = πA
m(Q

A
m,T

A
m )− πB

m(Q
B
m,T

B
m ) as a function of (w,w1) and express it by

∆(w,w1). Next, we analyze the sign of ∆ by fixing w1. Since wa > wb, by applying Proposition 2 and 4, we

have

∆(w,w1) =


π

A
m(q

A, tA)− π
B
m(q̃s, t̃s)> 0 for w ≤ wb

π
A
m(q

A, tA)− π
B
m(q

B, tB) for wb < w < wa

π
A
m(q̃s, t̃s)− π

B
m(q

B, tB)< 0 for w ≥ wa

For wb < w < wa, plugging in (qA, tA) and (qB, tB) to πA
m, πB

m, where πA
m and πB

m are expressed in (EC.1) and

(EC.15), we have

∂∆(w,w1)

∂w
=

[
∂πA

m(q
A, tA)

∂w
+

∂πA
m(q

A, tA)

∂qA

∂qA

∂w
+

∂πA
m(q

A, tA)

∂tA

∂tA

∂w
+

∂πA
m(q

A, tA)

∂q̃s

∂q̃s

∂w

]
−
[

∂πB
m(q

B, tB)

∂w
+

∂πB
m(q

B, tB)

∂qB

∂qB

∂w
+

∂πB
m(q

B, tB)

∂tB

∂tB

∂w
+

∂πB
m(q

B, tB)

∂q̃s

∂q̃s

∂w

]
= qB − qA (EC.13)

< 0

Therefore ∆(w,w1) decreases in w. Since ∆(w,w1) is also continuous in w, and note ∆(wb,w1) > 0 and

∆(wa,w1)< 0, then there must exists a w̃ ∈ (wb,wa) such that ∆(w̃,w1) = 0. As a result, we have ∆(w,w1)>

0 for w < w̃, and ∆(w,w1)< 0 for w > w̃. The w̃ is the w that satisfies the following:

π
A
m(q

A, tA)− π
B
m(q

B, tB) = 0

which is the equivalent to the w satisfying the following equation:

wqA + b1tA +w2

∫∫
u(x1 − qA)[x1 − qA] f (x1, x2)dx1dx2

+b2

∫∫
u(x1 − qA)u(x2 + a2(x1 − qA)− tA)[x2 + a2(x1 − qA)− tA] f (x1, x2)dx1dx2

+b2

∫∫
[1− u(x1 − qA)]u(x2 − tA)[x2 − tA] f (x1, x2)dx1dx2

= wqB + b1tB +w1

∫∫
u(x1 − qB)[x1 − qB] f (x1, x2)dx1dx2

+(w2 −w1)
∫∫

u(x1 − q̃s)[x1 − q̃s] f (x1, x2)dx1dx2

+b2

∫∫
(1− u(x1 − q̃s))u(x2 − tB)[x2 − tB] f (x1, x2)dx1dx2

+b2

∫∫
u(x1 − q̃s)u(x2 + a2(x1 − q̃s)− tB)[x2 + a2(x1 − q̃s)− tB] f (x1, x2)dx1dx2 (EC.14)

Note that (qA, tA) and (qB, tB) have to simultaneously satisfy Eqn. (6) and (7) that also involve w. That said,

we can jointly solve (w,qA, tA,qB, tB) by combining the equations and the solution is unique.

■
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Proof of Theorem 2. Let us use a superscript β to denote project firm 2’s profit functions and decisions

in his project supply chain. For example, let (qA,β, tA,β), (qB,β, tB,β), (q̃β

s , t̃β

s ) be the counterparts of (qA, tA),

(qB, tB), (q̃s, t̃s), and πA,β
m (qA,β, tA,β), πB,β

m (qB,β, tB,β) be the counterparts of πA
m(q

A, tA), πB
m(q

B, tB), where the

material costs of project firm 2 are all adjusted by a factor of β. Furthermore, we define

Λ(β) = ∆(βw,βw1|βc,βw2) = π
A,β
m (qA,β, tA,β)− π

B,β
m (qB,β, tB,β)

Λ(β) is continuous in β because both πA,β
m and πB,β

m are continuous in β.

Define β̄ = sup{β : ∆(βw,βw1|βc,βw2) ≥ 0}. We next prove the following lemma, which basically

implies that Λ(β)< 0 (or =,>) if and only if β > β̄ (or =,<).

LEMMA EC.1. For any β0 satisfying Λ(β0) = 0, we must have dΛ(β)

dβ
|β=β0 < 0.

Proof of Lemma EC.1. First, we derive explicitly Λ(β) and dΛ(β)

dβ
as follows:

Λ(β) = π
A,β
m (qA,β, tA,β)− π

B,β
m (qB,β, tB,β)

=
[
V −Ex1

{
βw · qA,β + βw2 · (x1 − qA,β)+

}
−Ex1,x2

{
b1tA,β + b2[x2 + a2 · (x1 − qA,β)+ − tA,β]+

}]
−
[
V −Ex1

{
βw · qB,β + βw1 ·min{q̃β

s − qB,β, (x1 − qB,β)+}+ βw2 · (x1 − q̃β

s )
+
}

−Ex1,x2

{
b1tB,β + b2[x2 + a2 · (x1 − q̃β

s )
+ − tB,β]+

}]
= Ex1

{
βw · qB,β + βw1 · (x1 − qB,β)+ + β(w2 −w1) · (x1 − q̃β

s )
+
}

+Ex1,x2

{
b1tB,β + b2[x2 + a2 · (x1 − q̃β

s )
+ − tB,β]+

}
−Ex1

{
βw · qA,β + βw2 · (x1 − qA,β)+

}
−Ex1,x2

{
b1tA,β + b2[x2 + a2 · (x1 − qA,β)+ − tA,β]+

}
and

dΛ(β)

dβ
=

∂Λ(β)

