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Abstract

Problem definition:In this paper, we consider a multi-period, multi-product dynamic pricing problem in

which each product is endowed with an exogenous starting inventory level, and there is the added complexity

of an opaque selling option. That is, alongside traditional (transparent) products, the retailer or platform

also has the option to create and price an opaque product, which corresponds to a dummy product comprised

potentially of any subset of the displayed transparent products. In the event that a customer selects the

opaque product, the platform has the freedom to choose any of the opaque product’s constituents to satisfy

this demand. All-in-all, we are left with a classical dynamic pricing problem with a twist, since the addition

of the opaque selling option gives the platform an extra lever of flexibility to balance supply and demand.

Methodology/results: We begin by studying a variant of the problem in which the retailer only offers

and prices an opaque product. In this initial setting, we exploit the special structural of the optimal solution

to a fluid approximation of our dynamic pricing problem to yield a policy whose performance relative to

optimal grows from 1− 1
e
to 1 as the initial inventory levels tend to infinity. Next, we consider a setting

with both transparent and opaque products, and provide a constant factor approximation scheme for this

more nuanced version of the problem. Our approach builds on top of the inventory-tracking basis function

approximation originally conceived by Ma et al. (2020) for network revenue management problems. We also

include two distinct sets of the computational experiments, the first of which demonstrates the efficacy of

our approximation scheme for the opaque-only setting, whereas the second uses our approach for the general

setting to study the revenue gains afforded to platforms that exploit the use of an opaque selling option.

Managerial implications: We provide the first approximation schemes for multi-period, multi-product

dynamic pricing problems with an opaque selling option. Moreover, we exploit these novel algorithms to

show that effectively pricing said opaque option can lead to 5-7% revenue gains over an approach that offers

only transparent products.

Key words : approximation schemes, opaque products, dynamic pricing, online matching

1. Introduction

It is without a doubt that online matching has become a foundational topic in the field of revenue

management and beyond. In its most general and abstract form, this ever-popular problem setting

captures the task of matching a finite collection of heterogeneous supply units (e.g. products,

appointment times, computing resources, etc . . . ) to stochastic demand in a multi-period dynamic
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environment. Its steady ascent to its current status as a central topic of study can be, in part,

attributed to its initial relevance, and eventual prominence, within a host of industries ranging

from retail to hospitality to ridesharing, where various iterations of online matching problems have

been at the forefront of internal operations. This picture of popularity is completed by pointing

to the intriguing breadth and depth of algorithmic questions that have arisen in this context, and

that continue to spawn new and exciting research topics.

Indeed, variants of the traditional online bi-partite matching problem studied by the seminal

works of Karp et al. (1990), Mehta et al. (2007), and Aggarwal et al. (2011), to name a few,

have been re-shaped and extended in a multitude of ways that add novel practical and theoretical

nuances. One such example includes the classical network revenue management problem (Talluri

and Van Ryzin 1998, Adelman 2007, Topaloglu 2009), which considers a variant of online matching

in which matched units of demand consume a combination of atomic resources (e.g. the purchase

of an airline ticket potentially consumes seats on multiple flight legs). Initial formulations of the

network revenue management problem were expanded by adding elements of substitution behavior

via customer choice models (Talluri and Van Ryzin 2004, Liu and Van Ryzin 2008, Gallego et al.

2015b). Applications in this context range from multi-period dynamic pricing akin to the one

studied in the work at-hand (Ma et al. 2021) to appointment scheduling in hospital clinics (Gallego

et al. 2015a). The recent works of Rusmevichientong et al. (2020), Gong et al. (2022) and Feng et al.

(2019) add a completely new dimension to choice-based online matching problems by considering

the prospect of reusable resources, i.e. once a supply unit is consumed, it returns for future use after

a (possibly random) duration of time. Finally, Aouad and Saban (2022) innovate by studying a

two-sided matching problem wherein there is an element of choice on both the demand and supply

sides.

Our work is intended to represent another branch in the growing stream of research that considers

practically motivated adaptations of the classical choice-based online matching problem. Namely,

we study a multi-period, multi-product dynamic pricing problem with an opaque selling option.

More specifically, in addition to the traditional assortment/pricing decision levers, we assume

that the retailer or platform has the option to offer a supplementary opaque option, which is a

dummy product comprised of some subset of the available alternatives. A customer who selects

the opaque option is at the mercy of the platform with regards to the item she receives, i.e. she is

guaranteed to receive an item that is a constituent of the opaque option, but the platform selects

the item she ultimately receives. As such, there is inherent consumer-side uncertainty in selecting

the opaque option, which needs to be accounted for within the presumed choice model that governs

purchasing behavior. Platforms generally counter this uncertainty by offering the opaque option at

a discount, as is depicted in the example at Hotwire in Figure 1. All-in-all, the opaque selling option
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gives platforms such as Hotwire an additional lever to effectively balance supply and demand.

Specifically, they gain the option to offer a discounted opaque product in exchange for flexibility

in the subsequent allocation decision if said opaque product is purchased. In the remainder of

this section, we formalize the exact nature of this trade-off through a rigorous formulation of our

dynamic pricing problem of interest (Section 1.1), summarize past work that considers managerial

and algorithmic implications of adopting opaque selling strategies (Section 1.2), and detail our

main contributions, which are mostly algorithmic in nature (Section 1.3).

Figure 1 Four-star filtered hotel search on Hotwire. Note that there is a discounted opaque option followed by

two transparent options.

1.1. Problem Formulation

We consider the dynamic pricing of n products indexed by the set N = {1, . . . , n}, each endowed

with exogenously given starting inventory levels U1 ∈Nn, over a finite selling horizon that has been

partitioned into T time periods. In each time period, the retailer selects an assortment S ⊆N of

transparent products, as well as a subset of products SO ⊆ S constituting the opaque product, to

make available for purchase. The transparent products represent “typical” products, whose identity

is fully revealed to the customer upon being made available for purchase. The opaque product, on

the the other hand, is a dummy product represented by the subset of products SO. A customer who

selects the opaque product agrees to allow the retailer to provide them with any product i ∈ SO.
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The restriction that SO ⊆ S is imposed to prevent consumer-side confusion/frustration that might

arise if a particular product appears only within the opaque product, and hence cannot be bought

outright as a transparent product. As is eventually formalized in the sequel, we enforce that only

in-stock products can be offered in each period, either as transparent options or as a constituent

of the opaque product.

In addition to the two-fold assortment decisions described above, the retailer is also tasked with

pricing each product i ∈ S, as well the opaque product SO (if SO ̸= ∅), from a discrete set of L

potential price levels. We use pl to denote the l-th price level and the binary vector (xiℓ)i∈N∪{O},ℓ∈[L]

to represent the pricing decisions, where xiℓ = 1 if product i is priced at level ℓ, and xiℓ = 0

otherwise. For fixed assortment decisions S and SO, we let

X (S,SO) =
{
(xiℓ)i∈N∪{O},ℓ∈[L] :

∑
ℓ∈[L]

xiℓ = 1i∈S ∀i∈N ,
∑
ℓ∈[L]

xOℓ = 1SO ̸=∅,

pi(x)≥ pO(x) ∀i∈ SO

}
denote all feasible pricing decisions, where pj(x) =

∑
ℓ∈[L] pℓxjℓ denotes the price charged for any

product j ∈ S ∪{O}. The first set of constraints enforces that all products offered as a transparent

product must be priced at one of the L levels, while the second singleton constraint encodes a

similar notion for the opaque product. The final set of constraints restricts the price of the opaque

product to be below the posted prices of all transparent products that make-up the opaque product.

This latter constraint reflects what is typically observed in practice (See Figure 1), namely, the

opaque product is priced below all of its constituent transparent products.

The general demand model. During each period, a single customer arrives and is assumed to

make an MNL-based choice among the offered transparent products and their opaque counterpart.

A noteworthy modeling challenge that arises with the addition of opaque selling is how to aptly

quantify the choice probability of the opaque option when customers have different risk profiles.

For example, risk-averse customers are likely to be pessimistic, and thus assume that they will be

allocated their least preferred product among those that comprise the opaque product. On the other

hand, less risk-averse or more flexible customers are likely to take on a more balanced perception

of the opaque product, and hence value its contents using an aggregate measure (e.g., average)

of their perceived preferences of the products that make-up the opaque product. Our initially

proposed MNL-based demand model, detailed subsequently, makes no explicit assumptions on how

customers value the opaque product, however, for tractability, future sections will require more

rigid assumptions regarding this modeling choice. When it becomes time to levy such assumptions,

we make explicit note of them, while concurrently providing practical motivation to back their use.
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In our general demand model, under assortment S of transparent products and opaque product

SO, along with pricing decisions x ∈ X (S,SO), we use πi(x,SO) to denote the probability that

product i ∈N ∪{O} is selected for purchase 1. We assume that πi(x,SO) is governed by an MNL

model, where wiℓ = wie
βpℓ denotes the so-called preference weight of transparent product i when

priced at level ℓ. Since the price coefficient is homogeneous across products, we can assume without

loss of generality that the products are indexed in increasing order of weight for every price level

ℓ ∈ [L], i.e. w1ℓ ≤ w2ℓ ≤ . . .≤ wnℓ. Moreover, we use wO(x,SO) to capture the MNL-based weight

of the opaque product, which, for now, we model as an arbitrary function of the posted prices for

the transparent products and the contents of the opaque product itself. We also assume the weight

of the opaque product is a decreasing function of its price. As such, following the well-established

MNL framework (Luce 1959, McFadden 1974), we have that for transparent product i ∈ N , the

choice probability is

πi(x,SO) =
wi(x)

1+
∑

j∈N wj(x)+wO(x,SO)
,

and for the opaque product, we have

πO(x,SO) =
wO(x,SO)

1+
∑

j∈N wj(x)+wO(x,SO)
.

where wi(x) =
∑

ℓ∈[L]wiℓxiℓ denotes the weights of product i under pricing decision x.

Dynamic pricing with opaque products. In what follows, we formulate our dynamic pricing prob-

lem of interest as a dynamic program, whose value functions Vt(Ut) represent the maximum

expected reward that can be garnered by the retailer across periods t, . . . , T , given that the inven-

tories of all product at the start of period t is denoted by the vector Ut = (u1t, . . . , unt). For the

purpose of formally defining the value functions, we let N (Ut) = {i ∈ [n] : uit > 0} denote the set

of products that have yet to stock-out, as specified by the inventory vector Ut. With this notation

in-hand, we present the Bellman equations of our dynamic program below

Vt(Ut) = max
S⊆N (Ut),
SO⊆S

max
x∈X (S,SO)

{∑
i∈S

πi (x,SO) ·
(
pi(x)+Vt+1 (Ut − ei)

)
︸ ︷︷ ︸

expected revenue from transparent products

+

πO (x,SO) ·
(
pO(x)+max

k∈SO
Vt+1 (Ut − ek)

)
︸ ︷︷ ︸

expected revenue from opaque product

+
(
1−

∑
i∈S

πi (x,SO)−πO (x,SO)
)
·Vt+1 (Ut)︸ ︷︷ ︸

expected revenue if customer does not make a purchase

}

= max
S⊆N (Ut),
SO⊆S

max
x∈X (S,SO)

{∑
i∈S

πi (x,SO) ·
(
pi(x)−∆V i

t+1 (Ut)
)
+

πO (x,SO) ·
(
pO(x)− min

k∈SO
∆V k

t+1 (Ut)
)}

+Vt+1(Ut) (1)

1 The dependence of this choice probability on S is not explicitly noted since the pricing decision x encodes the
assortment of transparent products offered
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where ei is the unit vector with a single one in the i-th component and zeros in every other

component, and ∆V i
t (Ut) = Vt (Ut)−Vt (Ut − ei) is the marginal value of single unit of product i at

time t. We also define base cases of VT+1(·) = 0. Note that the recursion given in (1) reflects the

fact that, if product i∈ S ∪{O} is purchased, the retailer accrues a revenue of pi(x), and one unit

of product i is consumed. Additionally, if the arriving customer selects the opaque product, then

it is optimal to assign her a single unit of product argmink∈SO
∆V k

t+1(Ut), i.e., the least valuable

unit among those available in SO. Finally, it is important to note that, due to the high dimensional

state space, it is not computationally tractable to compute the optimal policy via the dynamic

program given in (1).

Modeling remark. Up until this point, we have yet to handle the important corner case in which

|SO|= 1, i.e. the opaque option consists of only a single product. Since offering an opaque product

that consists of a single product is equivalent to offering just the transparent version of this product,

it is imperative that either our demand model reflects this nuance (as written, it currently does not),

or that we disallow such a decision. We adopt the latter, which leads to the following assumption

that is applied to both retroactively and to all future sections in which he retailer has the option

to offer both transparent and opaque products.

Assumption 1. When the retailer has the option to offer both transparent and opaque products,

we enforce that the opaque option cannot be comprised of only a single product, i.e. we implicitly

enforce the constraint that |SO| ̸= 1 for all decisions concerning SO.

1.2. Literature Review

In what follows, we summarize two camps of existing works that relate to opaque selling strategies.

Opaque selling - managerial insights. To the best of our knowledge, Fay and Xie (2008) were

one of the first to consider the potential benefits of offering opaque products. They refer to such

selling strategies as “probabilistic selling”, since the products within the opaque option are to be

allocated with fixed exogenous probabilities, which are known to the consumers. In a simplistic

two product setting, this work shows that probabilistic selling can be an effective tool to deal with

market uncertainty. Huang and Yu (2014) relax the assumption that consumers fully know the

retailer’s probabilistic allocation policy, and show that even in their so-called bounded rationality

setting, opaque selling can still dominate traditional selling strategies. Jerath et al. (2010) and Ren

and Huang (2022) both show that opaque selling often dominates traditional last minute discount

policies when it comes to unsold inventory. Finally, Post and Spann (2012) detail the substantial

revenue growth that ensued after Germanwings, one of Germany’s top low-cost airline, adopted

opaque selling for its unsold tickets.
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Opaque selling - algorithmic insights and results. Anderson and Xie (2012) appear to be one of

the first works to consider dynamic pricing with an opaque product, however their main focus is

on developing and estimating a featurized nested logit model to capture customer choice is settings

where a opaque option is available. Elmachtoub et al. (2015) and Elmachtoub and Hamilton (2021)

were the first to explicitly model how customers might value an opaque product from a utility

perspective. The former paper presents optimal re-stocking and allocation policies in a dynamic

multi-period setting, while the latter paper considers a static pricing setting and shows that optimal

opaque pricing is guaranteed to garner at least 71.9% of the revenue that could be afforded to a

policy that optimally prices all products individually. Both of the two just-mentioned works are

restricted to environments with two products. To the best of our knowledge, Liu et al. (2022) is the

lone other paper that considers a choice-based multi-product, multi-period revenue management

problem with opaque selling, however, they do not explicitly model how the contents of the opaque

product influence choice, nor do they give general approximation guarantees.

1.3. Contributions

Below, we provide a brief summary of our two main algorithmic results.

