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In this paper, we introduce and study the Anheuser Busch InBev trailer problem, which considers how

Anheuser Busch InBev ships its beer to wholesalers via third party delivery trucks. In this problem, Anheuser

Busch InBev must select the weights and inventory levels of preloaded trailers of beer, which are then

matched in an online fashion to arriving third party delivery trucks. What ultimately arises is an interesting

online resource allocation problem, which also must incorporate an initial inventory decision as a precursor.

We develop two distinct approaches for this problem under two different settings, which are distinguished by

whether or not Anheuser Busch InBev would like to consider altering the weights of trailers that have been

preloaded as the delivery trucks arrive. In both settings, we characterize optimal policies for matching trailers

to arriving delivery trucks and develop efficient approaches to select the set of trailer weights to preload

as well as their corresponding inventory levels. Using historical truck arrival data from Anheuser Busch

InBev, we simulate our proposed approaches and find that their performances are within 1% of optimality

on average.

Key words : dynamic matching, inventory selection, piecewise linear approximation, constraint generation.

1. Introduction

Two problems that have received increased attention in the operations and revenue management

literatures are those of online resource allocation/matching and optimal inventory selection. The

former refers to the problem of matching customers to a scarce set of products in an online fashion

so as to maximize the revenue accrued over a finite selling horizon. There are many widely studied

problems that fall within this framework. Examples include the classic network revenue manage-

ment problem, where the goal is to dynamically adjust the set of offered products over a selling

horizon to maximize expected revenue when the sale of each product consumes a combination of

resources. More directed versions of this problem are studied by Rusmevichietong et al. (2014)
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and Ma and Levi (2017), who consider online assortment problems in which a retailer is allowed

to customize her offer decisions to each arriving customer based on just revealed features of the

given customer and current inventory levels for each product. Additionally, the Display Ads prob-

lem, which is the edge weighted and capacitated generalization of the online bipartite matching

problem, is another widely studied problem in the computer science literature that falls within the

framework of online resource allocation.

On the other hand, the inventory selection problem considers how to choose initial inventory

levels for a collection of products, which are then subsequently consumed over a finite selling horizon

according to some known demand process. Examples of works that have studied this problem

include Honhon et al. (2010), Goyal et al. (2016), and Aouad et al. (2018), who consider versions

of this problem when demand is governed by a particular customer choice model. Interestingly,

even though the inventory selection problem is a natural precursor to the online resource allocation

problem in most settings, there is little work that tackles the two problems simultaneously. For

example, the many solution approaches developed for the network revenue management problem

all assume that initial inventory levels are given. In a similar vein, the online assortment problem

studied by Rusmevichietong et al. (2014) assumes the initial inventory decision is exogenous and

hence only considers how to vary the offered assortment to each arriving customer. In reality,

however, retailers generally have control over the initial inventory decision. For example, Lufthansa

Airlines has a movable curtain that allows them to dynamically adjust the number of Economy

seats on each of their flights. Consequently, it is intriguing to wonder if it is possible to incorporate

an initial inventory decision within solution approaches for online resource allocation problems.

In what follows, we introduce the Anheuser Busch Inbev trailer problem, which considers how

Anheuser Busch InBev should preload trailers of beer that then must be matched to arriving third

party delivery trucks. We ultimately arrive at a problem setting where a manager must develop

and link solution approaches to online resource matching and inventory selection problems. In this

way, to the best of our knowledge, we present one of the first approaches which simultaneously

accounts for both of these critical operational decisions.

The Anheuser Busch InBev trailer problem and its significance. Anheuser Busch InBev (abbre-

viated as ABI for the remainder of the paper) brews and packages its beer in multiple locations

throughout the United States. After packaging, the finished product is transported to beer whole-

salers via third party trucks. Beer is transported from each brewery via drop trailers, which are

preloaded trailers of beer, whose weights have been chosen in advance of the arrival of the third

party trucks. Typically, drop trailers are preloaded 4hrs - 48hrs in advance of the truck arrivals.