∂β
+

∂Λ(β)

∂qA,β

∂qA,β

∂β
+

∂Λ(β)

∂tA,β

∂tA,β

∂β
+

∂Λ(β)

∂qB,β

∂qB,β

∂β
+

∂Λ(β)

∂tB,β

∂tB,β

∂β
+

∂Λ(β)

∂q̃β

s

∂q̃β

s

∂β

= Ex1

{
w · qB,β +w1 · (x1 − qB,β)+ +(w2 −w1) · (x1 − q̃β

s )
+
}

−Ex1

{
w · qA,β +w2 · (x1 − qA,β)+

}
Next, we show that for any Λ(β0) = 0, dΛ(β)

dβ
|β=β0 < 0. We consider two cases.

(1) qA,β0
> q̃β0

s . In this case, we have

Ex1,x2

{
b1tA,β0

+ b2[x2 + a2 · (x1 − qA,β0
)+ − tA,β0

]+
}

≤ Ex1,x2

{
b1tB,β0

+ b2[x2 + a2 · (x1 − qA,β0
)+ − tB,β0

]+
}

< Ex1,x2

{
b1tB,β0

+ b2[x2 + a2 · (x1 − q̃β0

s )+ − tB,β0
]+
}
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where this first inequality holds by the optimality of tA,β0 (corresponding to qA,β0), and the second

inequality holds by qA,β0
> q̃β0

s . Combining the above inequality with Λ(β0) = 0, we get

Ex1

{
β

0w · qB,β0
+ β

0w1 · (x1 − qB,β0
)+ + β

0(w2 −w1) · (x1 − q̃β0

s )+
}

−Ex1

{
β

0w · qA,β0
+ β

0w2 · (x1 − qA,β0
)+
}
< 0

which leads to dΛ(β)

dβ
|β=β0 < 0.

(2) qA,β0
= q̃β0

s . In this case, we have

Ex1,x2

{
b1tA,β0

+ b2[x2 + a2 · (x1 − qA,β0
)+ − tA,β0

]+
}

= Ex1,x2

{
b1tB,β0

+ b2[x2 + a2 · (x1 − q̃β0

s )+ − tB,β0
]+
}

and therefore

Ex1

{
β

0w · qB,β0
+ β

0w1 · (x1 − qB,β0
)+ + β

0(w2 −w1) · (x1 − q̃β0

s )+
}

−Ex1

{
β

0w · qA,β0
+ β

0w2 · (x1 − qA,β0
)+
}
= 0

Recall that qB,β0 is the minimizer in region B, and the above equality implies qB,β0
= q̃β0

s = qA,β0 . We

note that qB,β0
= q̃β0

s if and only if w = c, and when w = c, we can show q̃β0

s ̸= qA,β0 . This case does not

exist.

The above two cases conclude the proof for Lemma EC.1. The lemma implies that Λ(β) crosses 0 from

above at most once.

By the definition of β̄ and the continuity of Λ(β), we proved that Λ(β)< 0 (or =,>) if and only if β > β̄

(or =,<). This completes the proof for the three cases stated in Theorem 2.

For the remainder of Theorem 2, note that if project firm 1 prefers to push-pull, it implies Λ(1)≤ 0. By

the single crossing property of Λ(β) and the definition of β̄, we have β̄ ≤ 1. Similarly we can show that if

project firm 1 prefers to push, we have β̄ ≥ 1.

■

Proof of Corollary 1. The corollary follows directly from Theorem 1 by setting b1 = b2 = 0, and the

proof is omitted.

■

Proof of Proposition 6. Let w̃(b1,b2) denote the w such that ∆(w,w1,b1,b2) = 0.

d∆(w,w1,b1,b2)

db1
=

[
∂πA

m(q
A, tA)

∂b1
+

∂πA
m(q

A, tA)

∂qA

∂qA

∂b1
+

∂πA
m(q

A, tA)

∂tA

∂tA

∂b1
+

∂πA
m(q

A, tA)

∂q̃s

∂q̃s

∂b1

]
−
[

∂πB
m(q

B, tB)

∂b1
+

∂πB
m(q

B, tB)

∂qB

∂qB

∂b1
+

∂πB
m(q

B, tB)

∂tB

∂tB

∂b1
+

∂πB
m(q

B, tB)

∂q̃s

∂q̃s

∂b1

]
=

∂πA
m(q

A, tA)

∂b1
− πB

m(q
B, tB)

∂b1

= tB − tA

> 0
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Hence, ∆(w,w1,b1,b2) > ∆(w,w1,0,b2). Let w̃(b1,b2), w̃(0,b2) satisfy ∆(w̃(b1,b2),w1,b1,b2) = 0 and

∆(w̃(0,b2),w1,b1,b2) = 0. First we have ∆(w̃(0,b2),w1,b1,b2)> ∆(w̃(0,b2),w1,0,b2) = 0 due to the above result.