The opaque-only setting (Section 2). We initially consider a setting where the platform can only

offer an opaque option, and hence the decision in each period is two fold. Namely, the platform must

first select the set of products that comprise the opaque option, and then must select the give-away

product in the event of a purchase. In this so-called opaque-only setting, we consider a general

demand model that draws inspiration from that of Elmachtoub and Hamilton (2021), who consider

a mix of risk-averse and risk-neutral customers. The former group acts under the assumption that

the platform will allocate their least preferred item if they select the opaque option, while the

latter group assumes they will be allocated a product uniformly at random from those within the

opaque option. Under this demand model, we propose a randomized policy that is guided by the

optimal solution to a fluid approximation of the original problem. We show that the performance

of this policy relative to the optimal expected revenue converges from (1− 1
e
) to 1 as the minimum

inventory level tends to infinity. We subsequently provide a simple dynamic-programming-based

procedure to derandomize our policy at no cost to its performance.

The general setting (Section 3). In this section, we reintroduce the platform’s ability to offer

transparent products alongside the opaque option, which is required to be comprised of a subset

of the transparent products. Moreover, the opaque option, if offered, must contain at least two

products. In this more complex setting, we adopt a variant of the classical independent demand

model in which, informally speaking, each customer arrives with the intention of purchasing a

particular (transparent) product, but could be swayed to purchase the opaque option if it contains
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her preferred product. We develop a constant factor approximation scheme, which is based on a

carefully crafted value function approximation. More specifically, we propose a policy that exploits

an approximation of the optimal value functions Vt(Ut) by decomposing the contribution of each

product in terms of its value when sold as a transparent product and its value when used within

the opaque option.

Computational experiments (Sections 4 and 5). In Section 4, we present an extensive set of

computational experiments, which demonstrate the efficacy of the approximation scheme presented

in Section 2 for the opaque-only setting. Generally speaking, we show that our approach performs

far better than its worst-case theoretical guarantee, and for the majority of test instances, it is

within 5% of optimal. In Section 5, our intention is to use the landscape of the general setting

considered in Section 3 to assess the revenue gain afforded to a platform that introduces an opaque

selling option. We build a suite of realistic test cases using a publicly available data set from

Expedia, and benchmark our approach against a pricing policy that ignores the opaque option.

Ultimately, we find that exploiting the flexibility of the opaque option through our approximation

scheme leads to revenue gains of between 5-7%.

2. The Opaque-Only Setting

In this section, we consider a somewhat simplified setting in which the retailer offers (and prices)

only an opaque product in each period. From a technical standpoint, this initial setting still pos-

sesses the defining operational trade-off that is the backbone of this work; namely, even in the

absence of transparent products, the challenge of optimally utilizing the opaque selling option as

a lever to effectively control/balance inventory levels remains a non-trivial task. Moreover, there

are indeed multiple platforms that offer an opaque-only selling option. For example, as in seen

in Figure 2, Priceline’s Pricebreaker option offers three similar hotels (in terms of location, free

internet, star rating, etc . . . ) within an opaque product at a discount price. Consequently, the

opaque-only setting not only serves as an instrumental technical warm-up before tackling the more

general setting with both transparent and opaque products, but it also has its roots in important

practical applications.

The updated dynamic program. In an effort to formalize the opaque-only setting, we present an

updated version of the dynamic program given in (1), which reflects the notion that the retailer

can now only offer and price an opaque product. For this purpose, we use π(ℓ,SO) to denote the

choice probability for an opaque product consisting of products SO priced at level ℓ, whose exact

structure is formalized shortly. With this notation in-hand, the value functions given in (1) simplify

to

Vt(Ut) = max
SO⊆N (Ut),

ℓ∈[L]

{
π (ℓ,SO) ·

(
pℓ − min

k∈SO
∆V k

t+1 (Ut)
)}

+Vt+1(Ut), (2)
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Figure 2 Opaque-only selling option at Priceline

with base cases VT+1(·) = 0. The recursion in (2) reflects the notion that in the opaque-only setting,

the retailer’s decision in each period concerns selecting the contents of the opaque product and its

price. It is important to note that computing the optimal policy via backward induction remains

intractable due to the curse of dimensionality, i.e. the size of the state space grows exponentially

in n.

The demand model. Following almost exactly the demand framework of the seminal work

of Elmachtoub and Hamilton (2021), we assume that the customer population consists of a mix of

risk-averse (RA) and risk-neutral (RN) customers. The risk-averse customers associate a preference

weight of wRA
ℓ (SO) =mini∈SO wiℓ with opaque product SO priced at level ℓ, while the risk-neutral

customers associate a weight of wRN
ℓ (SO) =

∑
i∈SO

wiℓ

|SO| . Informally speaking, risk-averse customers

assume they will be allocated their least preferred product, while risk-neutral customers are more

optimistic, and essentially operate under the assumption that they will be allocated one of the

|SO| products uniformly at random. In sum, letting α denote the fraction of the population that

is risk-averse, the choice probability for opaque product SO priced at level ℓ is

π(ℓ,SO) = α · wRA
ℓ (SO)

1+wRA
ℓ (SO)

+ (1−α) · wRN
ℓ (SO)

1+wRN
ℓ (SO)

.

It is important to note that, for risk-neutral customers, it is quite possible that the weight of the

opaque product will decrease if a low weight product is added to the opaque option. Consequently,

our demand model breaks from the traditional random-utility-maximization-based choice models
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in that removing a product from the offered assortment can actually decrease the appeal of the no-

purchase option. The opposite is true under any random-utility-maximization-based choice model,

2 where the removal of an offered product always raises the chances the no-purchase option will be

selected.

Main theorem. Having fully formalized the details of the opaque-only setting, we state our main

theorem, and devote the remainder of the section to the details of its proof. For the remainder

of the paper, we use OPT = V1(U1) to denote the optimal revenue for both the opaque-only and

general setting.

Theorem 1. There exists a deterministic policy that garners an expected revenue of at least

APX(umin) ·OPT, where umin =mini∈N u1i is the smallest starting inventory level across all products

and

APX(u) = 1− uu

u!
· e−u.

Before beginning the exposition of our proof of the above theorem, we first note that APX(u)

increasing from 1 − 1
e
to 1 as u increases from 1 to ∞. Consequently, our algorithm performs

near-optimally as long as the starting inventory levels of all products are reasonably large.

2.1. Technical overview

In what follows, we provide a summary of the three main steps required to prove Theorem 1.

Step 1: The fluid approximation (Section 2.2). In this first step, we present a deterministic fluid

approximation of our problem, whose optimal objective value is well-known to provide an upper

bound on OPT. We formulate this fluid approximation as a linear program with decision variable

h(ℓ,SO, i) for each price level ℓ∈ [L], opaque product SO ⊆N , and product i∈ SO, that represents

the (potentially fractional) number of periods in which we offer opaque product SO at price pℓ,

and if it is selected, we give away product i. As such, it is straightforward to see that this linear

program has O(2nL) decision variables, and hence cannot likely be readily solved if n is large.

Our main result of this first step shows that for each product i ∈ N and each price level ℓ ∈ [L],

there exists a lone opaque product SO ∈ {S ⊆N : i∈ S} such that h(ℓ,SO, i)> 0 at optimality. As

a result, the originally exponentially-sized fluid linear program can be immediately recast as an

equivalent linear program with nL decision variables. Moreover, we show that the optimal basis

for this reduced fluid linear program consists of a decision variable associated with a single price

level for all products, except for one product, which might be represented at two price levels.

2 The majority of popular choice models, such as MNL, nested logit, Markov chain and mixed-MNL, fall under this
framework
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Step 2: The randomized policy (Section 2.3). In this step, we analyze the randomized policy

that results from directly following the recommendation of the fluid approximation. That is, if the

optimal decision variables are given by {h∗(ℓ,SO, i) : ℓ∈ [L], SO ⊆N , i∈ SO}, then we simply offer

product SO at price pℓ, giving away product i if selected, for h∗(ℓ,SO, i) periods. Our analysis

proceeds by comparing the expected revenue earned by our randomized policy to the expected

revenue garnered by the fluid approximation across all assortments wherein the same product is

prescribed as the focal give-away product, i.e. the product allocated to the customer if a purchase

is made. We show that for any particular focal give-away product, these two expected revenues are

within a factor of APX(umin), which directly implies the performance bound stated in Theorem 1

related to the overall earnings of our policy.

Step 3: Derandomization (Section 2.4). In this final step, we provide a simple means to fully

derandomize our policy, while strictly improving its revenue performance. In the process, we argue

that our derandomized policy is indeed feasible, i.e. we are never at risk of offering a product that

is stocked out within the opaque option.

2.2. The fluid approximation

In this section, we present and analyze a relaxed version of problem (2) that is best viewed as

a fluid approximation in which demand takes on its expected value. We note that it is revenue

management folklore (Liu and Van Ryzin 2008, Gallego et al. 2015b) that such fluid approximations

yield an upper bound on OPT. Following this just-mentioned stream of literature, we formulate

this deterministic fluid approximation as a linear program with an exponential number of decision

variables. We then show that we can identify a subset of only O(nL) decision variables that are the

sole candidates to be part of an optimal basis, which gives way to a reduced linear programming

formulation of our fluid approximation. Finally, we conclude the section by showing additional

structure on this optimal basis that is critical in the analysis of the policy we put forth in Section 2.3.

The fluid linear program. The decision variables {h(ℓ,SO, i) : ℓ∈ [L], SO ⊆N , i∈ SO} denote the

number of periods in which opaque option SO is offered at price level ℓ, and if selected, product i

will be allocated. Our linear program of interest is given below:

OPTfluid =max
∑

SO⊆N

∑
i∈SO

∑
ℓ∈[L]

pℓπ(ℓ,SO)h(ℓ,SO, i)

s.t. (1)
∑

SO :i∈SO

∑
ℓ∈[L]

π(ℓ,SO)h(ℓ,SO, i)≤ ui1 ∀ i∈N

(2)
∑

SO⊆N

∑
i∈SO

∑
ℓ∈[L]

h(ℓ,SO, i)≤ T

(3) h(ℓ,SO, i)≥ 0.

(OPA-LP)
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The constraints in (1) ensure that the expected demand for each product does not exceed its initial

capacity, while the constraint in (2) encodes the notion that we only have T periods in the selling

horizon.

Structural result - the best opaque option. Recalling that products are indexed in increasing order

of weight, for each product i∈N and price level ℓ∈ [L] pair, let

SO(ℓ, i) = argmax
k∈[i,n]

π(ℓ,{i}∪ [k,n])

be the opaque product with the largest choice probability among all those that includes i and some

subset of the highest weight products with index larger than i at price level ℓ 3. The following claim

reveals that, for any i ∈N and ℓ ∈ [L], the opaque product that maximizes the choice probability

for this pair is in fact SO(ℓ, i).

Claim 1. For any product i∈N and price level ℓ∈ [L], we have

SO(ℓ, i) = argmax
S⊆N :i∈S

π(ℓ,S). (3)

As an important side-note, observe that we can easily recover {SO(ℓ, i)}ℓ∈[L],i∈N by enumerating

over the O(n) options for SO(ℓ, i) to solve (3) for each product i ∈N and price level ℓ ∈ [L] pair,

of which there are at most O(nL).

Structural result - the optimal basis. The next lemma reveals that there exists an optimal solution

to OPA-LP in which h(ℓ,SO, i)> 0 only if SO = SO(ℓ, i). In other words, for focal give-away product

i and price level ℓ, the optimal objective value of OPA-LP remains unchanged if we remove all

decision variables related to this focal product-price level pair in which SO ̸= SO(ℓ, i).

Lemma 1. There exists an optimal solution {h∗(ℓ,SO, i) : ℓ ∈ [L], SO ⊆ N , i ∈ SO} to OPA-LP

such that h∗(ℓ,SO, i) = 0 if SO ̸= SO(ℓ, i).

The reduced linear program. Exploiting Lemma 1, the originally exponentially-sized OPA-LP

can be reformulated as the following reduced linear program that includes only the O(nL) decision

variables {h(ℓ,SO(ℓ, i)}ℓ∈[L],i∈N .

OPTfluid =max
∑
i∈N

∑
ℓ∈[L]

pℓπ(ℓ,SO(ℓ, i))h(ℓ,SO(ℓ, i), i)

s.t. (1)
∑
ℓ∈[L]

π(ℓ,SO(ℓ, i))h(ℓ,SO(ℓ, i), i)≤ ui1 ∀ i∈N

(2)
∑
i∈N

∑
ℓ∈[L]

h(ℓ,SO(ℓ, i), i)≤ T

(3) h(ℓ,SO(ℓ, i), i)≥ 0.

(Reduced-OPA-LP)

3 For positive integers i, j such that i < j, we use [i, j] = {i, i+1, . . . , j}.
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We conclude this section by showing that in the optimal solution to Reduced-OPA-LP, there is

at most a single product i ∈N for which there exists two distinct price levels ℓ, ℓ′ ∈ [L] such that

h(ℓ,SO(ℓ, i), i), h(ℓ
′, SO(ℓ

′, i), i)> 0, while all other products have at most a single price level in the

optimal basis.

Claim 2. Let {h∗(ℓ,SO(ℓ, i), i)}ℓ∈[L],i∈N denote the optimal solution to Reduced-OPA-LP, and let

Li = {ℓ ∈ [L] : h∗(ℓ,SO(ℓ, i), i)> 0}. There exists at most a single product i ∈N such that |Li|> 1,

and if such a set Li exists, we have that |Li|= 2.

2.3. The randomized policy

In this section, we present our randomized opaque pricing policy, which is derived from the optimal

solution to Reduced-OPA-LP. After describing our policy, we prove that it achieves the performance

guarantee stated in Theorem 1.

The Reduced-OPA-LP-based policy. Re-hashing the definitions of Claim 2, we let

{h∗(ℓ,SO(ℓ, i), i)}ℓ∈[L],i∈N denote the optimal solution to Reduced-OPA-LP, and Li = {ℓ ∈ [L] :

h∗(ℓ,SO(ℓ, i), i) > 0} denote the price levels used when product i is the focal give-away product.

Our proposed policy is quite simple: we sequentially proceed over the sets {Li}i∈N in increas-

ing order of i, and for each ℓ ∈ Li, we offer opaque product SO(ℓ, i) at price level ℓ, allo-

cating product i if selected, for h∗(ℓ,SO(ℓ, i), i) periods. To formally define this procedure, let

(ℓ1, i1), (ℓ2, i2), . . . , (ℓQ, iQ) denote the price level-product pairs such that for q ∈ [Q], we have that

ℓq ∈ Liq . These tuples are indexed in increasing order of product index, where we tie-break by

choosing the higher of two price levels for the lone product that might appear twice, as was estab-

lished in Claim 2. Algorithm 1 formalizes how we sequentially proceed over this tuple sequence,

“filling” each time period with the h∗-value at-hand until it is exhausted.