For each third party truck that arrives to their brewery warehouse, ABI must match this truck

with a trailer of beer so as to maximize their revenue, which is proportional to the total amount of
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beer shipped out. If, however, the gross weight of the trailer and truck exceeds 80,000 lbs., then the

truck must return to the loading dock for adjustment due to federally mandated weight limits. This

action is termed a “scaleback”, and causes additional costs to be incurred by ABI since workers

must be paid to remove beer from the preloaded trailer. The problem is further complicated due to

the fact that the weights of the arriving trucks are unpredictable, since each third party delivery

service has a variety of different trucks in their fleet and ABI is not able to plan and coordinate

the exact sequence of truck arrivals on each day.

The focus of this paper is on optimizing the drop trailer portion of ABI’s shipping system.

We consider a time horizon over which there are τ scheduled arrivals of third party trucks. We

discretized this time horizon into τ time periods so that there is exactly one truck arrival in each

time period. While we assume that ABI knows the number of truck arrivals, we assume that the

weight of each truck is only revealed once the truck arrives to the warehouse and is hence ready

to be assigned a trailer of beer. The ABI trailer problem can be summarized as a sequence of

three sets of decisions that are made with the intention of maximizing the revenue earned over

the time horizon. First, ABI must choose the weights of the preloaded trailers. We refer to each

set of trailers that is loaded at a unique weight as a trailer type. In other words, the set of trailer

types gives the set of weights at which ABI has preloaded trailers. Second, they must choose the

number of trailers to preload at each of these weights. Finally, they must choose a trailer to match

to each arriving truck by considering the immediate revenue and the expected revenue that could

be derived from future truck arrivals. We refer to these three problems as the trailer type selection,

inventory selection and trailer matching problems respectively.

The current practice at ABI is to preload only a single trailer type, which is then matched

to each arriving truck. Consequently, within this current approach, there is no need to solve the

aforementioned inventory selection and trailer matching problems since only a single trailer type

is selected. We ultimately show that by allowing for multiple trailer types to be selected, ABI has

the potential to improve its revenue by as much as 1.5%. Using daily logistics cost data provided

to us by ABI, we have calculated the opportunity cost from suboptimal approaches to the ABI

trailer problem to be approximately $9,420,000 per year for a single brewery. Considering that ABI

has 21 breweries all over the U.S., this slight percentage improvement in performance can improve

revenue by millions of dollars.

Relationship to existing problems. Before we thoroughly review the past literature, we briefly dis-

tinguish our problem setting from other similar settings. For a fixed collection of trailer types and

inventories levels for each of these types, the trailer matching problem considers how to optimally

match trailers to arriving third party trucks so as to maximize the expected revenue over the given

time horizon. Variations of this problem by itself have been studied in the revenue management
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and online matching literature. Since both the trailer matching and network revenue management

problems require managing a collection of perishable inventory units over a finite selling horizon,

the two problems are seemingly quite similar. However, in the network revenue management prob-

lem, arriving customers choose among the offered products according to some customer choice

model, while in our trailer matching problem, each arriving truck can be deterministically assigned

to any trailer with available inventory. We ultimately show that despite this difference, we are able

to apply classic approximate dynamic programming techniques from the network revenue man-

agement literature not only to the trailer matching problem, but also to the inventory selection

problem. In this way, we extend the efficacy of such techniques to a new class of inventory prob-

lems, which require both selecting initial inventory levels and managing the consumption process

of each product over a finite selling horizon.

The Display Ads problem, which again is the edge weighted and capacitated generalization of

the online bipartite matching problem, can easily be seen to be a more general form of the trailer

matching problem. In the online matching literature, the efficacy of an algorithm is generally

measured by its competitive ratio, which compares the performance of the proposed online approach

against an optimal offline algorithm that is given access to the entire input graph. In the adversarial

setting, the theoretical performance of the proposed online algorithm is measured against the

single worst case input graph that could ever arise. In the more structured IID setting, node

arrivals follow some known stochastic process and hence the algorithm is benchmarked against

the expected performance of an offline algorithm. With regards to the Display Ads problem, it is