Hence ∆(w̃(0,b2),w1,b1,b2)> ∆(w̃(b1,b2),w1,b1,b2). Then since ∆ is decreasing in w, we must have w̃(0,b2) <

w̃(b1,b2).

Next we show w̃(0,b2) = w̃(0,0). We first show ∆(w,w1,0,b2) = ∆(w,w1,0,0). As a result of this, if

w̃(0,b2) satisfies ∆(w̃(0,b2),w1,0,b2) = 0, it must also satisfy ∆(w̃(0,b2),w1,0,0) = 0. Therefore w̃(0,b2) =

w̃(0,0). Let qA(b1,b2), tA(b1,b2) be the optimal decision in region A that is contingent on (b1,b2), and

similarly for qB(b1,b2), tB(b1,b2). By Eqn (6) we have tA(0,b2) = +∞. Similarly, tB(0,b2) = +∞.

Moreover, by Eqn (6) we can have qA(0,b2) = qA(0,0), since H2(qA,+∞) = 0. One can then ver-

ify that πA
m(q

A(0,b2), tA(0,b2)) = πA
m(q

A(0,0), tA(0,0)) and πB
m(q

B(0,b2), tB(0,b2)) = πB
m(q

B(0,0), tB(0,0)).

As a result, ∆(w,w1,0,b2) = πA
m(q

A(0,b2), tA(0,b2)) − πB
m(q

B(0,b2), tB(0,b2)) = πA
m(q

A(0,0), tA(0,0)) −
πB

m(q
B(0,0), tB(0,0)) = ∆(w,w1,0,0).

Combining the above, we have w̃(0,0) = w̃(0,b2) < w̃(b1,b2), which completes the proof (note that there is a

slight difference of notation used in the proposition: w̃(b1,b2) = w̃ and w̃(0,0) = w̃φ).

■

Proof of Proposition 7. We consider the following contract cases:

(1) Contracts in {(w,w1) : w < w̃}. By Proposition 6, we further consider two sub-cases:

• w < w̃φ. In this case, by Corollary 1, we have Qφ

m = qφ,A; and by Theorem 1, Q∗
m = qA. Therefore,

we have

w2H1(qA) = w− a2b2H2(qA, tA)

w2H1(qφ,A) = w

where the first equation is from Eqn (6), and the second is from Eqn (8). Since H2(qA, tA)> 0, we

have H1(qA)< H1(qφ,A). Hence, qA > qφ,A. That is, Q∗
m > Qφ

m. Note that this case is the push region,

and therefore Q∗
m = Q∗

s Qφ

m = Qφ

s . Hence Q∗
s > Qφ

s .

• w̃φ < w < w̃. In this case, by Corollary 1, we have Qφ

m = qφ,B; and by Theorem 1, Q∗
m = qA.

Therefore, we have

w2H1(qA) = w− a2b2H2(qA, tA)

w1H1(qφ,B) = w

where the first equation is from Eqn (6), and the second is from Eqn (9). Since w1 ≤ w2, we

have H1(qA)< H1(qφ,B). Hence, qA > qφ,B. That is, Q∗
m > Qφ

m. Note that in this case we also have

Q∗
s = Q∗

m > q̃s = Qφ

s . Hence Q∗
s > Qφ

s .

• w = w̃φ. In this case, Qφ

m = qφ,A or Qφ

m = qφ,B; and Q∗
m = qA. For either case of Qφ

m, we have Qφ

m < Q∗
m

as is shown above. The result for Qφ

s and Q∗
s holds as well.
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Q∗
m > Qφ

m and Q∗
s > Qφ

s ;

(2) Contracts in {(w,w1) : w > w̃}. In this case, by Corollary 1, we have Qφ

m = qφ,B; and by Theorem 1,

Q∗
m = qB. qB = qφ,B by Eqn (7) and (9). Moreover, Q∗

s = Qφ

s = q̃s.

(3) Contracts in {(w,w1) : w = w̃}. The stated result follows immediately by combining the analysis for

the above two cases.

■

Proof of Proposition 8. Let g1(Qm,Tm, x1, x2) = x2 + a1(x1 − Qm) − Tm, and g2(Qm,Tm, x1, x2) = x2 +

a1(x1 − Qm) + (a2 − a1)(x1 − q̃s) − Tm. For simplicity, we write g1,g2 and drop their dependencies on

the parameters when the context is clear. Based on these, we can write the project firm’s expected profit

π̂B
m(Qm,Tm) as

π̂
B
m(Qm,Tm) = Ex1,x2 {V −wQm −w1(x1 −Qm)

+ − (w2 −w1)(x1 − q̃s)
+

−b1Tm − b2[x2 + a1(x1 −Qm)
+ +(a2 − a1)(x1 − q̃s)

+ −Tm]
+}

= Ex1,x2 {V −wQm −w1u(x1 −Qm)[x1 −Qm]− (w2 −w1)u(x1 − q̃s)[x1 − q̃s]

−b1Tm − b2(1− u(x1 −Qm))u(x2 −Tm)[x2 −Tm]

−b2u(x1 −Qm)(1− u(x1 − q̃s))u(g1)[g1]

−b2u(x1 − q̃s)u(g2)[g2]} (EC.15)

Concavity of π̂B
m(Qm,Tm). We show the concavity of π̂B

m(Qm,Tm) by showing its Hessian matrix is negative

semi-definite. We first derive the first order derivative of π̂B
m(Qm,Tm) below.