The analysis. The randomized policy presented in Algorithm 1 progresses sequentially over

the focal give away products in increasing order of index. As such, we can analyze the perfor-

mance guarantee of our approach relative to OPT on a product-by-product basis. More specifi-

cally, for each product i ∈ N and price level ℓ ∈ Li, let Diℓ denote the random number of sales

of opaque product SO(ℓ, i). Furthermore, let Ri =
∑

ℓ∈Li
pℓ · E[Diℓ] denote the expected revenue

earned by our randomized policy when product i is the focal give-away product. We let ALG =∑
i∈N Ri represent the total expected revenue earned by our policy. Similarly, define OPTi =∑
ℓ∈Li

pℓπ(ℓ,SO(ℓ, i))h
∗(ℓ,SO(ℓ, i), i) to be product i’s contribution as the focal give-away product

to OPTfluid. The following lemma, whose proof can be found in Appendix A, relates Ri to OPTi.

Lemma 2. For any i∈N such that Li ̸= ∅, we have that

Ri

OPTi

≥APX(ui1).



Chen, Feldman & Huang
14 Approximation Schemes for Dynamic Pricing with Opaque Products

Algorithm 1 Randomized Pricing Policy

Initialization: T0 = 0

for q ∈ [Q] do

Tq =
∑
q′∈[q]

h∗(ℓq′ , SO(ℓq′ , iq′), iq′)

end for

for t∈ [T ] do

Offer the opaque product SO(ℓq, iq) at price ℓq, giving away product iq w.p.

Pqt =max{([t− 1, t]∩ [Tq−1, Tq])∪{0}}−min{([t− 1, t]∩ [Tq−1, Tq])∪{0}}

Note: Above, we use [x, y] to denote the continuous interval from x to y.

end for

Via Lemma 2 and the fact that OPTfluid ≥OPT, we get that

ALG

OPT
≥ min

i∈N :Li ̸=∅

Ri

OPTi

=APX(umin),

which is precisely the guarantee stated in Theorem 1.

2.4. Derandomization

In this section, we describe our procedure for derandomizing Algorithm 1, which results in a fully

deterministic state-dependent policy that can be computed efficiently, and is guaranteed to garner

a larger expected revenue than its randomized counterpart. We start by introducing a means

to express the expected revenue earned by Algorithm 1 through a dynamic program. We then

leverage this dynamic program to reveal a simple way to derandomize our approach, while strictly

improving its revenue performance. Ultimately, our approach is a modified version of the classical

derandomization method of conditional expectations

Computing ALG recursively. To begin, we establish the following intermediate claim, which acts

as a stepping stone to the dynamic program we present to compute the expected revenue earned

by Algorithm 1. The proof of this claim is presented in Appendix A.

Claim 3. Under Algorithm 1, if product i is the focal give-away product in period t, then

(i) For each q ∈ [Q] such that iq < i, and any τ > t, we have Pqτ = 0, i.e. any product indexed

lower than i will never be included within the opaque product offered in periods t+1, . . . , T .

(ii) For each q ∈ [Q] such that iq > i, we have uiq1 remaining inventory units of product iq at the

start of period t+1, i.e. product iq has not been consumed over periods 1, . . . , t.
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Moving forward, for ease of notation, we use πq = π(ℓq, SO(ℓiq , iq) as a shorthand for the choice

probability of opaque product SO(ℓiq , iq) priced at level ℓiq . With Claim 3 in-mind, we define

Rt(i, u) to be the expected revenue earned by Algorithm 1 over periods t, . . . , T , when product i

was the last product that was the focal give-away product if a purchase was made, and at the start

if period t, product i has u units of remaining inventory. This function can be expressed recursively

as

Rt(i, u) = 1u>0 ·

∑
q∈[Q]:
iq=i

Pqt ·
(
πq ·
(
pℓq +Rt+1(i, u− 1)−Rt+1(i, u)

)
+Rt+1(i, u)

)
+
∑
q∈[Q]:
iq>i

Pqt ·
(
πq ·
(
pℓq +Rt+1(iq, uiq1 − 1)−Rt+1(iq, uiq1)

)
+Rt+1(iq, uiq1)

)
, (4)

with base cases of RT+1(·, ·) = 0. In the above recursion, the first term corresponds to the case in

which the randomization results in an opaque product where i is the focal give-away product, and

the second term corresponds to the case in which we offer an opaque product with focal give-away

product iq > i. This latter case only needs to consider q ∈ [Q] such that iq > i, since by property

(i) of Claim 3, we have that Pqt = 0 for any other q ∈ [Q] with index no larger than i over the

remaining periods t+1, . . . , T . Additionally, by property (ii) of Claim 3, we know that any product

iq > i must not have been consumed over the first t− 1 periods, and hence its remaining inventory

in period t is uiq1. All-in-all, we see that ALG =R1(·, ui11), where we set i= · to reflect the fact

that this parameter is undefined in the first period.

Derandomization. Our derandomization procedure is based on the following alternative dynamic

program, in which the random offer/pricing decision in each period captured by the probabilities

{Pqt}q∈[Q],t∈[T ], is replaced by a deterministic decision that is guaranteed to represent an improve-

ment revenue-wise over the randomized policy. Specifically, define

R̂t(i, u) =max

{
1u>0 ·

 max
q∈[Q]:

Pqt>0,iq=i

{
πq ·
(
pℓq + R̂t+1(i, u− 1)−R̂t+1(i, u)

)
+ R̂t+1(i, u)

} ,

max
q∈[Q]:

Pqt>0,iq>i

{
πq ·
(
pℓq + R̂t+1(iq, uiq1 − 1)−R̂t+1(iq, uiq1)

)
+ R̂t+1(iq, uiq1)

}}
, (5)

with base cases of R̂T+1(·, ·) = 0. We go from Rt(i, u) to R̂t(i, u) by simply choosing the opaque

option that leads to the largest future expected revenue among all those with positive offer prob-

abilities. As such, it is clear that R̂t(i, u)≥Rt(i, u), and hence the policy derived from following

this dynamic program from the initial state of (·, ui1) in period 1 is guaranteed to improve upon

the revenue performance of Algorithm 1. In the event that u= 0 and and the outer maximization
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prescribes continuing to offer product i as the give-away product, then we earn no revenue in the

current period because of the indicator 1u > 0. In this case, to avoid a scenario in which we offer a

product within the opaque option that is stocked out, we can simply offer nothing, which clearly

results in the same revenue accumulation.

The running time of derandomization. The overall running time of our derandomization pro-

cedure is the precisely the running time needed to compute the value functions in (5). In total,

there O(Tn ·maxi∈[n] ui1) such value functions, each of which can be computed in running time of

O(Q) = O(nL) time by exhaustive enumeration over all q ∈ [Q] to solve the inner maximization

problems.

3. The General Setting

In this section, we revert back to the original setting in which there are both transparent and opaque

products. When we move to this general setting, the stochastic element of the demand becomes

far more difficult to tame, since now demand can be realized through both the transparent and

the opaque offering. In short, in the absence of transparent products, we used the highly attractive

products to continuously boost the appeal of the opaque option while never being depleted, until

it became their turn to become the focal give-away product. However, when transparent products

are reintroduced as a selling option, such a policy might be rendered ineffective due to the fact

that any product offered within the opaque option must also be offered as a transparent option.

As such, the use of highly attractive products as “decoys” within the opaque option is rendered

less effective due to the sales of such products through the tranparent channel. Nonetheless, under

a variant of the classical independent demand model (Talluri and Van Ryzin 1999, Adelman 2007,

Topaloglu 2009) described next, we are able to overcome these technical hurdles to derive a policy

that garners a constant fraction of the optimal expected revenue.

The opaque-specific (OS) independent demand model The distinguishing feature of the standard

independent demand model is that the demand for each product is assortment-independent, i.e.

each customer arrives with the intent of purchasing a particular product, and will do so if her

product of interest is made available for purchase. We consider a variant of this model in which

customers only substitute between their product of interest, and an opaque option that contains

this focal product. Formally, in period t, the arriving customer is interested in product i∈N with

probability λit. We refer to these customers as type-i customers for the remainder of this section.

A type-i customer associates an MNL-based weight of wiℓ with the transparent version of product

i priced at price level ℓ, and an MNL-based weight of wO
iℓ(SO) = 1i∈SO · fi(|SO|, ℓ) with the opaque

option, where fi(|SO|, ℓ) is an arbitrary function that is non-increasing in price and the cardinality

of SO. As such, an arriving type-i customer will only consider the opaque product if it includes her



Chen, Feldman & Huang
Approximation Schemes for Dynamic Pricing with Opaque Products 17

product of interest. Moreover, the attractiveness of this opaque option is influenced by its price,

and the number of additional products included alongside product i. AS a result, under assortment

S of transparent products and opaque product SO, along with pricing decisions x ∈ X (S,SO), we

denote the choice probability of transparent i conditioned on the arrival of a type-i customer as

πi(x,SO) =
wi(x)

1+wj(x)+wO
i (x,SO)

,

and the choice probability of the opaque option as

πO
i (x,SO) =

wO
i (x,SO)

1+wi(x)+wO
i (x,SO)

.

In the above expressions, we use wi(x) =
∑

ℓ∈[L]wiℓxiℓ and wO
i (x,SO) =

∑
ℓ∈[L]w

O
iℓ(SO)xOℓ to denote

the weights of product i and the opaque product under pricing decision x. Finally, we make the

following natural assumption, which states that a type-i customers associate a higher weight with

transparent product i when its price matches that of the opaque option.

Assumption 2. For any pricing vectors x,x′ ∈ X (S,SO) such that pi(x) = pO(x
′), we hav that

wi(x)≥wO
i (x

′, SO).

Remark. The OS independent demand model is indeed a simplified version of the general demand

model conceived in Section 1, since (i) each customer substitutes only between their product of

interest and the opaque option, and (ii) the weight of the opaque option for each customer type

is influenced only by the cardinality of SO, and not by its specific contents. That said, as alluded

to above, the OS independent demand model represents one natural translation of the classical

independent demand model into an opaque selling environment, and perhaps more importantly, we

are still left with a highly non-trivial dynamic pricing problem, even under this seemingly simple

demand model.

The updated dynamic program. Under the above-described opaque-specific independent demand

model, the updated recursion for the general problem given in (1) can be written as

Vt(Ut) = max
S⊆N (Ut),
SO⊆S

max
x∈X (S,SO)

{∑
i∈S

λit ·

(
πi (x,SO) ·

(
pi(x)−∆V i

t+1 (Ut)
)
+

πO
i (x,SO) ·

(
pO(x)− min

k∈SO
∆V k

t+1 (Ut)
))}

+Vt+1(Ut), (6)

to reflect the arrival probabilities of the n different customer types.

Main theorem. Our main result of this section is a constant factor approximation scheme that

builds on the approximate dynamic programming ideas presented in Ma et al. (2020) for the

network revenue management problem. The remainder of this section is devoted to presenting our

approach and proving that it matches the guarantee stated in the theorem below.

Theorem 2. There exists a deterministic policy that garners an expected revenue of at least

1
8
OPT.
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3.1. Technical overview

In what follows, we summarize the three steps that go into proving Theorem 2

Step 1: The value function approximation (Section 3.2). In this first step, we propose alternative

value functions Ht(Ut) that serve as approximations to Vt(Ut), as seen in (6). These approximate

value functions possess the following two key properties. First, they can be efficiently computed for

any time period t and inventory vector Ut. Second, their estimate of the marginal value of a unit

of each product can be upper bounded by a term that is independent of current inventory levels,

which will prove critical throughout the latter two steps.

Step 2: The roll-out policy (Section 3.3). In this second step, we describe and analyze the roll-

out policy that results from plugging in the approximate value functions into the recursion in (6).

Via an inductive argument, we show that the expected revenue garnered by this policy is at least

1
2
H1(U1).

Step 3: The upper bound (Section 3.4). In this final step, we show that V1(U1) =OPT≤ 4H1(U1),

which directly yield the performance guarantee stated in Theorem 2, since in step 2, we propose

a policy that garners an expected revenue of at least 1
2
H1(U1). We establish the aforementioned

upper bound by considering the dual of the deterministic fluid approximation of our problem. Since

the primal optimal solution upper bounds OPT (and it is a maximization), we know that any dual

feasible solution is also an upper bound by weak duality. With this insight in-mind, we construct

a dual feasible solution whose objective is no more than 4H1(U1).

3.2. The value function approximation

We approximate Vt(Ut) using the following quadratic function of the period-t inventory levels:

Ht(Ut) =
∑
i∈N

uit

ui1

· (γt
i + γt

ii)+
∑
i∈N

∑
j ̸=i

uit

ui1

ujt

uj1

γt
ij, (7)

and so H1(U1) =
∑

i∈N (γt
i + γt

ii) +
∑

i∈N
∑

j ̸=i γ
t
ij. We will shortly describe how to compute the

quantities {γt
i}i∈N ,t∈[T ] and {γt

ij}i,j∈N ,t∈[T ], which we henceforth refer to as “tuning parameters”.

Before doing so, however, we first provide loose intuition on their respective interpretations. Namely,

the tuning parameter γt
i can be interpreted as an estimate of the expected revenue of product i

over periods t, . . . , T coming from its sale as a transparent product. On the hand, γt
ij is an estimate

of the expected revenue contribution from product j sold through the opaque product to a type-i

customer over periods t, . . . , T . Next, we define

θti = γt
i + γt

ii +
∑
j ̸=i

(γt
ij + γt

ji),

to be an estimate of the total expected revenue accrued from product i via sales of both transparent

and opaque products over periods t, . . . , T . Here, we include the term
∑

j ̸=i γ
t
ij, since the sale of
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product j through the opaque product to a type-i customer is not possible if i is stocked out. In the

case of such a purchase event, revenue contribution should be attributed to both product j (since

it was consumed) and product i (since it influenced the customer to select the opaque option).

Noting that

Ht(Ut)−Ht(Ut − ei) =
1

ui1

·

(
γt
i + γt

ii +
∑
j ̸=i

ujt

uj1

· (γt
ij + γt

ji)

)
≤ θti

ui1

, (8)

we see that
θti
ui1

is a valid inventory-level-indepedent upper bound on the marginal value of single

unit of product i.

The assortment sub-problem. Before delving into our approach for computing the tuning param-

eters, it useful to introduce the following period-t sub-problem, which plays a central role in our

recursive approach for setting the tuning parameters. For an arbitrary vector of marginal value

estimates θ= (θ1, . . . , θn), let

Zt(θ) = max
S⊆[n],

SO⊆S,q∈SO,
x∈X (S,SO)

∑
i∈S

λit ·
(
πi(x,SO) ·

(
pi(x)−

θi
ui1

)
+πi

O(x,SO) ·
(
pO(x)−

θq
uq1

))
.

Additionally, define

Ri(S,SO, q, x, θ) = πi(x,SO) ·
(
pi(x)−

θi
ui1

)
+πi

O(x,SO) ·
(
pO(x)−

θq
uq1

)
(9)

to denote the product-i contribution, and so

Zt(θ) = max
S⊆[n],

SO⊆S,q∈SO,
x∈X (S,SO)

∑
i∈S

λitRi(S,SO, q, x, θ). (SUB-ASSORT)

The following lemma reveals the existence of a 1
2
-optimal solution to SUB-ASSORT in which the

contribution of each product is non-negative. This approximate solution is a critical feature of our

approach for setting the tuning parameters.