easy to construct simple instances (see Chapter 7 of Mehta (2013)) for which it is not possible to

obtain a non-trivial competitive ratios in the adversarial setting . As is such, simplifications such

as the free disposal model, which relax the capacity restrictions, have led to algorithms that yield a

competitive ration of 1− 1
e
(see Feldman et al. (2009)). A simplification of this type is not amenable

to our setting, as it would require allowing a trailer type with zero inventory to be assigned to an

arriving truck. In the IID setting, which mirrors the setting that we study since the truck arrivals

follow a known distribution, Stein et al. (2016) develop a 0.321-approximation scheme. While this

approach could be used to solve the trailer matching problem, we show that by exploiting the

simple structure of the matching reward function that is specific to the ABI trailer problem, we

can uncover additional structure on the optimal policy that leads to simple approximation schemes

and interesting managerial insights regarding the performance of greedy policies.

At this point, we reiterate that the approaches alluded to above only relate to possible algorithms

for the trailer matching problem. Extending and combining ideas from the revenue management

and online matching literature to sequentially account for each of the three problems that make up

the ABI trailer problem forms the basis of our contributions. A central difficulty in doing such, is
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the fact that the three problems are not independent. For example, one of the algorithms that we

develop for the inventory selection problem critically relies on the structure of the optimal policy

for the trailer matching problem. Consequently, even if tractable approaches exist for the problems

individually, there is still difficulty in stitching the three approaches together. In what follows, we

provide a more detailed description of our main findings and of the related literature.

Contributions. We consider two settings for the ABI trailer problem, which are distinguished

by whether or not ABI would like to consider scaleback events. In the first setting, we assume

that once the trailers have been preloaded, they cannot be altered by removing beer. In this

case, each arriving truck can only be matched to trailers whose combined weight does not exceed

80,000 pounds. If no such trailer exists, then the truck must leave the warehouse empty-handed.

In the second setting, we relax the restriction on the set of feasible trailer-truck assignments by

allowing ABI to remove beer from the preloaded trailers at a non-negligible operational cost. In

both settings, initial formulations of the trailer matching problem as a dynamic program suffer

from the so-called curse of dimensionality due to the fact that the number of potential inventory

states grows exponentially in τ . Consequently, both of the approaches that we develop begin by

showing how this difficulty can be overcome by proving the optimality of greedy policies, which

can then be exploited in solving the inventory selection and trailer type selection problems.

In the first setting, we show that the trailer matching problem can be solved optimally via

a simple greedy algorithm, which always matches the heaviest feasible trailer for which there is

available inventory. We then show how to cast the inventory selection problem as a problem of

maximizing a submodular montone set function subject to a cardinality constraint, for which it

is well documented (see G. L. Nemhauser and Fisher (1978)) that a greedy procedure produces a

solution within a factor of 1− 1
e
of optimal. Our proof of this result involves a sample path argument

that relies critically on the optimality of the aforementioned greedy policy. Further, implementing

the greedy procedure of G. L. Nemhauser and Fisher (1978) requires access to an oracle which

can efficiently evaluate the expected revenue for any choice of initial trailers and inventory levels.

Again, the optimality of a greedy policy is what allows us to develop such an oracle via Monte

Carlo simulation. We wrap up our analysis in this first part by showing how to identify a reasonably

small set of trailer types from an arbitrary universe of potential trailer types at a cost of only a

factor of ϵ of optimal for any ϵ > 0.

In the second setting, we first prove a modified greedy policy for the trailer matching problem.

We then employ the piecewise linear approximation approach of Kunnumkal and Talluri (2015)

for the network revenue management problem to our problem setting. To do so, we begin by

considering the linear programming formulation of the dynamic program for the trailer matching

problem, which has a decision variable and constraint for each potential inventory state in each time
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period. Following Kunnumkal and Talluri (2015), we then approximate each decision variable by a

separable (by trailer types) piecewise linear function. This technique reduces the number of decision

variables, but the number of constraints still grows exponentially in τ . Following the common

practice in the revenue management literature, we show that this difficulty can be overcome by

providing an efficient way to implement constraint generation. We then show how to extend this

linear program to account for the inventory and trailer type selection problems. We accomplish

the former by exploiting properties of the multiple choice knapsack problem. Ultimately we give a

single linear program that simultaneously approximates each of the three problems. We show that

this linear program can be efficiently solved and that it provides a tight upper bound on the optimal

expected revenue, which can be used to measure the efficacy of various heuristic approaches.