∂π̂B
m(Qm,Tm)

∂Qm
= Ex1,x2 {−w−w1δ(x1 −Qm)(−1) [x1 −Qm]−w1u(x1 −Qm)(−1)

−b2(−δ(x1 −Qm))(−1)u(x2 −Tm)[x2 −Tm]

−b2δ(x1 −Qm)(−1)(1− u(x1 − q̃s))u(g1)[g1]

−b2u(x1 −Qm)(1− u(x1 − q̃s))δ(g1)(−a1)[g1]

−b2u(x1 −Qm)(1− u(x1 − q̃s))u(g1)[−a1]

−b2u(x1 − q̃s)δ(g2)(−a1)[g2]

−b2u(x1 − q̃s)u(g2)[−a1]}

= −w+w1

∫∫
u(x1 −Qm) f (x1, x2)dx1dx2

+a1b2

∫∫
u(x1 −Qm)(1− u(x1 − q̃s))u(g1(Qm,Tm, x1, x2)) f (x1, x2)dx1dx2

+a1b2

∫∫
u(x1 − q̃s)u(g2(Qm,Tm, x1, x2)) f (x1, x2)dx1dx2
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where the first equality holds due to interchanging derivative and expectation, and the second equality holds

due to the property of the Dirac delta (δ) function (see similar property in the proof of Proposition 2).

Similarly, for Tm we have

∂π̂B
m(Qm,Tm)

∂Tm
= Ex1,x2 {−b1 − b2(1− u(x1 −Qm))δ(x2 −Tm)(−1) [x2 −Tm]− b2(1− u(x1 −Qm))u(x2 −Tm) [−1]

−b2u(x1 −Qm)(1− u(x1 − q̃s))δ(g1)(−1)[g1]

−b2u(x1 −Qm)(1− u(x1 − q̃s))u(g1)[−1]

−b2u(x1 − q̃s)δ(g2)(−1)[g2]

−b2u(x1 − q̃s)u(g2)[−1]}

= −b1 + b2

∫∫
(1− u(x1 −Qm))u(x2 −Tm) f (x1, x2)dx1dx2

+b2

∫∫
u(x1 −Qm)(1− u(x1 − q̃s))u(g1(Qm,Tm, x1, x2)) f (x1, x2)dx1dx2

+b2

∫∫
u(x1 − q̃s)u(g2(Qm,Tm, x1, x2)) f (x1, x2)dx1dx2

Next we show that π̂B
m(Qm,Tm) is concave by showing its Hessian matrix, denoted by HB, is negative semi-

definite. The Hessian HB is defined by

HB =


∂2π̂B

m(Qm,Tm)

∂Q2
m

∂2π̂B
m(Qm,Tm)

∂Qm∂Tm

∂2π̂B
m(Qm,Tm)

∂Tm∂Qm

∂2π̂B
m(Qm,Tm)

∂T 2
m


The elements of HB are derived below:

∂2π̂B
m(Qm,Tm)

∂Q2
m

= −w1

∫
f (Qm, x2)dx2 − a1b2

∫
u(x2 −Tm) f (Qm, x2)dx2

−a2
1b2

∫
u(x1 −Qm)(1− u(x1 − q̃s)) f (x1,Tm − a1(x1 −Qm))dx1

−a2
1b2

∫
u(x1 − q̃s) f (x1,Tm − a1(x1 −Qm)− (a2 − a1)(x1 − q̃s))dx1

∂2π̂B
m(Qm,Tm)

∂T 2
m

= −b2

∫
(1− u(x1 −Qm)) f (x1,Tm)dx1

−b2

∫
u(x1 −Qm)(1− u(x1 − q̃s)) f (x1,Tm − a1(x1 −Qm))dx1

−b2

∫
u(x1 − q̃s) f (x1,Tm − a1(x1 −Qm)− (a2 − a1)(x1 − q̃s))dx1

∂2π̂B
m(Qm,Tm)

∂Qm∂T
= −a1b2

∫
u(x1 −Qm)(1− u(x1 − q̃s)) f (x1,Tm − a1(x1 −Qm))dx1

−a1b2

∫
u(x1 − q̃s) f (x1,Tm − a1(x1 −Qm)− (a2 − a1)(x1 − q̃s))dx1

To show HB is negative semi-definite, it is sufficient to show zT HBz ≤ 0 for any z = (z1, z2)∈R2.

zT HBz = (
∂2π̂B

m(Qm,Tm)

∂Q2
m

)z2
1 + 2(

∂2π̂B
m(Qm,Tm)

∂Qm∂Tm
)z1z2 +(

∂2π̂B
m(Qm,Tm)

∂T 2
m

)z2
2
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= −
[

w1

∫
f (Qm, x2)dx2 + a1b2

∫
u(x2 −Tm) f (Qm, x2)dx2

]
z2

1

−
[

b2

∫
[1− u(x1 −Qm)] f (x1,Tm)dx1

]
z2

2

−
[

b2

∫
u(x1 −Qm)(1− u(x1 − q̃s)) f (x1,Tm − a1(x1 −Qm))dx1

]
(a1z1 + z2)

2

−
[

b2

∫
u(x1 − q̃s) f (x1,Tm − a1(x1 −Qm)− (a2 − a1)(x1 − q̃s))dx1

]
(a1z1 + z2)