Lemma 3. For arbitrary period t∈ [T ] and θ ∈Rn, there exists a solution (Ŝt, Ŝt
O, q̂

t, x̂t) to SUB-

ASSORT that can be computed in polynomial time, and that satisfies

(i) Ri(Ŝ
t, Ŝt

O, q̂
t, x̂t, θ)≥ 0 for each i∈ Ŝt, and

(ii)
∑
i∈Ŝt

λitRi(Ŝ
t, Ŝt

O, q̂
t, x̂t, θ)≥ 1

2
·Zt(θ).
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Algorithm 2 Computing the tuning parameters

Initialization: θT+1
i = γT+1

i = γT+1
ii = 0 and γT+1

ij = γT+1
ji = 0

for t∈ T,T − 1, . . . ,1 do

Compute (Ŝt, Ŝt
O, q̂

t, x̂t) as described in Lemma 3 with θ= (θt+1
1 , . . . , θt+1

n ).

Compute period-t tuning parameters

γt
i = λitπi(x̂

t, Ŝt
O) ·

(
pi(x̂

t)− θt+1
i

ui1

)
+ γt+1

i

γt
ij = 1j=q̂t ·

(
λitπ

O
i (x̂

t, Ŝt
O) ·

(
pO(x̂

t)−
θt+1
j

uj1

))
+ γt+1

ij

θti = γt
i + γt

ii +
∑
j ̸=i

(γt
ij + γt

ji)

end for

The tuning parameters Our procedure for computing the tuning parameters is presented in Algo-

rithm 2. In essence, the period-t tuning parameters are computed under the assumption that we

follow the decision vector (Ŝt, Ŝt
O, q̂

t, x̂t), and that the marginal value of any unit of product i can

be approximated as θt+1

ui1
. This high-level intuition is formalized in Section 3.3, where we establish

the efficacy pf a roll-out policy based on this value function approximation.

We conclude this section by showing a critical characteristic of the tuning parameters, which is

essential to establish the upper bound in Step 3 of our approach. Namely, we establish that the θti

are decreasing in t, as is formalized in the following lemma. The proof of this Lemma reveals the

significance of property (i) in Lemma 3.

Lemma 4. For any i∈N and t∈ [T ], we have θti ≥ θt+1
i ≥ 0.

Interestingly, in previous works that utilize a tuning-parameter-based approximation (Ma et al.

2020, Rusmevichientong et al. 2020), a similar property as stated in the above lemma falls naturally

out of their respective assortment sub-problems, akin to SUB-ASSORT. At a high-level, the reason

for this is that in these previous works, each unit of a particular resource contributes to its value

only when it is consumed. In our setting, however, a unit of a particular resource can contribute

to its value by serving as a “decoy” for the opaque product; for example, a unit of product i can

influence a type-i customer to purchase the opaque product, who then ultimately is allocated some

product q ̸= i, thus leaving the original unit of product i untouched (and hence readily available to

serve in this decoy role over and over again). In turn, with this phenomenon in-mind, it is easy to

see that
θti
ui1

>>maxℓ∈[L] pℓ, which is the source of the novel technical difficulties that arise in our

opaque selling setting.
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3.3. The roll-out policy

In this section, we formalize our roll-out policy, and show that it garners an expected revenue of

at least H1(U1). In the process, we assume that all tuning parameters have been computed via

Algorithm 2.

The policy. In each period t∈ [T ], given current inventory levels of Ut, we compute

(S̄t, S̄t
O, q̄

t, x̄t) = argmax
S⊆N (Ut),

SO⊆S,q∈SO,
x∈X (S,SO)

∑
i∈S

λitRi(S,SO, q, x, θ
t+1) (10)

which is precisely problem (SUB-ASSORT) in which the set of offered transparent products is

restricted to those with non-zero inventory, and θ is set to the period t+ 1 tuning parameters.

Consequently, this problem can be solved optimally via the algorithm presented in Appendix C.

We then implement this vector of decisions in period t. The expected revenue garnered by this

policy across periods t, . . . , T , given period-t inventory levels of Ut, can be expressed recursively as

H̄t(Ut) =
∑
i∈S̄t

λit ·
(
πi(x̄

t, S̄t
O) ·

(
pi(x̄

t)−
(
H̄t+1(Ut)− H̄t+1(Ut − ei)

))
+πO

i (x̄
t, S̄t

O) ·
(
pO(x̄

t)−
(
H̄t+1(Ut)− H̄t+1(Ut − eq̄t)

)))
+ H̄t+1(Ut),

and hence H̄1(U1) gives the expected revenue of our policy.

The performance guarantee. The following lemma provides a general relation between H̄t(Ut)

and Ht(Ut), which when invoked at t= 1 establishes that H̄1(U1)≥ 1
2
H1(U1).

Lemma 5. For any t∈ [T ] and Ut ≤U1 (component-wise), we have that H̄t(Ut)≥ 1
2
Ht(Ut).

3.4. The upper bound

Having shown in the preceding section that the roll-out policy garners an expected revenue of at

least H1(U1), we conclude our analysis of the general setting by showing that OPT ≤ 4H1(U1),

which confirms the performance guaranteed reported in Theorem 2. To do so, we first introduce

the deterministic fluid approximation for our general setting, whose optimal objective value upper

bounds OPT. From here, we show how to construct a feasible solution to its dual that is not larger

than 4H1(U1).

The fluid linear program and its dual. Akin to the fluid approximation in the opaque only setting,

the decision variables {ht(S,SO, q, x) : S ⊆N , SO ⊆ S, q ∈ SO, x ∈ X (S,SO)} denote the fraction of

period t in which the set of offered transparent products is S, the opaque option is SO, q will
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be allocated if the opaque product is selected, and the pricing decisions are given by x. Letting

A= {(S,SO, q, x) : S ⊆N , SO ⊆ S, q ∈ SO, x∈X (S,SO)}, our linear program of interest is given by:

OPTfluid =max
∑
t∈[T ]

∑
A∈A

ht(A) ·
∑
i∈S

λitRi(A,0)

s.t. (1)
∑
t∈[T ]

∑
A∈A

u(A) ·ht(A)≤ ui1 ∀ i∈N

(2)
∑
A∈A

ht(A)≤ 1 ∀ t∈ [T ]

(3) ht(A)≥ 0,

where for A= (S,SO, q, x), the term Ri(A,0) is defined as in (9) to represent the expected revenue

garnered from product i, and we introduce u(A) = λitπi(x,SO)+
∑

j∈N 1i=q ·λjtπ
O
j (x,SO) to denote

the expected consumption of product i. Note that constraint (1), which encodes the capacity

restriction for each product, now incorporates the fact that each product can either be consumed

as a transparent or opaque product. Associating dual variables of {αi}i∈N with the constraints of

(1), and dual variables {β}t∈[T ] with the constraints of (2), we arrive the following dual formulation

of the fluid deterministic linear problem

OPTfluid =min
∑
i∈N

ui1αi +
∑
t∈[T ]

βt

s.t. (1) βt +
∑
i∈N

u(A) ·αi ≥
∑
i∈N

λitRi(A,0) ∀ t∈ [T ],A∈A

(2) αi, βt ≥ 0.

Noting that the constraints in (1) can be re-written as

βt =max
A∈A

∑
i∈N

(λitRi(A,0)−u(A) ·αi) ,

the dual can be more succinctly expressed as

OPTfluid =min
αi≥0

∑
i∈N

ui1αi +
∑
t∈[T ]

max
A∈A

∑
i∈N

(λitRi(A,0)−u(A) ·αi) .

The bound and final guarantee. To conclude this section and the proof of Theorem 2, we show

the aforementioned upper bound on the dual’s optimal objective value. We do so by bounding both

terms that make-up OPTfluid by 2H1(U1).

Lemma 6. 4H1(U1)≥OPTfluid.

All-in-all, recalling that H̄1(U1) is the expected revenue garnered by our roll-out policy, we see

that

H̄1(U1)≥
1

2
H1(U1)≥

1

8
OPTfluid ≥

1

8
OPT

where the first inequality follows by Lemma 5 and the second inequality is a result of Lemma 6.



Chen, Feldman & Huang
Approximation Schemes for Dynamic Pricing with Opaque Products 23

4. Computational Experiments: Opaque-Only Setting

In this section, we present the details of an extensive set of computational experiments aimed at

measuring the efficacy the approximation scheme outlined in Section 2 for the opaque-only setting.

More specifically, we generate a large and diverse suite of test instances, and test three variants of

our approach that differ in the manner in which the core randomized policy is derandomized.

4.1. Instance generator

We randomly generate problem instances with n ∈ {5,10,20} products, where to ensure a suffi-

ciently long time horizon, set T = 10n. Recalling that α determines the mix of risk averse and

risk neutral customers, we vary α ∈ {0,0.5,1}. The remaining parameters are generated using the

following schema.

� Prices: We vary L ∈ {2,5,10}, and generate the prices uniformly from the interval from the

interval [0,1].

� MNL-based weights: For each instance, we generate β uniformly from the interval [0,1], and

wi uniformly from the interval [3,4], and then we set wiℓ =wie
−βpℓ .

� Initial inventories: For each product i ∈ [n], let wmax
i = maxℓ∈[L]wiℓ denote the weight of

product i when priced at the lowest price level. We set

ui1 = ⌈γ ∗ wmax
i

1+
∑

j∈[n]w
max
j

∗T ⌉

to be the initial inventory levels, where the parameter γ controls how these initial levels

compare to the maximum possible total demand. We vary γ ∈ {0.1,0.3,1.1}.
Summarizing the discussion above, we characterize a single test case through the parameter

combination (n,L,γ,α)∈ {5,10,20}×{2,5,10}×{0.1,0.3,1.1}×{0,0.5,1}. For each test case, we

generate 100 problem instances, ultimately reporting the results as various summary statistics over

all instances for a fixed test case.

4.2. Implemented policies

The three policies that we implement are detailed below. The intent in testing these three

approaches is to get a sense of the extent to which derandomization improves the performance of

our randomized policy.

Randomized Policy (RP). This is the randomized policy prescribed by Algorithm 1 in Section

2. In the event that the focal product iq has already stocked out when q is randomly chosen, we

offer nothing in period t. The expected revenue of the randomized policy is derived by solving the

dynamic program in (4).

Derandomized Policy (DRP) : This is the policy that results from the derandomization of RP

described in Section 2.4. The expected revenue of this approach can be obtained through the

dynamic program given in (5).
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Generalized Derandomized Policy (G-DRP) : This policy is a generalization of DRP, which is

derived from a modified version of (5), where we remove the restriction in the inner maximization

that we must choose a q ∈ [Q] such that Pqt > 0. More specifically, G-DRP is derived by solving

dynamic program.

R̂G
t (i, u) =max

{
1u>0 ·

(
max

q∈[Q]:iq=i

{
πq ·
(
pℓq + R̂G

t+1(i, u− 1)−R̂G
t+1(i, u)

)
+ R̂G

t+1(i, u)
})

,

max
q∈[Q]:iq>i

{
πq ·
(
pℓq + R̂G

t+1(i, uiq1 − 1)−R̂G
t+1(i, uiq1)

)
+ R̂G

t+1(i, uiq1)
}}

,

A straightforward inductive arguments reveals that R̂G
t (i, u)≥ R̂t(i, u), and hence G-DRP is guar-

anteed to improve upon DRP. In short, this modified dynamic program allows for deviations from

the policy prescribed by the optimal solution to (OPA-LP), thus giving way to a more nuanced

state-dependent policy.

4.3. Results

Table 1 provides a detailed summary of the results for the test cases in which α= 0.5 For brevity,

we omit the results for α ∈ {0,1}, since they were qualitatively identical to those observed for

α = 0.5. The first four columns of Table 1 identify the test case, while the fifth and sixth col-

umn respectively denote the value of the average minimum inventory level over the 100 problem

instances, and worst case optimality gap as established in Theorem 1. The remaining nine columns

report the average, 25th percentile and minimum optimality gaps of the three implemented poli-

cies, where for each instance, the optimality gap is computed with respect to the optimal objective

of (Reduced-OPA-LP).

There are a handful of salient trends to be immediately gleaned from Table 1. First, we see that

all three policies perform significantly better than their worst-case guarantee, generally halving

the optimality gap presented in column six. Additionally, we that the derandomization afforded to

both DRP and G-DRP does indeed result in significant improvements over RP, which can be as

high as 10%. Finally, as expected, we do see that the performance of all three policies dramatically

improve as the initial inventories are scaled up. In particular, when γ = 1.1, G-DRP is within 1%

of optimal, on average.

5. Expedia Case Study: Measuring the Benefits of Opaque Pricing

In this section, we use the general setting considered in Section 3 along with the publicly available

data from Expedia’s booking platform (Kaggle 2013), to measure the extent to which introducing

an opaque product can improve revenues. In particular, we use the Expedia data set, which provides

extensive accounts of the displayed hotels and subsequent purchasing decisions for thousands of
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Table 1 Results for test cases with α= 0.5

RP DRP G-DRP

T N L γ umin (1−APX(umin))× 100 mean 25% min mean 25% min mean 25% min

50 5 2 0.1 1 36.79 17.86 17.14 21.62 8.3 7.34 11.44 8.15 7.24 11.08
50 5 2 0.3 2.78 23.43 11.41 11.01 13.12 7.03 6.44 8.52 6.73 6.24 8.28
50 5 2 1.1 8.88 13.32 5.44 5.19 6.48 4.09 3.72 5.53 1.11 0.79 2.1

50 5 5 0.1 1 36.79 18.71 17.46 22.43 9.02 8.36 11.56 8.82 8.2 11.26
50 5 5 0.3 2.97 22.54 11.69 11.36 13.18 7.35 6.86 9.82 6.97 6.62 9.08
50 5 5 1.1 9.29 13 5.56 5.25 6.49 4.18 3.82 5.49 1.29 0.96 2.16

50 5 10 0.1 1 36.79 19.04 17.62 24.31 9.31 8.47 13.69 9.06 8.2 13.08
50 5 10 0.3 3 22.4 11.83 11.43 13.49 7.44 6.9 9.75 7.02 6.58 9.37
50 5 10 1.1 9.65 12.75 5.6 5.3 6.64 4.31 3.96 5.8 1.31 1.03 2.29

100 10 2 0.1 1 36.79 17.56 17.04 18.68 8.4 7.94 10.41 8.32 7.89 10.21
100 10 2 0.3 2.69 23.85 11.18 10.94 12.31 6.79 6.31 8.28 6.64 6.17 8.08
100 10 2 1.1 8.61 13.53 5.24 5.05 6.02 3.96 3.76 4.74 0.87 0.7 1.55

100 10 5 0.1 1 36.79 17.78 17.15 21.1 8.74 8.36 11.8 8.64 8.3 11.57
100 10 5 0.3 2.97 22.54 11.47 11.19 12.53 7.15 6.8 8.56 6.94 6.62 8.2
100 10 5 1.1 9.39 12.93 5.48 5.31 6.33 4.16 3.92 5.11 1.05 0.91 1.57

100 10 10 0.1 1 36.79 17.85 17.17 20.03 8.75 8.42 10.16 8.64 8.32 9.96
100 10 10 0.3 3 22.4 11.49 11.21 12.34 7.2 6.9 8.32 6.97 6.72 7.99
100 10 10 1.1 9.65 12.75 5.58 5.4 6.26 4.23 4 5.15 1.15 1.01 1.75

200 20 2 0.1 1 36.79 17.17 16.88 18.49 8.1 7.73 9.6 8.07 7.71 9.5
200 20 2 0.3 2.77 23.47 11.08 10.9 11.83 6.72 6.4 7.51 6.64 6.36 7.37
200 20 2 1.1 8.69 13.48 5.32 5.19 6.1 4.01 3.92 4.7 0.72 0.59 1.11

200 20 5 0.1 1 36.79 17.38 17.04 19.44 8.51 8.24 9.63 8.46 8.19 9.53
200 20 5 0.3 2.98 22.49 11.26 11.06 11.84 6.96 6.68 7.78 6.86 6.6 7.64
200 20 5 1.1 9.2 13.07 5.46 5.34 6 4.13 4 4.74 0.88 0.76 1.28

200 20 10 0.1 1 36.79 17.49 17 19.02 8.69 8.38 9.73 8.62 8.33 9.63
200 20 10 0.3 3 22.4 11.36 11.21 12 7.06 6.86 7.71 6.94 6.75 7.57
200 20 10 1.1 9.56 12.81 5.55 5.43 5.93 4.2 4.1 4.62 0.95 0.86 1.3

searches on the platform, to derive a collection of practically reasonable instantiations of our

dynamic pricing problem under the OS independent demand model. We then implement the pricing

policy described in Section 3, and compare the revenue it generates to the revenue generated by a

policy that sets SO = ∅, i.e. never offers an opaque option.