We conclude with a series of computational experiments which test the performance of the

approaches that we develop as well as the tightness of the upper bound that we propose. All test

cases are implemented using historical truck arrival data from two North American warehouses of

ABI along with accurate revenue and cost parameter estimates that are provided by the company

as well. We find that in most of the test cases, both of our proposed approaches produce solutions

to the ABI trailer problem that are within 1% of optimality on average.

Related Literature. The stream of literature that most closely resembles our work is that of

approximate techniques for the network revenue management problem. The seminal approach of

Simpson (1989) proposes a linear programming based approximation of the problem, known as the

deterministic linear program (DLP), where the demand for each product is assumed to take on its

expected value. Later on, Talluri and van Ryzin (1999a) and Talluri and van Ryzin (1999b) study

the performance of bid price policies that can be derived from an optimal solution to the DLP.

Topaloglu (2009) proposes an alternative way to derive bid prices, which employs a Lagrangian

relaxation to decouple decisions across resources.

These previous works assume that the demand for a particular product is independent of the

availability of the other products. To combat this issue, Gallego et al. (2004) propose the Choice-

Based DLP, where the demand for each product is governed by some underlying customer choice

model and there is a decision variable for the fraction of time to offer each assortment of products

over the selling horizon. Gallego et al. (2004) show that the optimal objective value of the Choice-

Based DLP is an upper bound on the optimal expected revenue and hence its value can be used

to benchmark heuristics. Liu and van Ryzin (2009) extend this work by characterizing the general

structure of optimal offer decisions and showing that the optimal objective of the Choice-Based

DLP approaches the expected revenue of an optimal policy as the capacities and length of the time

horizon are scaled up. Méndez-Dı́az et al. (2010), Gallego et al. (2014) and Feldman and Topaloglu
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(2017) present approaches for solving the Choice-Based DLP under various popular choice models

which are based on developing efficient algorithms for the column generation subproblem.

Another popular approach, which more closely resembles the direction that we take, is to write

the dynamic programming formulation of the network revenue problem as an equivalent linear

program. This linear program has a decision variable and constraint for each potential inventory

state and hence the size of this linear program grows exponentially in the length of the selling

horizon. Adelman (2007) proposes approximating each decision variable as a linear combination of

the corresponding inventory levels of each resource. This technique is often referred to as the affine

approximation to the value functions. This approximation reduces the number of decision variables

in the linear program, however, the number of constraints remains exponential in the length of

the selling horizon. Consequently, Adelman (2007) propose an integer programming formulation

for the constraint generation subproblem and also provide a way to get an upper bound on the

optimal objective value of the full linear program, which can then be used to check the optimality

gap at any point during constraint generation. In our setting, we give a similar upper bound, but

prove the result in a different manner. Tong and Topaloglu (2014) extend this result by showing

that column generation subproblem can actually be relaxed to a linear program.

With regards to the affine approximation, the previously stated results assume an independent

demand model. Zhang and Adelman (2009), Meissner and Strauss (2012), and Vossen and Zhang

(2015) apply the affine approximation to network revenue management problems with customer

choice. They show that the linear program that results from variations of this approximation can

be solved efficiently and the upper bound provided by the affine approximation is tighter than

that provided by the Choice-Based DLP. More recently, Sumida et al. (2017) show that the affine

approximations can be used to derive policies with constant factor performance guarantees for the

network revenue management problem with parallel flight legs.