2

≤ 0

Convex Optimization. Since π̂B
m(Qm,Tm) is concave and B = {(Qm,Tm) : Qm ≤ q̃s,Qm ≥ 0,Tm ≥ 0} is a

convex set, we can apply Lagrangian approach to derive the solution to the optimization problem. Let

L(Qm,Tm,λQ,1,λQ,2,λT ) = π̂
B
m(Qm,Tm)+ λQ,1Qm + λQ,2(q̃s −Qm)+ λT Tm

where ,λQ,2,λT are lagrangian multipliers. The optimal solution (QB
m,T

B
m ) can be found by solving the fol-

lowing equations:

∂π̂B
m(Qm,Tm)

∂Qm
+ λQ,1 − λQ,2 = 0 (EC.16a)

∂π̂B
m(Qm,Tm)

∂Tm
+ λT = 0 (EC.16b)

λQ,1Qm = 0 (EC.16c)

λQ,2(q̃s −Qm) = 0 (EC.16d)

λT Tm = 0 (EC.16e)

λQ,1,λQ,2,λT ,Qm, (q̃s −Qm),Tm ≥ 0 (EC.16f)

Let (QB
m,T

B
m ,λ

B
Q,1,λ

B
Q,2,λ

B
T ) be a solution satisfying Eqn (EC.16a) - (EC.16f). The solution must satisfy the

following conditions:

(a) λB
T = 0. We prove this by contradiciton. Suppose λB

T > 0, then by Eqn (EC.16e), it must hold that

T B
m = 0. Then

∂π̂B
m(Qm,Tm)

∂Tm
+ λT

= −b1 + b2

∫∫
(1− u(x1 −QB

m))u(x2 −T B
m ) f (x1, x2)dx1dx2

+b2

∫∫
u(x1 −QB

m)(1− u(x1 − q̃s))u(g1(QB
m,T

B
m , x1, x2)) f (x1, x2)dx1dx2

+b2

∫∫
u(x1 − q̃s)u(g2(QB

m,T
B

m , x1, x2)) f (x1, x2)dx1dx2 + λ
B
T

= −b1 + b2 + λ
B
T

> 0

which contracdicts with Eqn (EC.16b).
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(b) λB
Q,1 = 0. We prove this by contradiciton. Suppose λB

Q,1 > 0, then it must hold that QB
m = 0 (by Eqn

(EC.16c)) and λB
Q,2 = 0 (by Eqn (EC.16d)) . Then

∂π̂B
m(Qm,Tm)

∂Qm
+ λQ,1 − λQ,2

= −w+w1

∫∫
u(x1 −QB

m) f (x1, x2)dx1dx2

+a1b2

∫∫
u(x1 −QB

m)(1− u(x1 − q̃s))u(g1(QB
m,T

B
m , x1, x2)) f (x1, x2)dx1dx2

+a1b2

∫∫
u(x1 − q̃s)u(g2(QB

m,T
B

m , x1, x2)) f (x1, x2)dx1dx2 + λ
B
Q,1 − 0

≥ −w+w1

∫∫
u(x1 − 0) f (x1, x2)dx1dx2 + λ

B
Q,1

= −w+w1 + λ
B
Q,1

> 0

which contracdicts with Eqn (EC.16a).

(c) λB
Q,2 > 0 ⇐⇒ w < c+ a1b2

∫∫
u(x1 − q̃s)u(x2 + a2(x1 − q̃s)− t̃s) f (x1, x2)dx1dx2.

First we prove λB
Q,2 > 0 ⇒ w < c + a1b2

∫∫
u(x1 − q̃s)u(x2 + a2(x1 − q̃s) − t̃s) f (x1, x2)dx1dx2. Since

λB
Q,2 > 0, we have QB

m = q̃s and T B
m = t̃s. Then from Eqn (EC.16a) we have

−w+w1

∫∫
u(x1 − q̃s) f (x1, x2)dx1dx2 + a1b2

∫∫
u(x1 − q̃s)u(g2(q̃s, t̃s, x1, x2)) f (x1, x2)dx1dx2 − λ

B
Q,2 = 0

which gives w < c+ a1b2
∫∫

u(x1 − q̃s)u(x2 + a2(x1 − q̃s)− t̃s) f (x1, x2)dx1dx2.