5.1. Model fitting

We fit the Expedia data 4 to an MNL-based choice model that conforms to our independent

demand assumption. We also exclusively focus on 3-star and 4-star hotels in our estimation and

experiments. In order for the purchase probabilities to be consistent with those observed in the

data, we impose the independent demand assumption in our estimation process. More specifically,

we assume each customer has an ideal product and she only chooses between her ideal product

and the no-purchase option. To do so, we first define each observed customer’s ideal product. This

is simply done via the following procedure:

4 See Appendix D for a description of the data set
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(1) if a search results in a purchase of some hotel i, then the customer’s ideal product is i;

(2) if a search does not result in a purchase of any products, then the first clicked hotel option i

is regarded as the customer’s ideal product.

Recall that a customer is called a type-i customer if her ideal product is i. After recovering each

search customer’s type as above, we then fit an MNL model by assuming each customer is only

choosing between her ideal product and the no-purchase option. Furthermore, we simultaneously

estimate the arrival probability of customer type i from the data with the MNL estimate. We assume

that the arrival probability of customer type i is time-invariant, e.g., λi,t = λi. We simultaneously

estimate λ and the MNL model parameter β by maximizing the probability of observing the

outcome in the data, which we detail below.

We index the historical searches by t ∈ {1, ..., T}. For each search t, we use Xt to denote the

logged feature information of the ideal product for t, yt ∈ {0,1} to indicate the purchase outcome,

and It to denote the type of the observed customer in search t. Let the feature coefficients in the

MNL model be denoted by β. Given the observed outcome in the data, the joint probability of

observing the outcome is

T∏
t=1

(
∑
i

λi ·1{It=i})
(1− yt) · 1+ yt · eXtβ

1+ eXtβ

where
∑

i λi ·1{It=i} is the arrival probability of customer type It. Hence the log-likelihood of the

above joint probablity is

LL(λ,β) =
∑
t∈[T ]

[
log(

∑
i

λi ·1{It=i})+ ytXtβ− log(1+ eXtβ)

]
=
∑
i

mi log(λi)+
∑
t∈[T ]

[
ytXtβ− log(1+ eXtβ)

]
(11)

where mi =
∑

t∈[T ] 1{It=i} is the total number of arrivals of customer type i in the T periods.

We estimate (λ̂, β̂) = argmaxLL(λ,β), subject to
∑

i λi = 1. Note that
∑

imi log(λi) is a concave

function of λ, and the estimation of λ,β can be separated in LL(λ,β). Applying a standard convex

optimization approach will reveal that λ̂i is estimated by λ̂i =
mi
T
, and β̂ can be estimated via a

standard logistic regression.

Estimation results. We apply the above-mentioned estimation approach to the search destination

level data and generate feature coefficients for each search destination. We show the estimation

results for two top-searched destinations and conduct our experiments mainly for these two desti-

nations in the next section. We first summarize the feature information used in our model in Table

3. We include an intercept term that captures the average effect of all other features not included

in our model. Note that features (1) - (5) are hotel-dependent and features (7) - (11) are search-

dependent, while feature (6) is both hotel-dependent and search-dependent (time-dependent). We
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Hotel Count Estimated λ̂ Price History Price Menu

site destination 3 & 4 stars min 25th 50th 75th max median mean 10th 90th Min Max L

5 8347 256 0.18 0.18 0.35 0.53 1.58 120 141 69 220 70 220 16
5 9402 177 0.25 0.25 0.49 0.74 3.45 179 197 110 299 110 300 20

Table 2 Estimated Arrival Prob (λ̂) and Price Menu

β Feature Name Description

(0) intercept Dummy variable that captures the effects of all features not listed below
(1) price usd Hotel price per night per room (in USD)
(2) prop starrating 3 Dummy variable indicating whether the hotel is 3-star (otherwise 4-star)
(3) prop review score Customer review score of a hotel
(4) prop location score1 Location score of a hotel
(5) prop brand bool Boolean variable indicating whether the hotel belongs to a major hotel chain
(6) prop log historical price Average log historical price of a hotel over a period of time preceding the search
(7) srch booking window Number of days before the start of the trip at the time of a search
(8) srch length of stay Duration of stay (in hotel nights)
(9) srch adults count Number of adults
(10) srch children count Number of children
(11) srch saturday night bool Boolean variable indicating whether the trip includes a Saturday night

Table 3 Feature Summary

β̂ Feature Name estimate std.err p value

(0) (Intercept) -2.5240 2.0114 0.2095
(1) price usd -0.0104 0.0054 0.0569
(2) prop starrating 3 -0.4418 0.4197 0.2925
(3) prop review score 0.3285 0.3693 0.3738
(4) prop location score1 0.1399 0.2811 0.6188
(5) prop brand bool 0.2025 0.4489 0.6519
(6) prop log historical price -0.0104 0.1156 0.9281
(7) srch booking window -0.0012 0.0043 0.7758
(8) srch length of stay -0.3427 0.1496 0.0220
(9) srch adults count -0.0824 0.2232 0.7119
(10) srch children count 0.3103 0.1645 0.0592
(11) srch saturday night bool 0.6952 0.4356 0.1105

(a) site = 5, dest = 8347

β̂ Feature Name estimate std.err p value

(0) (Intercept) -8.7345 3.3708 0.0096
(1) price usd -0.0096 0.0049 0.0516
(2) prop starrating 3 -0.4522 0.5228 0.3871
(3) prop review score 1.5574 0.8104 0.0546
(4) prop location score1 0.1082 0.1826 0.5534
(5) prop brand bool 0.4736 0.6995 0.4983
(6) prop log historical price 0.1073 0.1468 0.4649
(7) srch booking window -0.0012 0.0051 0.8078
(8) srch length of stay -0.0714 0.179 0.6898
(9) srch adults count 0.0926 0.3252 0.7759
(10) srch children count 0.6786 0.279 0.015
(11) srch saturday night bool 0.2733 0.4458 0.5399

(b) site = 5, dest = 9402

Table 4 Estimated Coefficients (β̂)

will specify how we set the values of the search-dependent features when we conduct our experi-

ments.

We provide (λ̂, β̂) estimates for two top searched destinations, both of which are from the site

5. These two destinations have the most statistically significant price coefficients among the top

destinations. Because pricing is a critical component of our work, we choose to further conduct our

experiments for these two destinations. We provide a summary of our estimation results for λ̂ in

Table 2 and for β̂ in Table 4.

5.2. Instance generator

We conduct independent experiments for the two search destinations to test our proposed approach

for the general assortment and pricing problem. For each destination, we generate independent
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problem instances that we control by overall assortment size, number of time periods, and starting

inventory. Below we explain how we construct the price menu, the preference weights, and control

the problem instances in our experiments.

Price menu. For each destination, we set the minimum and maximum price on the price menu

by (Min, Max) = (10th, 90th) quantile of hotel prices observed in our MNL model data, which

are then rounded to the nearest 10s. We then construct a price menu starting from the Min with

an incremental of $10, which is then capped by the Max. This has resulted in a menu of L price

levels, where L= 16 and 20 for the two destinations of interest (see Table 2).

Preference weights. For a regular product i priced at price level l ∈ [L], we set its preference

weight (as a regular product) by

wil = eβ̂
(0)x

(0)
t,i +β̂(2)x

(2)
t,i +...+β̂(11)x

(11)
t,i

For an opaque product SO ⊆ [N ] (with |SO| ≥ 2) priced at price level l ∈ [L], we set its preference

weight for customer type i by

wO
il = 1{i∈SO} ·

wil

|SO|

For each i and l, wil can be calculated with given feature values [1, x
(1)
t,i , ..., x

(11)
t,i ]. We assume that

the feature values are time-invariant in our experiments except for x
(1)
t,i (price usd) and hence need

to fix other features. We detail how we choose the feature values below.

(i) x
(1)
t,i . We set x

(1)
t,i ≜ pl for some l ∈ [L], which is our decision variable for pricing hotel options.

(ii) x
(2)
t,i , ..., x

(5)
t,i . These feature values are inherited from the observed data and are invariant.

(iii) x
(6)
t,i , ..., x

(11)
t,i . We use the median of these features’ values for each hotel i from the observed

data. We apply the median values rather omitting these features (which is equivalent to setting

their values to 0) because omission would inflate/deflate preference weights and hence may make

purchase probabilities in our experiments less consistent with the observed data.

Problem instances. We generate independent problem instances by varying the combination of

the following parameters:

(a) N : the set of all products in a problem instance. We vary N ∈ {10,20} and randomly draw N

hotels from the entire hotel list used in the β-estimation data.

(b) T : the number of time periods. We vary T ∈ {50,100}.

(c) γ: inventory inflator. We control initial product inventory by setting γ ∈ {0.25,0.5,1}. First, our

model assumes there is exactly one customer arriving in each time period, and we have estimated

the arrival rate of customers as λ̂. Since we draw a subset of N hotels to constitute the product set

in a single problem instance, we adjust the arrival rate of customer type i by setting λi =
λ̂i∑

i∈[N ] λ̂i
.

We then set the initial inventory of product i as ⌈γ ·λiT ⌉, where ⌈·⌉ is the ceiling operator.
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Summary. Combining the above discussion, each problem instance in our experiments is char-

acterized by a tuple (N,T,γ). Furthermore, for each of the tuples, we randomly draw the set of

hotels (of size N) 5 times and indicate the j-th draw by m = 1, ...,5. Hence our single problem

instance is denoted by (N,T,γ,m). For each problem instance, we generate 500 sample paths of

customer arrivals and simulate their purchase choices through the random draw of a customer’s

idiosyncratic utilities for the transparent, opaque, and no-purchase options so that the revenue

performance of each approach is not biased by distinct samples of customer arrivals. We report the

expected revenue for a problem instance by averaging the revenues from the 500 sample paths.

5.3. Results.

For each problem instance, we implement the approximation scheme outlined in Section 3 (referred

to as OPA), which is benchmarked against a policy that never offers an opaque product (referred

to as BMK). It is not difficult to see that when we fix SO = ∅, our dynamic pricing problem

of interest decomposes into independent pricing problems for each product, which can be solved

optimally via standard dynamic programming ideas. Consequently, the benchmark approach is

afforded an optimal algorithm (given no opaque offerings), while our approach is guaranteed only

a 1
8
-th fraction of the optimal expected revenue.

Due to space limitations, we only present a detailed look at the results for destination 8347 with

n = 20, which are given in Table 5. The first four columns give the problem instance, while the

proceeding eight columns report the summary statistics of the revenue performance of OPA and

BMK. The final columns report the revenue gain of our approach over the benchmark, computes

as

Revenue gain (%) =
OPA−BMK

BMK
× 100%

Quite surprisingly, we observed that the expected revenue of our approach outperformed that of

the benchmark for every problem instance. This trend is a strong indicator that opaque pricing

can be quite beneficial, and it also likely points to the fact that our approach performs far better

than its worst case guarantee. Overall, averaging over all test cases, we found that our approach

outperformed the benchmark by 7.22% and 5.27% for n = 10 and 20 in search destination 8347,

and by 5.56% and 4.21% for n = 10 and 20 in search destination 9402.

6. Future Work

Our work opens the door for extensions and potential improvements along multiple dimensions.

First, it is natural to wonder if it is possible to improve upon the performance guarantee of 1
8
-th

presented for the general setting using a new set of tools. Alternatively, it would be beneficial to

pursue the hardness of approximation results that establish an upper bound on the best-possible
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OPA BMK

N T γ m mean sd CI (95%) mean sd CI (95%) Gain(%)

20 50 0.25 1 3359 463 3318 3400 3170 412 3134 3206 5.96
20 50 0.25 2 3434 435 3396 3472 3166 373 3133 3198 8.46
20 50 0.25 3 3302 437 3264 3340 3105 403 3069 3140 6.34
20 50 0.25 4 3605 442 3566 3644 3307 392 3273 3341 9.01
20 50 0.25 5 3354 449 3315 3394 3164 420 3127 3201 6.01

20 50 0.5 1 3871 525 3825 3917 3690 476 3648 3731 4.91
20 50 0.5 2 4585 519 4539 4630 4303 486 4261 4346 6.55
20 50 0.5 3 4123 534 4076 4170 3968 499 3924 4012 3.91
20 50 0.5 4 4742 539 4695 4789 4473 513 4428 4518 6.01
20 50 0.5 5 4444 553 4395 4492 4237 546 4189 4285 4.89

20 50 1 1 4909 694 4849 4970 4760 647 4704 4817 3.13
20 50 1 2 5598 674 5539 5657 5379 656 5321 5436 4.07
20 50 1 3 4884 650 4826 4941 4733 643 4677 4789 3.19
20 50 1 4 5949 710 5887 6011 5766 693 5705 5826 3.17
20 50 1 5 5106 711 5044 5168 4905 667 4846 4963 4.10

20 100 0.25 1 5642 502 5598 5686 5242 426 5205 5280 7.63
20 100 0.25 2 6267 510 6222 6311 5773 422 5736 5810 8.56
20 100 0.25 3 6042 523 5996 6088 5679 452 5640 5719 6.39
20 100 0.25 4 6473 575 6423 6524 6006 475 5964 6047 7.78
20 100 0.25 5 6700 560 6651 6749 6327 509 6283 6372 5.90

20 100 0.5 1 8542 774 8474 8609 8182 724 8118 8245 4.40
20 100 0.5 2 9631 730 9567 9695 9092 674 9033 9151 5.93
20 100 0.5 3 8416 751 8350 8482 8067 706 8005 8128 4.33
20 100 0.5 4 10051 768 9984 10119 9434 706 9372 9496 6.54
20 100 0.5 5 9267 886 9189 9345 8874 862 8798 8949 4.43

20 100 1 1 10183 1001 10095 10270 9860 921 9779 9940 3.28
20 100 1 2 11319 1043 11228 11410 10912 993 10825 10999 3.73
20 100 1 3 10135 1071 10041 10229 9834 1007 9745 9922 3.06
20 100 1 4 11831 954 11748 11915 11539 959 11455 11623 2.53
20 100 1 5 10190 1041 10099 10281 9816 981 9730 9902 3.81

(a) dest = 8347, n = 20

Table 5 Experiment results

approximation factor. Finally, there remains the question of whether non-trivial approximation

schemes exist for the general setting under a more nuanced demand model in which customers value

the opaque option based on its contents, similar to the model under consideration in Section 2.
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Appendix A: Missing Proofs of Section 2

A.1. Proof of Claim 1

For any opaque product S ⊆ N such that i ∈ S, it is straightforward to see that π(ℓ,S) ≤ π(ℓ,S ∩ [i, n]),

since removing any product indexed lower than i from the opaque product will not decrease the weight of

the opaque option for either risk-averse or risk-neutral customers. Along the same lines, it is straightforward

to see that adding product n (i.e. the highest-weight product) to any assortment to which it previously did

not belong will only increase the choice probability of said assortment. Consequently, it is sufficient to show

that

SO(ℓ, i) = argmax
S⊆[i+1,n−1]:i,n∈S

π(ℓ,S).