Second, we prove λB
Q,2 > 0 ⇐ w < c + a1b2

∫∫
u(x1 − q̃s)u(x2 + a2(x1 − q̃s)− t̃s) f (x1, x2)dx1dx2. We

prove by contradiction. Suppose λB
Q,2 > 0 does not hold, then it must be λB

Q,2 = 0. Note from Eqn

(EC.16b), we have

−b1 + b2

∫∫
(1− u(x1 −QB

m))u(x2 −T B
m ) f (x1, x2)dx1dx2

+b2

∫∫
u(x1 −QB

m)(1− u(x1 − q̃s))u(x2 + a1(x1 −QB
m)−T B

m ) f (x1, x2)dx1dx2

+b2

∫∫
u(x1 − q̃s)u(x2 + a1(x1 −QB

m)+ (a2 − a1)(x1 − q̃s)−T B
m )) f (x1, x2)dx1dx2 = 0

and by definition of t̃s, we have

−b1 + b2

∫∫
u(x1 − q̃s)u(x2 + a2(x1 − q̃s)− t̃s) f (x1, x2)dx1dx2

+b2

∫∫
[1− u(x1 − q̃s)]u(x2 − t̃s) f (x1, x2)dx1dx2 = 0

Therefore by Eqn (EC.16a), we have

w = w1

∫∫
u(x1 −QB

m) f (x1, x2)dx1dx2
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+a1b2

∫∫
u(x1 −QB

m)(1− u(x1 − q̃s))u(x2 + a1(x1 −QB
m)−T B

m ) f (x1, x2)dx1dx2

+a1b2

∫∫
u(x1 − q̃s)u(x2 + a1(x1 −QB

m)+ (a2 − a1)(x1 − q̃s)−T B
m )) f (x1, x2)dx1dx2

= w1

∫∫
u(x1 −QB

m) f (x1, x2)dx1dx2

+a1b2

∫∫
u(x1 − q̃s)u(x2 + a2(x1 − q̃s)− t̃s) f (x1, x2)dx1dx2

+a1b2

∫∫
[1− u(x1 − q̃s)]u(x2 − t̃s) f (x1, x2)dx1dx2

−a1b2

∫∫
(1− u(x1 −QB

m))u(x2 −T B
m ) f (x1, x2)dx1dx2

≥ w1

∫∫
u(x1 − q̃s) f (x1, x2)dx1dx2

+a1b2

∫∫
u(x1 − q̃s)u(x2 + a2(x1 − q̃s)− t̃s) f (x1, x2)dx1dx2

= c+ a1b2

∫∫
u(x1 − q̃s)u(x2 + a2(x1 − q̃s)− t̃s) f (x1, x2)dx1dx2

which contradicts with the induction assumption.

Combining the above (a) - (c) results, we proved that: if w < c + a1b2
∫∫

u(x1 − q̃s)u(x2 + a2(x1 − q̃s)−

t̃s) f (x1, x2)dx1dx2, we have QB
m = q̃s and T B

m = t̃s; otherwise, (QB
m,T

B
m ) can be obtained by solving a system

of equations: ∂π̂B
m(Qm,Tm)

∂Qm
= 0, ∂π̂B

m(Qm,Tm)

∂Tm
= 0, which is the unique (q, t) to the following system of equations:

w1

∫∫
u(x1 − q) f (x1, x2)dx1dx2

+ a1b2

∫∫
u(x1 − q)(1− u(x1 − q̃s))u(x2 + a1(x1 − q)− t) f (x1, x2)dx1dx2

+ a1b2

∫∫
u(x1 − q̃s)u(x2 + a1(x1 − q)+ (a2 − a1)(x1 − q̃s)− t)) f (x1, x2)dx1dx2 −w = 0

b2

∫∫
(1− u(x1 − q))u(x2 − t) f (x1, x2)dx1dx2

+ b2

∫∫
u(x1 − q)(1− u(x1 − q̃s))u(x2 + a1(x1 − q)− t) f (x1, x2)dx1dx2

+ b2

∫∫
u(x1 − q̃s)u(x2 + a1(x1 − q)+ (a2 − a1)(x1 − q̃s)− t) f (x1, x2)dx1dx2 − b1 = 0

(EC.17)

By the definition of H1, H3, H4 and H5, Eqn (EC.17) is exactly Eqn (10) in the proposition. Let the solution

to Eqn (EC.17) be denoted by (q̂B, t̂B).

Finally, we prove that (q̂B, t̂B)> (qB, tB). First by Eqn (7) and (10), we have

w1H1(qB)−w = 0

w1H1(q̂B)+ a1b2H4(q̂B, t̂B)+ a1b2H5(q̂B, t̂B)−w = 0

Since H4(q̂B, t̂B) > 0 and H5(q̂B, t̂B) > 0, we must have H1(q̂B) < H1(qB). As a result, q̂B > qB. To prove

t̂B > tB, we show by contradiction. Suppose t̂B ≤ tB, by Eqn (10), we have

0 = b2H3(q̂B, t̂B)+ b2H4(q̂B, t̂B)+ b2H5(q̂B, t̂B)− b1
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= b2

∫∫
(1− u(x1 − q̂B))u(x2 − t̂B) f (x1, x2)dx1dx2

+b2

∫∫
u(x1 − q̂B)(1− u(x1 − q̃s))u(x2 + a1(x1 − q̂B)− t̂B) f (x1, x2)dx1dx2

+b2

∫∫
u(x1 − q̃s)u(x2 + a1(x1 − q̂B)+ (a2 − a1)(x1 − q̃s)− t̂B)) f (x1, x2)dx1dx2 − b1

> b2

∫∫
(1− u(x1 − q̂B))u(x2 − t̂B) f (x1, x2)dx1dx2

+b2

∫∫
u(x1 − q̂B)(1− u(x1 − q̃s))u(x2 − t̂B) f (x1, x2)dx1dx2

+b2

∫∫
u(x1 − q̃s)u(x2 + a2(x1 − q̃s)− tB) f (x1, x2)dx1dx2 − b1

≥ b2H3(q̃s, tB)+ b2H2(q̃s, tB)− b1

= 0

where the last equality hols by Eqn (7). This is a contradiction that 0 > 0.