To show the result above, we assume by way of contradiction that there exists some S ⊆N such that i∈ S

and S ̸= {i} ∪ [k,n] for some k ∈ [i, n], and whose choice probability satisfies π(ℓ,S)> π(ℓ,SO(ℓ, i)). Given

this supposed structure of S, there must exist products q, j ∈N that satisfy i < q < j such that q ∈ S and

j /∈ S. We establish the contradiction by showing that the choice probability of S cannot decrease if either

we remove product q or add product j. If we iteratively apply this argument until no such q and j exist, the

resulting opaque product S will be a candidate for SO(ℓ, i).

To establish that one of these two changes must result in at least as high a choice probability, we first

consider the risk-averse customers and show that either of these changes leaves the weight of the opaque

option unchanged, meaning the choice probability is unchanged as well. To see this, observe that

wRA
ℓ (S) =wRA

ℓ (S ∪{j}) =wRA
ℓ (S \ {q}) =wiℓ,

since risk-averse customers value the opaque product at the smallest weight offered. Moving to the risk-

neutral customers, we have that

wRN
ℓ (S) =

∑
j∈S wjℓ

|S|

=
|S| − 1

|S|
·
∑

j∈S\{q}wjℓ

|S| − 1
+

1

|S|
·wqℓ

=
|S| − 1

|S|
·wRN

ℓ (S \ {q})+ 1

|S|
·wqℓ.

Consequently, if wRN
ℓ (S \ {q})≥wqℓ, then we get that wRN

ℓ (S \ {q})≥wRN
ℓ (S), and hence removing product

q from S cannot decrease its choice probability. Otherwise, it must be the case wRN
ℓ (S \{q})≤wRN

ℓ (S)≤wqℓ,

and so

wRN
ℓ (S ∪{j}) = |S|

|S|+1
·wRN

ℓ (S)+
1

|S|+1
·wjℓ

≥ |S|
|S|+1

·wRN
ℓ (S)+

1

|S|+1
·wRN

ℓ (S)

= wRN
ℓ (S),

and hence adding product j to S can only increase its choice probability. The lone inequality above follows

because, in this case, we must have that wjℓ ≥wqℓ ≥wRN
ℓ (S), since j > q.
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A.2. Proof of Claim 1

We prove the result by showing that if there exists h∗(ℓ,SO, i)> 0 where SO ̸= SO(ℓ, i), then we can produce

an alternative feasible solution in which h∗(ℓ,SO, i) = 0 and the objective remains unchanged. Specifically,

we simply set h∗(ℓ,SO, i) = 0 and h∗(ℓ,SO(ℓ, i), i) = h∗(ℓ,SO(ℓ, i), i)+
π(ℓ,SO)

π(ℓ,SO(ℓ,i))
·h∗(ℓ,SO, i). Straightforward

algebra reveals that this alternative solution achieves the same objective, while also keep the left-hand-side of

constraint (1) unchanged. Finally, since π(ℓ,SO)

π(ℓ,SO(ℓ,i))
≤ 1, the left-hand-side of constraint (2) does not increase

with this update.

A.3. Proof of Claim 2

We prove the result by showing that Reduced-OPA-LP is precisely a relaxation of a multiple-choice knapsack

problem (MCKP), whose exact nature is formalized shortly. Once we show the reduction, the claim will follow

immediately from known results regarding the structure of the optimal solution for the linear programming

relaxations of the MCKP.

The MCKP. In the MCKP, there are n groups of L distinct items. The reward and capacity consumption

of item i ∈ [n] from group ℓ ∈ [L] is riℓ and ciℓ, respectively. The goal is to select at most a single item

from each group to maximize the total reward of all selected items, while not exceeding the total capacity

restriction of C. The exact integer programming formulation of MCKP is given below, where the binary

decision variable xiℓ indicates whether item i in group ℓ is selected:

max
∑
i∈N

∑
ℓ∈[L]

riℓxiℓ

s.t. (1)
∑
ℓ∈[L]

xiℓ ≤ 1 ∀ i∈N

(2)
∑
i∈N

∑
ℓ∈[L]

ciℓxiℓ ≤C

(3) xiℓ ∈ {0,1}.
The linear programming relaxation of MCKP simply replaces xiℓ ∈ {0,1} with xiℓ ≥ 0. Proposition 3 of Sinha

and Zoltners (1979), establishes that the optimal solution to this linear programming relaxation has at most

two fractional variables that must correspond to items from the same group. The proof of this result is

a simple accounting argument involving the number of tight constraints required to make a basic feasible

solution.

The reduction. We show that Reduced-OPA-LP is exactly an instance of the linear programming relax-

ation of the MCKP, where the groups are the products and the items within each group correspond to the

L price points. The reduction follows quite smoothly by issuing the change of variable h′(ℓ,SO(ℓ, i), i) =
π(ℓ,SO(ℓ,i))

ui1
·h(ℓ,SO(ℓ, i), i) within Reduced-OPA-LP. The end result is the following linear program

max
∑
i∈N

∑
ℓ∈[L]

pℓui1h
′(ℓ,SO(ℓ, i), i)

s.t. (1)
∑
ℓ∈[L]

h′(ℓ,SO(ℓ, i), i)≤ 1 ∀ i∈N

(2)
∑
i∈N

∑
ℓ∈[L]

ui1

π(ℓ,SO(ℓ, i))
·h′(ℓ,SO(ℓ, i), i)≤ T

(3) h′(ℓ,SO(ℓ, i), i)≥ 0,

which matches a relaxation of MCKP with riℓ = pℓui1, wiℓ =
ui1

π(ℓ,SO(ℓ,i))
, and C = T .



Chen, Feldman & Huang
Approximation Schemes for Dynamic Pricing with Opaque Products 35

A.4. Proof of Lemma 2

Intermediate results. Our proof critically relies on the following three results, all of which concern proper-

ties of binomial random variables. The proof of the claim can be found at the end of this section. Throughout

this section, we use the shorthands Binom(n, λ) and Bern(λ) to respectively represent a binomial random

variable with n trials, each with success probability λ, and a Bernoulli trial with success probability λ.

Claim 4. Let X =
∑

t∈[T ]Bt, where Bt ∼Bern(λt) are independent Bernoulli trials with success probabil-

ities
∑

t∈[T ] λt = λ. For arbitrary integer m≥ 0, we have

E [min{X,m}]≥E
[
min

{
Binom

(
λ

T
,T

)
,m

}]
.

Lemma 7 (Ma et al. (2021) Lemma EC.5). Let c be any real-valued positive number, T any positive

integer. The function

f(λ) =
E [min{c,Binom(T,λ/T )}]

λ

is non-increasing in λ over the interval [0, T ].

Lemma 8 (Alaei et al. (2012) Lemma 5.3). For positive integer T and λ ∈ [0, T ], let X ∼
Binom(T, λ

T
), then E[min{X,b}]≥APX(b) ·λ for any b≥ λ.

Proof. For each product i ∈ N such that Li ̸= ∅, each price level ℓ ∈ Li, we let τiℓ denote the random

number of periods in which we offer the opaque product SO(ℓ, i) at price level ℓ, when i is the focal give-away

product. For the remainder of the section, we use h∗
iℓ = h∗(ℓ,SO(ℓ, i), i) and πiℓ = π(ℓ,SO(ℓ, i)) as shorthands.

Via Figure 3, which provides a visualization of our randomize policy, it is straightforward to see that there

exists probabilities λ1ℓ, λ2ℓ ≥ 0 and integer tiℓ ≤ ⌊h∗
iℓ⌋ that satisfy h∗

iℓ = tiℓ +λ1ℓ +λ2ℓ and

τiℓ ∼ tiℓ +Bern(λ1ℓ)+Bern(λ2ℓ)

We prove the lemma by considering two cases based on whether |Li|= 1 or |Li|= 2.

� Case 1 - |Li|= 1: Define Y to be the random number of times opaque product SO(ℓ, i) is selected. Based

on the preceding discussion we have that

Y ∼Binom(τiℓ, πiℓ) ∼ B0 +B1 +B2

where B0 =Binom(tiℓ, πiℓ), B1 =Bern(λ1ℓπiℓ), and B2 =Bern(λ2ℓπiℓ). Moreover, define X1, . . . ,Xtiℓ+2,

where

Xiℓ =


Bern(πiℓ) if i≤ tiℓ
Bern(λ1ℓπiℓ) if i= tiℓ +1

Bern(λ2ℓπiℓ) if i= tiℓ +2,

and let X =

tiℓ+2∑
i=1

Xi, noting that E[X] = πiℓ · (tiℓ + λ1ℓ + λ2ℓ) = πiℓh
∗
ıℓ. It is straightforward to see

that Y ∼ X, and so, recalling that Diℓ is the random sales of opaque product SO(ℓ, i), we get hat

E[Diℓ] =E[min{Y,ui1}] =E[min{X,ui1}]. From here, observe that

Ri

OPTi

=
pℓ ·E [Diℓ]

pℓπiℓh∗
iℓ

=
E[min{X,ui1}]

πiℓh∗
iℓ

≥
E[min{Binom(tiℓ +2,

πiℓh
∗
iℓ

tiℓ+2
), ui1}]

πiℓh∗
iℓ

, (12)
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Figure 3 Depiction of our pricing policy, in which we randomize in periods 2,4, and 6. When i= 2, for example,

we have that t2ℓ2 = 1, λ1ℓ2 = 0.3, λ2ℓ2 = 0.8.

where the lone inequality follows from Claim 4. Now, if tiℓ +2≤ ui1, we see that

E[min{Binom(tiℓ +2,
πiℓh

∗
iℓ

tiℓ +2
), ui1}] = πiℓh

∗
iℓ,

and hence Ri

OPTi
= 1. Otherwise. we get that

(12) ≥
E[min{Binom(tiℓ +2, ui1

tiℓ+2
), ui1}]

ui1

≥ APX(ui1).

The first inequality follows from Theorem 7, while the second uses Lemma 8.

� Case 2 - |Li|= 2: In this second case, we will assumes Li = {ℓ, ℓ′} and that pℓ ≥ pℓ′ , so price level ℓ is

offered first within our randomized policy. Define Y and Y ′ to be the random number of times opaque

products SO(ℓ, i) and SO(ℓ
′, i) are purchased under our policy. We have that

Ri = pℓ ·E [Diℓ] + pℓ′ ·E [Diℓ′ ]

= pℓ ·E [min{Y,ui1}] + pℓ′ ·E
[
min{Y ′, (ui1 −Y )+}

]
= pℓ′ ·E

[
min{Y,ui1}+min{Y ′, (ui1 −Y )+}

]
+(pℓ − pℓ′) ·E [min{Y,ui1}]

= pℓ′ ·E [min{Y +Y ′, ui1}] + (pℓ − pℓ′) ·E [min{Y,ui1}] .

Moreover, we have that

OPTi = pℓπiℓh
∗
iℓ + pℓ′πiℓ′h

∗
iℓ′

= pℓ′ · (πiℓh
∗
iℓ +πiℓ′h

∗
iℓ′)+ (pℓ − pℓ′) ·πiℓh

∗
iℓ.

Consequently, to prove the lemma, it is sufficient to show that

E [min{Y +Y ′, ui1}]
πiℓh∗

iℓ +πiℓ′h∗
iℓ′

≥APX(ui1)
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and
E [min{Y,ui1}]

πiℓh∗
iℓ

≥APX(ui1)

Both of these bounds can be established by repeating the same set of arguments as presented for Case

1.

Proof of Claim 4. The claim is trivially true if λ1 = λ2 = . . .= λT = λ
T
, and hence we proceed under the

assumption that there exists at least one pair t1, t2 ∈ [T ] such that λt1 >
λ
T

and λt2 <
λ
T
. Let ϵ=min{λt1 −

λ
T
, λ
T
− λt2}, and define a new collection of Bernoulli random variables {B̂t}t∈[T ], where for t ∈ [T ] \ {t1, t2}

we set B̂t =Bt, while B̂t1 =Bern(λt1 − ϵ) and B̂t2 =Bern(λt2 + ϵ). By construction, it must be the case that

at least one of B̂t1 and B̂t1 has success probability of λ
T
. Consequently, letting X̂ =

∑
t∈[T ] B̂t, if we can show

E [min{X,m}]≥E
[
min

{
X̂,m

}]
(13)

then the proof is complete, since the above reasoning can be applied iteratively until all success probabilities

are λ
T
.

To show (13), note that

E [min{X,m}]−E
[
min

{
X̂,m

}]
=

E

min{X,m}−min
{
X̂,m

} ∣∣∣∣∣∣
∑

t∈[T ]\{t1,t2}

Bt ≥m


︸ ︷︷ ︸

term 1

·Pr

 ∑
t∈[T ]\{t1,t2}

Bt ≥m

+

E

min{X,m}−min
{
X̂,m

} ∣∣∣∣∣∣
∑

t∈[T ]\{t1,t2}

Bt ≤m− 2


︸ ︷︷ ︸

term 2

·Pr

 ∑
t∈[T ]\{t1,t2}

Bt ≤m− 2

+

E

min{X,m}−min
{
X̂,m

} ∣∣∣∣∣∣
∑

t∈[T ]\{t1,t2}

Bt =m− 1


︸ ︷︷ ︸

term 3

·Pr

 ∑
t∈[T ]\{t1,t2}

Bt =m− 1

 .
We proceed to show that each of the three terms is non-negative:

� term 1: For the first term, we have that

E

min{X,m}−min
{
X̂,m

} ∣∣∣∣∣∣
∑

t∈[T ]\{t1,t2}

Bt ≥m

= 0,

since both X and X̂ will be larger than m with probability 1.