■

Proof of Theorem 3. The main proof is similar to that of Theorem 1 and is omitted. We provide a sketch

of the proof for ŵ > w̃ below. Since a1 > 0, for any (w,w1), we must have π̂B
m(Q̂

B
m, T̂

B
m )< πB

m(Q
B
m,T

B
m ). On

the other hand, π̂A
m(Q̂

A
m, T̂

A
m ) = πA

m(Q
A
m,T

A
m ). Therefore,

∆̂(w,w1)≜ π̂
A
m(Q̂

A
m, T̂

A
m )− π̂

B
m(Q̂

B
m, T̂

B
m )> π

A
m(Q

A
m,T

A
m )− π

B
m(Q

B
m,T

B
m )≜ ∆(w,w1)

This implies that for any w̃ satisfying ∆(w̃,w1) = 0, we have ∆̂(w̃,w1)> 0. Note that ∆̂(w,w1) is decreasing

in w (the proof is omitted, but it is a property similar to that has been shown for ∆(w,w1)). Therefore for the

ŵ satisfying ∆̂(ŵ,w1) = 0, we must have ŵ > w̃.

■

EC.4 Additional numerical results.

We provide detailed numerical results on the project firm’s optimal decision (Q∗
m,T

∗
m ) and expected profit

for project overhead cost b1 ∈ {1,4,8} and project delay penalty b2 ∈ {5,10,20} in Table EC.1 and EC.2,

respectively. Other parameters used in the numerical test are provided under each table.
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Table EC.1 Summary of the project firm’s optimal decision and expected profit for b1 ∈ {1,4,8}.

OPT Region Q∗
m T ∗

m Expected Profit

w w1 1 4 8 1 4 8 1 4 8 1 4 8

1.0 3.0 A A A 137.49 140.18 141.50 127.36 105.54 83.38 919.91 575.24 195.24
1.5 3.0 A A A 133.88 136.72 138.09 128.37 105.79 83.49 852.10 506.06 125.38
2.0 3.0 B A A 91.39 134.13 135.52 187.65 106.05 83.60 824.28 438.36 57.03
2.5 3.0 B A A 80.65 132.01 133.44 187.65 106.32 83.72 810.56 371.79 -10.21
3.0 3.0 B A A 0.00 130.21 131.67 187.65 106.59 83.84 775.70 306.23 -76.48

1.0 3.5 A A A 137.49 140.18 141.50 127.36 105.54 83.38 919.91 575.24 195.24
1.5 3.5 A A A 133.88 136.72 138.09 128.37 105.79 83.49 852.10 506.06 125.38
2.0 3.5 B A A 96.40 134.13 135.52 174.28 106.05 83.60 805.41 438.36 57.03
2.5 3.5 B A A 88.68 132.01 133.44 174.28 106.32 83.72 779.83 371.79 -10.21
3.0 3.5 B A A 78.65 130.21 131.67 174.28 106.59 83.84 738.59 306.23 -76.48
3.5 3.5 B A A 0.00 128.61 130.12 174.28 106.88 83.96 704.38 241.57 -141.92

1.0 4.0 A A A 137.49 140.18 141.50 127.36 105.54 83.38 919.91 575.24 195.24
1.5 4.0 A A A 133.88 136.72 138.09 128.37 105.79 83.49 852.10 506.06 125.38
2.0 4.0 B A A 100.00 134.13 135.52 163.57 106.05 83.60 796.90 438.36 57.03
2.5 4.0 B A A 93.63 132.01 133.44 163.57 106.32 83.72 761.90 371.79 -10.21
3.0 4.0 B A A 86.51 130.21 131.67 163.57 106.59 83.84 717.76 306.23 -76.48
3.5 4.0 B A A 76.99 128.61 130.12 163.57 106.88 83.96 676.71 241.57 -141.92
4.0 4.0 B B B 0.00 0.00 0.00 163.57 112.84 86.78 643.18 204.98 -201.46

1.0 4.5 A A A 137.49 140.18 141.50 127.36 105.54 83.38 919.91 575.24 195.24
1.5 4.5 A A A 133.88 136.72 138.09 128.37 105.79 83.49 852.10 506.06 125.38
2.0 4.5 B A A 102.79 134.13 135.52 155.40 106.05 83.60 792.97 438.36 57.03
2.5 4.5 B A A 97.21 132.01 133.44 155.40 106.32 83.72 752.00 371.79 -10.21
3.0 4.5 B A A 91.39 130.21 131.67 155.40 106.59 83.84 705.70 306.23 -76.48
3.5 4.5 B B A 84.71 84.71 130.12 155.40 111.67 83.96 661.63 246.36 -141.92
4.0 4.5 B B B 75.59 75.59 75.59 155.40 111.67 86.29 621.39 206.11 -196.38
4.5 4.5 B B B 0.00 0.00 0.00 155.40 111.67 86.29 588.43 173.16 -229.34

1.0 5.0 A A A 137.49 140.18 141.50 127.36 105.54 83.38 919.91 575.24 195.24
1.5 5.0 A A A 133.88 136.72 138.09 128.37 105.79 83.49 852.10 506.06 125.38
2.0 5.0 B A A 105.07 134.13 135.52 149.52 106.05 83.60 791.48 438.36 57.03
2.5 5.0 B A A 100.00 132.01 133.44 149.52 106.32 83.72 746.84 371.79 -10.21
3.0 5.0 B A A 94.93 130.21 131.67 149.52 106.59 83.84 698.88 306.23 -76.48
3.5 5.0 B B A 89.51 89.51 130.12 149.52 110.80 83.96 652.77 252.28 -141.92
4.0 5.0 B B B 83.17 83.17 83.17 149.52 110.80 85.92 609.54 209.05 -190.50
4.5 5.0 B B B 74.37 74.37 74.37 149.52 110.80 85.92 569.99 169.50 -230.05
5.0 5.0 B B B 0.00 0.00 0.00 149.52 110.80 85.92 537.53 137.04 -262.51

Other parameters: c = 1, w2 = 5, b2 = 10, a2 = 5, V = 1200. (x1,x2) follows a Gaussian distribution with µ = (100,100), σ =

(20,20), ρ = 0.



ec23

Table EC.2 Summary of the project firm’s optimal decision and expected profit for b2 ∈ {5,10,20}.