� term 2: In this case, we have

E

min{X,m}−min
{
X̂,m

} ∣∣∣∣∣∣
∑

t∈[T ]\{t1,t2}

Bt ≤m− 2


=E

[
X − X̂

]
=E

 ∑
t∈{t1,t2}

(
Bt − B̂t

)
= (λt1 +λt2)− (λt1 − ϵ+λt2 + ϵ)

= 0.
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� term 3: Here, we have

E

min{X,m}−min
{
X̂,m

} ∣∣∣∣∣∣
∑

t∈[T ]\{t1,t2}

Bt =m− 1


=E [min{Bt1 +Bt2 ,1}]−E

[
min{B̂t1 + B̂t2 ,1}

]
= (λt1 +(1−λt1) ·λt2)− (λt1 − ϵ+(1−λt1 + ϵ) · (λt2 + ϵ))

= ϵ · (λt1 −λt2︸ ︷︷ ︸
≥ϵ

)− ϵ2

≥ 0

A.5. Proof of Claim 3

Proof of (i). If product i is allocated in period t, then there must q∗ ∈ [Q] such that iq∗ = i and Pq∗t > 0.

As such, based on our construction of the offer probabilities that guide the randomization, it must be the

case that Tq∗−1 < t, since otherwise, it is straightforward to see that Pq∗t = 0. In the statement of (i), we

focus on some q ∈ [Q] such that iq < i= iq∗ , and hence it must be the case that q < q∗, which implies that

Tq ≤ Tq∗−1 < t. Consequently, we get that [Tq−1, Tq]∩ [t, n] = ∅, and hence Pqτ = 0 for any τ > t, as desired.

Proof of (ii). If product i is allocated in period t, then there must q∗ ∈ [Q] such that iq∗ = i and Pq∗t > 0.

As such, based on our construction of the offer probabilities that guide the randomization, it must be the

case that Tq∗ ≥ t− 1, since otherwise, it is straightforward to see that Pq∗t = 0. In the statement of (ii), we

focus on some q ∈ [Q] such that iq > i= iq∗ , and hence it must be the case that q > q∗, which implies that

Tq−1 ≥ Tq∗ ≥ t− 1. Consequently, we get that [Tq−1, Tq]∩ [1, t− 1] = ∅, and hence Pqτ = 0 for any τ ≤ t− 1.

Moreover, since product i ̸= iq was purchased in period t, we also know that product iq was not consumed

in period t.

Appendix B: Missing Proofs of Section 3

B.1. Proof of Lemma 3

Preliminaries. In Appendix C, we show how to derive the optimal solution to problem SUB-ASSORT

in a running time of O(nO(1)L), which we refer to as (St, St
O, q

t, xt). Throughout this proof, we will almost

exclusively manipulate only St and St
O, and hence for ease of notation, we drop every parameter’s dependence

on xt and qt. Moreover, in referencing these latter two parameters as well as θt+1, we drop their dependence

on t, since it plays no role in the proof. 5

Intermediate claims. Our proof will make us of the following claims, which establish structural properties

of the optimal solution (St, St
O, q, x). The proofs of these two claims can be found at the end of the section.

Claim 5. If St
O ̸= ∅, then pO − θq

uq1
≥ 0.

Claim 6. If St
O ̸= ∅, then Rq(S

t, St
O)≥ 0.

5 When products are dropped from St, we assume that xt is implicitly updated to reflect this change. Moreover, if
we do make a non-trivial update to the prices dictated by xt, then we explicitly note how these changes effect the
various parameters.
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Proof of Lemma 3. To begin, observe that if Ri(S
t, St

O, θ)≥ 0 for each i∈ St, then the proof is complete,

since conditions (i) and (ii) of the lemma statement are clearly met. Otherwise, we make the following simple

update. Let D= {i∈ St :Ri(S
t, St

O, θ)< 0} denote all products whose contribution is negative, and consider

the assortments Ŝt = St \D and Ŝt
O = St

O \D. If Ŝt
O = ∅, then it must have been the case that St

O = ∅. To see

this, note that Claim 6 implies that q /∈D if St
O ̸= ∅, which in turn implies that q ∈ Ŝt

O and hence Ŝt
O must

at least contain q. In this scenario, i.e. Ŝt
O = ∅, it is straightforward to see that the Ŝt and Ŝt

O = ∅ will satisfy

the two properties of the lemma by using the definition of D. Below we analyze the cases where |Ŝt
O|= 1 and

|Ŝt
O| ≥ 2, and make necessary adjustments for (Ŝt, Ŝt

O) in each case.

� Case 1 - |Ŝt
O|= 1: In this case, we must have that Ŝt

O = {q}, but since we cannot offer an opaque product

of size one, we set Ŝt
O = ∅. In this case, observe that

Zt(θ) = λqtRq(S
t, St

O, θ)+
∑
i∈D

λitRq(S
t, St

O, θ)+
∑

i∈St\(D∪{q})

λitRi(S
t, St

O, θ)

≤ λqtRq(S
t, St

O, θ)+
∑

i∈St\(D∪{q})

λitRi(S
t, St

O, θ)

= λqtRq(Ŝ
t, St

O, θ)+
∑

i∈St\(D∪{q})

λitRi(Ŝ
t,∅, θ)

︸ ︷︷ ︸
term (i)

,

where the inequality follows by definition of D, and the second equality follows by observing that for

each i∈ St \ (D∪{q}) we know that i /∈ Ŝt
O, and hence the contribution of these products is unchanged

when the opaque option is removed. From here, we abuse notation and use πq(pq, S
t
O) and πO

q (pO, S
t
O)

to respectively denote the choice probability of transparent product q at price pq and the opaque option

at price pO to get

term (i) = λqt ·
(
πq(pq, S

t
O) ·

(
pq −

θq
uq1

)
+πO

q (pO, S
t
O) ·

(
pO − θq

uq1

))
+

∑
i∈St\(D∪{q})

λitRi(Ŝ
t,∅, θ)

≤ λqt · 2
(
max

{
πq(pq, S

t
O) ·

(
pq −

θq
uq1

)
, πO

q (pO, S
t
O) ·

(
pO − θq

uq1

)})
+

∑
i∈St\(D∪{q})

λitRi(Ŝ
t,∅, θ)

≤ 2λqt ·
(
max

{
πq(pq,∅) ·

(
pq −

θq
uq1

)
, πq(pO,∅) ·

(
pO − θq

uq1

)})
+

∑
i∈St\(D∪{q})

λitRi(Ŝ
t,∅, θ)

= 2λqtRq(Ŝ
t,∅, θ)+

∑
i∈St\(D∪{q})

λitRi(Ŝ
t,∅, θ)

≤ 2
∑
i∈Ŝt

λitRi(Ŝ
t,∅, θ),
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as desired for property (ii). The first inequality follows from the fact that a+ b≤ 2max{a, b} for any

a, b≥ 0, the second inequality follows from Assumption 2, which implies that πq(pq,∅)≥ πq(pq, S
t
O) and

πq(pO,∅)≥ πO
q (pO, S

t
O). Here πq(pq,∅)≥ πq(pq, S

t
O) is trivial, and πq(pO,∅)≥ πO

q (pO, S
t
O) holds since

πO
q (pO, S

t
O) =

wO
q (pO)

1+wq(pq)+wO
q (pO)

≤ wq(pO)

1+wq(pq)+wq(pO)
≤ πq(pO,∅),

where, the first inequality above holds because wO
q (pO) ≤ wq(pO) by Assumption 2. For the second

equality in bounding term (i), we set the price of the transparent product q to

p̂q = argmax
p∈{pq,pO}

πq(p,∅) · (p−
θq
uq1

)

and hence we achieve the max. We also assume this pricing update is reflected in x̂t. The last inequality

holds due to the fact that for each i ∈ St \ (D ∪ {q}), we know its contribution is non-negative by

definition of D.

Finally, we note that it is easy to see that Ri(Ŝ
t,∅, θ)≥ 0 for each i ∈ Ŝt, as is required for property

(i) of the lemma. To see this, note that for i ∈ Ŝt \ {q} = St \ (D ∪ {q}), we have that Ri(Ŝ
t,∅, θ) =

Ri(S
t, St

O, θ) ≥ 0 by definition of D. Moreover, we clearly have that Rq(Ŝ
t,∅, θ) ≥ 0, since pq − θq

uq1
≥

pO − θq

uq1
≥ 0 by Claim 5.

� Case 2: |Ŝt
O| ≥ 2. In this case, we have

Zt(θ) =
∑

i∈St\D

λitRi(S
t, St

O, θ)+
∑
i∈D

λitRi(S
t, St

O, θ)

≤
∑

i∈St\D

λitRi(S
t, St

O, θ)

=
∑
i∈Ŝt

λitRi(Ŝ
t, St

O, θ)

=
∑

i∈Ŝt∩Ŝt
O

λitRi(Ŝ
t, St

O, θ)+
∑

i∈Ŝt\Ŝt
O

λitRi(Ŝ
t, Ŝt

O, θ)︸ ︷︷ ︸
term (ii)

,

where the first inequality follows by definition of the setD. The last equality follows from the observation

that for any i∈ Ŝt \ Ŝt
O, it must hold that i /∈ St

O. Therefore the contents of S
t
O do not affect Ri(Ŝ

t, St
O, θ)

as long as i /∈ St
O, and hence St

O can be replaced with any Ŝt
O where Ŝt

O ⊆ St
O. Next we show that

the first of the two summations in term (ii) can be upper bounded as follows, where we let S1 = {i ∈

Ŝt ∩ Ŝt
O : pi − θi

ui1
≥ 0}.∑

i∈Ŝt∩Ŝt
O

λitRi(Ŝ
t, St

O, θ)

=
∑

i∈Ŝt∩Ŝt
O

λit ·
(
πi(S

t
O) · (pi −

θi
ui1

)+πO
i (S

t
O) · (pO − θq

uq1

)

)

=
∑

i∈Ŝt∩Ŝt
O

λit ·
((

πi(S
t
O)−πi(Ŝ

t
O)+πi(Ŝ

t
O)
)
· (pi −

θi
ui1

)+πO
i (S

t
O) · (pO − θq

uq1

)

)
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≤
∑

i∈Ŝt∩Ŝt
O

λit ·
(
πi(S

t
O)−πi(Ŝ

t
O)
)
· (pi −

θi
ui1

)+

+
∑

i∈Ŝt∩Ŝt
O

λit ·
(
πi(Ŝ

t
O) · (pi −

θi
ui1

)+πO
i (S

t
O) · (pO − θq

uq1

)

)

≤
∑

i∈Ŝt∩Ŝt
O

λit ·πi(S
t
O) · (pi −

θi
ui1

)+

+
∑

i∈Ŝt∩Ŝt
O

λit ·
(
πi(Ŝ

t
O) · (pi −

θi
ui1

)+πO
i (Ŝ

t
O) · (pO − θq

uq1

)

)

≤ 2max

 ∑
i∈Ŝt∩Ŝt

O

λitπi(S
t
O) · (pi −

θi
ui1

)+,
∑

i∈Ŝt∩Ŝt
O

λitRi(Ŝ
t, Ŝt

O, θ)


≤ 2max

 ∑
i∈Ŝt∩Ŝt

O

λitπi(∅) · (pi −
θi
ui1

)+,
∑

i∈Ŝt∩Ŝt
O

λitRi(Ŝ
t, Ŝt

O, θ)


= 2max

∑
i∈S1

λitRi(S1,∅, θ),
∑

i∈Ŝt∩Ŝt
O

λitRi(Ŝ
t, Ŝt

O, θ)

 .

In the above analysis,the first inequality holds because πi(S
t
O)−πi(Ŝ

t
O)≥ 0, the second inequality holds

because πO
i (S

t
O)≤ πO

i (Ŝ
t
O), the third inequality holds by again invoking a+b≤ 2max{a, b}, and the last

inequality holds because πi(S
t
O)≤ πi(∅). The final equality holds by the definition of S1. By plugging

in the above upper bound, we show that term(ii) is upper bounded by

term (ii)≤ 2max

∑
i∈S1

λitRi(S1,∅, θ),
∑

i∈Ŝt∩Ŝt
O

λitRi(Ŝ
t, Ŝt

O, θ)

+
∑

i∈Ŝt\Ŝt
O

λitRi(Ŝ
t, Ŝt

O, θ)

≤ 2max


∑
i∈S2

λitRi(S2,∅, θ)︸ ︷︷ ︸
term (a)

,
∑
i∈Ŝt

λitRi(Ŝ
t, Ŝt

O, θ)︸ ︷︷ ︸
term (b)


(14)

where S2 = (Ŝt \ Ŝt
O)∪S1. From here, we set (Ŝt, Ŝt

O) as follows: if term (b) is larger in (14), then we

set Ŝt = St \D and Ŝt
O = St

O \D, and if term (a) is larger, we set Ŝt = S2 and Ŝt
O = ∅.

To conclude, we argue that property (i) of the lemma is satisfied by our choice of (Ŝt, Ŝt
O) for Case 2.

On one hand, if term (a) is larger, and we set Ŝt = S2 and Ŝt
O = ∅, then by definition of S2 we get that

Ri(Ŝ
t,∅, θ)≥ 0 for each i∈ Ŝt. If, on the other hand, term (b) is larger, we show Ri(Ŝ

t, Ŝt
O, θ)≥ 0 for all

i∈ Ŝt. Suppose there is some i such that Ri(Ŝ
t, Ŝt

O, θ)< 0. We note that this i must satisfy i∈ Ŝt ∩ Ŝt
O

and pi − θi
ui1

< 0. However, if this were the case, we get that

0>Ri(Ŝ
t, Ŝt

O, θ)≥Ri(Ŝ
t, St

O, θ),

which leads to a contradiction, since Ri(Ŝ
t, St

O, θ)≥ 0 by definition of D. The second inequality follows

because Ŝt
O ⊆ St

O, and so πi(Ŝ
t
O)≤ πi(S

t
O) and πO

i (Ŝ
t
O)≥ πO

i (S
t
O). As a result,

Ri(Ŝ
t, St

O, θ) = πi(S
t
O) · (pi −

θi
ui1

)+πO
i (S

t
O) · (pO − θq

uq1

)
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≤ πi(Ŝ
t
O) · (pi −

θi
ui1

)+πO
i (Ŝ

t
O) · (pO − θq

uq1

)

=Ri(Ŝ
t, Ŝt

O, θ).

Proof of Claim 5. Assume by contradiction that pO − θq

uq1
< 0, and define N− = {i ∈ St : pi − θi

ui1
< 0}.

We have that

Zt(θ) =
∑
i∈N−

λitRi(S
t, St

O, θ)+
∑

i∈St\N−

λitRi(S
t, St

O, θ)

≤
∑

i∈St\N−

λitRi(S
t, St

O, θ)

<
∑

i∈St\N−

λitRi(S
t,∅, θ)

=
∑

i∈St\N−

λitRi(S
t \N−,∅, θ).