OPT Region Q∗
m T ∗

m Expected Profit

w w1 5 10 20 5 10 20 5 10 20 5 10 20

1.0 3.0 A A A 136.34 140.18 143.80 83.56 105.54 117.30 627.78 575.24 537.37
1.5 3.0 A A A 132.56 136.72 140.63 83.78 105.79 117.55 560.61 506.06 466.30
2.0 3.0 A A A 129.68 134.13 138.25 84.00 106.05 117.81 495.08 438.36 396.61
2.5 3.0 A A A 127.31 132.01 136.33 84.24 106.32 118.07 430.86 371.79 327.99
3.0 3.0 A A A 125.26 130.21 134.70 84.47 106.59 118.35 367.71 306.23 260.27

1.0 3.5 A A A 136.34 140.18 143.80 83.56 105.54 117.30 627.78 575.24 537.37
1.5 3.5 A A A 132.56 136.72 140.63 83.78 105.79 117.55 560.61 506.06 466.30
2.0 3.5 A A A 129.68 134.13 138.25 84.00 106.05 117.81 495.08 438.36 396.61
2.5 3.5 A A A 127.31 132.01 136.33 84.24 106.32 118.07 430.86 371.79 327.99
3.0 3.5 A A A 125.26 130.21 134.70 84.47 106.59 118.35 367.71 306.23 260.27
3.5 3.5 B A A 0.00 128.61 133.28 87.48 106.88 118.63 331.48 241.57 193.29

1.0 4.0 A A A 136.34 140.18 143.80 83.56 105.54 117.30 627.78 575.24 537.37
1.5 4.0 A A A 132.56 136.72 140.63 83.78 105.79 117.55 560.61 506.06 466.30
2.0 4.0 A A A 129.68 134.13 138.25 84.00 106.05 117.81 495.08 438.36 396.61
2.5 4.0 A A A 127.31 132.01 136.33 84.24 106.32 118.07 430.86 371.79 327.99
3.0 4.0 B A A 86.51 130.21 134.70 86.78 106.59 118.35 372.36 306.23 260.27
3.5 4.0 B A A 76.99 128.61 133.28 86.78 106.88 118.63 331.31 241.57 193.29
4.0 4.0 B B A 0.00 0.00 132.01 86.78 112.84 118.91 297.78 204.98 126.98

1.0 4.5 A A A 136.34 140.18 143.80 83.56 105.54 117.30 627.78 575.24 537.37
1.5 4.5 A A A 132.56 136.72 140.63 83.78 105.79 117.55 560.61 506.06 466.30
2.0 4.5 A A A 129.68 134.13 138.25 84.00 106.05 117.81 495.08 438.36 396.61
2.5 4.5 A A A 127.31 132.01 136.33 84.24 106.32 118.07 430.86 371.79 327.99
3.0 4.5 B A A 91.39 130.21 134.70 86.29 106.59 118.35 376.97 306.23 260.27
3.5 4.5 B B A 84.71 84.71 133.28 86.29 111.67 118.63 332.89 246.36 193.29
4.0 4.5 B B B 75.59 75.59 75.59 86.29 111.67 129.82 292.65 206.11 129.90
4.5 4.5 B B B 0.00 0.00 0.00 86.29 111.67 129.82 259.69 173.16 96.94

1.0 5.0 A A A 136.34 140.18 143.80 83.56 105.54 117.30 627.78 575.24 537.37
1.5 5.0 A A A 132.56 136.72 140.63 83.78 105.79 117.55 560.61 506.06 466.30
2.0 5.0 A A A 129.68 134.13 138.25 84.00 106.05 117.81 495.08 438.36 396.61
2.5 5.0 A A A 127.31 132.01 136.33 84.24 106.32 118.07 430.86 371.79 327.99
3.0 5.0 B A A 94.93 130.21 134.70 85.92 106.59 118.35 380.11 306.23 260.27
3.5 5.0 B B A 89.51 89.51 133.28 85.92 110.80 118.63 333.98 252.28 193.29
4.0 5.0 B B B 83.17 83.17 83.17 85.92 110.80 127.81 290.75 209.05 136.75
4.5 5.0 B B B 74.37 74.37 74.37 85.92 110.80 127.81 251.20 169.50 97.19
5.0 5.0 B B B 0.00 0.00 0.00 85.92 110.80 127.81 218.74 137.04 64.74

Other parameters: c = 1, w2 = 5, b1 = 4, a2 = 5, V = 1200. (x1,x2) follows a Gaussian distribution with µ = (100,100), σ =

(20,20), ρ = 0.
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