The strict inequality follows since by setting St
O = ∅, we have removed the negative contribution of the opaque

option, while increasing the choice probabilities of all the transparent options, which each by constructions

have net positive contributions. The above sequence of inequalities contradicts the optimality of (St, St
O),

since they imply that (St \N−,∅) strictly improves on this supposed optimal solution.

Proof of Claim 6. Exploiting Claim 5, it is straightforward to see that Rq(S
t, St

O)< 0 only if pq− θq

uq1
< 0.

However, if this latter inequality is true it must be the case that pq < pO, which contradicts the feasibility of

xt, since transparent products must be priced above the opaque option.

B.2. Proof of Lemma 4

Basic algebra reveals that

θti − θt+1
i =

λitRi(Ŝ
t, Ŝt

O, q̂
t, x̂t, θt+1)+1q̂t=i ·

(∑
j ̸=i

λjtπ
O
j (Ŝ

t
O) · (pO(x̂

t)−
θt+1

q̂t

uq̂t1
)

)
if i∈ Ŝt

0 otherwise

Due to Lemma 3, and Claim 5, we have that θti − θt+1
i ≥ 0 in the first case. The fact that these tuning

parameters are non-negative follows from the observation that they are decreasing in t and θT+1
i = 0.

B.3. Proof of Lemma 5

We begin with an intermediate claim, which is essential to proving the lemma at-hand.

Intermediate claim. Consider the following updated version of the product-i contribution defined in (9),

which we now express as a function of the inventory vector Ut in period t

R̂i(S,SO, q, x, θ;Ut) = 1uit>0 ·

(
πi(x,SO) ·

(
pi(x)−

θi
ui1

)

+1uqt>0 ·πi
O(x,SO) ·

(
pO(x)−

θq
uq1

))
.

This updated product-i contribution function reflects the notion that out-of-stock products can be offered,

but the newly added indicators ensure that these out-of-stock products have zero contributions. Note that,

if problem (SUB-ASSORT) is formulated with these updated product-i contributions, then it might be the
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case that its optimal objective exceeds that of (10). In other words, there is a subtle difference between

enforcing that we can only offer in-stock products (problem (10)), and adding indicators to ensure that we

only pick up contributions from in-stock products. To see why this is the case, consider a scenario with

two products, where one is out-of-stock. In problem (10), it must be the case that S̄t
O = ∅ since the opaque

product must contain at least two products, and so the opaque option cannot add to the total contribution.

In this scenario, when we consider the indicator version of (SUB-ASSORT), the out-of-stock product can

be included so that we can gain a contribution from the opaque option (setting the lone in-stock product to

be the give-away product). With this in-mind, we present the following intermediate claim, which serves to

relate the two aforementioned problem settings, and whose proof appears at the end of this section.

Claim 7. For any period t∈ [T ], we have that∑
i∈S̄t

λitR̂i(S̄
t, S̄t

O, q̄
t, x̄t, θt+1)≥ 1

2

∑
i∈S̄t

λitR̂i(Ŝ
t, Ŝt

O, q̂
t, x̂t, θt+1;Ut),

where (S̄t, S̄t
O, q̄

t, x̄t) is the optimal solution to (10) when the period-t inventory is Ut and (Ŝt, Ŝt
O, q̂

t, x̂t) is

as defined in Lemma 3.

Proof of lemma. We prove the result by induction over t. The base case of t= T +1 holds trivially, and

hence we move to the general case case of t≤ T . Starting with the induction hypothesis, we have

H̄t(Ut) ≥
∑
i∈S̄t

λit ·

(
πi(x̄

t, S̄t
O) ·

(
pi(x̄

t)− 1

2
(Ht+1(Ut)−Ht+1(Ut − ei))

)

+πO
i (x̄

t, S̄t
O) ·

(
pO(x̄

t)− 1

2
(Ht+1(Ut)−Ht+1(Ut − eq̄t))

))
+

1

2
Ht+1(Ut),

≥
∑
i∈S̄t

λit ·

(
πi(x̄

t, S̄t
O) ·

(
pi(x̄

t)− 1

2

θt+1
i

ui1

)

+πO
i (x̄

t, S̄t
O) ·

(
pO(x̄

t)− 1

2

θt+1
q̄t

uq̄t1

))
+

1

2
Ht+1(Ut),

≥
∑
i∈S̄t

λit ·

(
πi(x̄

t, S̄t
O) ·

(
pi(x̄

t)− θt+1
i

ui1

)

+πO
i (x̄

t, S̄t
O) ·

(
pO(x̄

t)−
θt+1
q̄t

uq̄t1

))
+

1

2
Ht+1(Ut),

≥ 1

2
·

(∑
i∈N

1uit>0 ·λit ·

(
πi(x̂

t, Ŝt
O) ·

(
pi(x̂

t)− θt+1
i

ui1

)

+
∑
j∈N

1j=q̂t ·1ujt>0 ·πO
i (x̂

t, Ŝt
O) ·

(
pO(x̂

t)−
θt+1
j

uj1

))
+Ht+1(Ut)

)
, (15)

where the second inequality follows by (8), the third inequality follows from the fact that the θ-values are

non-negative (Lemma 4), and the fourth inequality follows by Claim 7. Continuing the string of inequality,

we have

(15) ≥ 1

2
·

(∑
i∈N

uit

ui1

·λit ·

(
πi(x̂

t, Ŝt
O) ·

(
pi(x̂

t)− θt+1
i

ui1

)
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+
∑
j∈N

1j=q̂t ·
ujt

uj1

·πO
i (x̂

t, Ŝt
O) ·

(
pO(x̂

t)−
θt+1
q̂t

uq̂t1

))
+Ht+1(Ut)

)

=
1

2
·

(∑
i∈N

uit

ui1

·λit ·
(
πi(x̂

t, Ŝt
O) ·

(
pi(x̂

t)− θt+1
i

ui1

)
+πO

i (x̂
t, Ŝt

O) ·
(
pO(x̂

t)− θt+1
i

ui1

))

+
∑
i∈N

∑
j ̸=i

uit

ui1

ujt

uj1

·1j=q̂t ·λitπ
O
i (x̂

t, Ŝt
O) ·

(
pO(x̂

t)−
θt+1
q̂t

uq̂t1

))
+Ht+1(Ut)

)

=
1

2
·

(∑
i∈N

uit

ui1

·
(
γt
i − γt+1

i

)
+
∑
i∈N

uit

ui1

·
(
γt
ii − γt+1

ii

)
+
∑
i∈N

∑
j ̸=i

uit

ui1

ujt

uj1

·
(
γt
ij − γt+1

ij

)
+Ht+1(Ut)

)

=
1

2
Ht(Ut).

The first inequality follows because 1x>0 ≥ x
y
for any x, y ≥ 0. The third equality uses the definition of the

tuning parameters are given in Algorithm 2, and the last inequality uses (7)

Proof of Claim 7. Define St = Ŝt∩N (Ut) and St
O = Ŝt

O ∩N (Ut). The proof then proceeds by replicating

the arguments from the proof of Lemma 3 for the cases of |St
O|= 1 and |St

O| ̸= 1. For brevity, and to limit

redundancies in the arguments we present, we omit the remaining details of the proof.

B.4. Proof of Lemma 6

To begin, observe that for any A= (S,SO, q, x)∈A and t∈ [T ], basic algebra reveals that∑
i∈N

λitRi(A,0)−u(A) ·αi =
∑
i∈N

πi(x,SO) · (pi(x)−αi)+πi
O(x,SO) · (pO(x)−αq)

=
∑
i∈N

λitRi(A,α(u)),

where α(c) = (u11α1, . . . , un1αn), and so can rewrite the optimal dual objective as

OPTfluid = min
αi≥0

∑
i∈N

ui1αi +
∑
t∈[T ]

max
A∈A

∑
i∈N

λitRi(A,α(c)).

From here, consider the dual solution αi =
θ1i
ui1

, which is clearly feasible since θ1i ≥ 0 for each i ∈N , and

which results in a dual objective value of

Ẑdual =
∑
i∈N

θ1i︸ ︷︷ ︸
term (i)

+
∑
t∈[T ]

max
A∈A

∑
i∈N

λitRi(A,θ)

︸ ︷︷ ︸
term (ii)

.

By weak duality, we have Ẑdual ≥OPTfluid, and hence it suffices to show that 4H1(U1)≥ Ẑdual. We do so by

showing that both term (i) and term (ii) are upper bounded by 2H1(U1).

Bound for term (i). We have∑
i∈N

θ1i =
∑
i∈N

(
γ1
i + γ1

ii +
∑
j ̸=i

γ1
ij + γ1

ji

)
=
∑
i∈N

(
γ1
i + γ1

ii

)
+
∑
i∈N

∑
j ̸=i

(
γ1
ij + γ1

ji

)
≤
∑
i∈N

(
γ1
i + γ1

ii

)
+2 ·

∑
i∈N

∑
j ̸=i

γ1
ij

≤ 2H1(U1),
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where the final inequality follows by (7).

Bound for term (ii). We have∑
t∈[T ]

max
A∈A

∑
i∈N

λitRi(A,θ)

≤ 2 ·
∑
t∈[T ]

∑
i∈N

λitRi(Ŝ
t, Ŝt

O, q̂
t, x̂t, θ)

= 2 ·
∑
t∈[T ]

∑
i∈N

λit ·
(
πi(x̂

t, Ŝt
O) ·

(
pi(x̂

t)− θ1i
ui1

)
+πi

O(x̂
t, Ŝt

O) ·
(
pO(x̂

t)−
θ1q̂t

uq̂t1

))

≤ 2 ·
∑
t∈[T ]

∑
i∈N

λit ·

(
πi(x̂

t, Ŝt
O) ·

(
pi(x̂

t)− θt+1
i

ui1

)
+πi

O(x̂
t, Ŝt

O) ·

(
pO(x̂

t)−
θt+1
q̂t

uq̂t1

))
, (16)

where the first inequality uses Lemma 3, and the second uses Lemma 4. Using the definitions of the tuning

parameters as given in Algorithm 2, we have

(16) = 2 ·

(∑
t∈[T ]

∑
i∈N

λitπi(x̂
t, Ŝt

O) ·
(
pi(x̂

t)− θt+1
i

ui1

)

+
∑
t∈[T ]

∑
i∈N

∑
j∈N

1j=q ·λitπ
i
O(x̂

t, Ŝt
O) ·

(
pO(x̂

t)−
θt+1
j

uj1

))

= 2 ·

∑
t∈[T ]

∑
i∈N

(
γt
i − γt+1

i

)
+
∑
t∈[T ]

∑
i∈N

(
γt
ii − γt+1

ii

)
+
∑
t∈[T ]

∑
i∈N

∑
j ̸=i

(
γt
ij − γt+1

ji

)
= 2 ·

(∑
i∈N

(
γ1
i + γ1

ii

)
+
∑
i∈N

∑
j ̸=i

(
γ1
ij + γ1

ji

))
= 2H1(U1),

where the third equality follows since these sums telescope.

Appendix C: Finding the Optimal Pricing/Assortment Choice

Our approach for recovering the period-t optimal solution of SUB-ASSORT, referred to as (St, St
O, q

t, xt),

unfolds over two steps. First, there is a guessing step, where guess components of the optimal solution

(St, St
O, q

t, xt) that allow for the problem to be decoupled by customer type. Next, exploiting this decoupling,

we formulate a simple dynamic program that allows for efficient recover of the remaining components of the

optimal solution that were not guessed in the first step.

Step 1: Guessing. To begin, we guess qt, |St
O| and pO(x

t) (henceforth referred to as pO) using complete

enumeration over all candidate combinations. Indeed, there are O(n) candidates for the former two quantities

and O(L) for the latter, and hence complete enumeration requires considering O(n2L) possible guesses.

Importantly, with both |St
O| and pO in-hand, we know wO

i (x
t, St

O) for each customer type i ∈ N . As such,

for the remainder of this section, we use wO
i as a shorthand for wO

i (x
t, St

O).

Step 2: The dynamic program. Next, we present a dynamic program that sequentially progresses over

the customer types, and for each, decides whether or not to include their focal product as a transparent

product (while also choosing its price in this case) and/or whether to include this focal product within

the opaque option. The value functions R(i, k) denote the optimal “reward” that can garnered from types
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i, . . . , n, given that k products among {1, . . . , i− 1} have been included within the opaque option. Formally,

we have

R(i, k) = max

{
R(i+1, k)︸ ︷︷ ︸
do not offer i

,

max
ℓ∈[L]

λit ·
(
pℓ −

θi
ui1

)
· wiℓ

1+wiℓ

+R(i+1, k)︸ ︷︷ ︸
Only offer i as transparent

,

max
ℓ∈[L]:
pℓ≥pO

λit ·
(
pℓ −

θi
ui1

)
· wiℓ

1+wiℓ +wO
i

+λit ·
(
pO − θqt

uqt1

)
· wO

i

1+wiℓ +wO
i

+R(i+1, k+1)

︸ ︷︷ ︸
Offer i as transparent and within opaque

}
,

with base cased of

R(n+1, k) =

{
0 if k= |St

O|
−∞ otherwise

to enforce that the final opaque option abides by our guess of its cardinality. We must also enforce that when

i= qt, we offer qt as both a transparent and opaque product. It is straightforward to see that following the

decisions of this dynamic program from the initial state of (1,0) will yield St, St
O and xt.

The overall running time. There are a total of O(n2) values functions, which can each be computed

in a running time of O(L) by enumerating over the L possible pricing options. Consequently, including the

initial guessing step, the final running to time to compute (St, St
O, q

t, xt) is O(n4L2).

Appendix D: Expedia data description

The Expedia data set contains customers’ search and purchase data on various Expedia-owned websites in

different countries. For each logged customer search, the data records the search’s time stamp, the searched

destination, hotel listings returned for the search including a rich set of search-dependent and hotel-dependent

features, and the customers’ response actions including click and purchase decisions. The search-dependent

features include those that only depend on the trip information of a customer, for example, the duration

of stay, the number of adults, and the number of children, and they do not vary across hotels. The hotel-

dependent features include those that only depend on the hotel and do not vary with customer searches,

for example, hotels’ star ratings, review scores, and location scores. Both types of features clearly have an

impact on the final purchase decisions of customers.

We follow the approach of Feldman and Segev (2022) to clean the data for our experiments. According

to their work, a subset of the data entries are deemed as outliers and are therefore omitted. These entries

mainly include those with unrealistic hotel prices (less than $10 or higher than $5000 USD per room per

night) and those with a duration of stay greater than 10 days. We also only include searches whose results

are displayed in random order. For a complete set of criteria applied to the data cleaning procedure, we refer

readers to Appendix C.2.1 of Feldman and Segev (2022). We provide a brief summary of the key statistics of

the cleaned data in Table 6 for the three biggest sites. We summarize the total number of searches, the total

number of bookings, the conversion rate (or the purchase probability, calculated as the ratio of the number

of bookings to the number of searches), and the average number of hotels returned in a search (|S|) on the

three sites (5, 14, 15).
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Table 6 Summary Statistics

Site Searches Bookings Conversion |S|

5 63383 9045 14.27% 25.1
14 10544 1401 13.29% 24.6
15 6674 861 12.90% 24.3
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