To the best of our knowledge, Kunnumkal and Talluri (2015) is the first to consider the piecewise

linear approximation to the value functions that we also employ. They show that this approach

provides a tighter upper bound on the expected revenue than both the DLP and the affine approx-

imation. Talluri and Kunnumkal (2016) formalizes this notion by providing theoretical bounds on

the gap between the DLP and the affine and piecewise linear approximations. We show that this

approximate dynamic programming technique can be generalized to our setting and even extended

to simultaneously account for all three problems that make up the ABI trailer problem. We note

that the affine approximation could potentially be useful for developing upper bounds and heuristic

policies for the trailer matching problem. However, it will not be hard to see later on, that extend-

ing this approach to the inventory selection problem in the same way as we do with the piecewise

linear approximations would result in a trivial inventory vector that only chooses one trailer type.
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The remainder of this paper is organized as follows. In section 2 we formalize the three problems

that make up the ABI trailer problem. Then, sections 3 and 4 give our solution approaches for the

two settings that we consider. In section 5, we present a series of computational experiments that

measure the efficacy of our proposed solution approaches using real truck arrival data from ABI.

Finally, we conclude and provide avenues for future work in section 6.

2. Problem Formulation

In what follows, we formalize the three problems that make up the ABI trailer problem progressing

backwards with regards to the order in which they must be solved in practice. We begin by

formulating the trailer matching problem and then move to the inventory selection problem and

then finish with the trailer type selection problem. We discretize our planning horizon into time

periods t= 1, . . . , τ , where in each time period exactly one truck arrives. We denote the set of m

potential types of trucks as B = {1, . . . ,m}. For a truck type b ∈ B, let pb and wb be the arrival

probability and truck weight respectively. Since exactly one truck arrives to the warehouse in each

time period, we have that
∑

b∈B pb = 1. The collection of n types of pre-loaded trailers is given by

L= {1, . . . , n}, where the loaded weight of trailer type l ∈L is given by wl. We assume the trailer

types are indexed in increasing order of weight. For ease of presentation, we create a dummy trailer

0∈L that has infinite capacity and generates zero revenue. The revenue from assigning trailer type

l to a truck b is denoted as rl,b. The exact form of rl,b will depend on whether or not we consider

scaleback events, and hence we delay presenting an explicit expression for this term until later

sections.

We use xt ∈Zn
+ to denote the remaining number of unassigned trailers at the beginning of time

period t, where xl
t gives the number of remaining units of trailer type l. We assume that the

manager chooses a total of τ units across all n types of trailers and hence the initial inventory level

x1 must be chosen from the set X1 = {x ∈ Zn
+ :
∑

l∈L\{0} x
l = τ}. For t > 1, the inventory levels of

all trailers must satisfy xt ∈Xt = {x ∈ Zn
+ :
∑

l∈L\{0} x
l ≥ τ − (t− 1)}, since before time period t at

most (t− 1) units of trailers have been assigned. We note that the inequality in the definition of

Xt is a result of the fact that when scalebacks are not allowed, it is possible that there will be no

feasible trailer that can be assigned to the arriving truck.

For fixed initial inventory vector x1 ∈ X1, the trailer matching problem can be formulated as

a simple dynamic program whose value function Vt(xt) represent the maximum expected revenue

that can be derived from time periods t, t+ 1, . . . , τ given the current inventory levels xt. Before

giving the Bellman equations of the dynamic program we first develop a bit of notation that

simplifies our exposition. For given inventory levels xt, we let L(xt) = {l ∈L : xl
t > 0} denote the set

of trailer types that have remaining inventory. Further, we let el ∈ {0,1}n donate the unit vector
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whose lth component is equal to 1 and whose other components are 0. With this notation in hand,

the dynamic programming formulation for the trailer matching problem is given below:

Vt(xt) =
∑
b∈B

pb max
l∈L(xt)

{
rl,b +Vt+1(xt − el)

}
, (1)

with base cases

Vτ+1(·) = 0.

The optimal expected revenue for initial inventory vector x1 is therefore given by V1(x1) and hence

the preceding inventory selection problem can be written as

Z∗(L) = max
x1∈X1

V1(x1). (2)

Our final task is to choose the trailer types L from the universe of all possible choices U in order

to maximize Z∗(L)
OPT =max

L⊂U
Z∗(L) (3)

We first note that computing V1(x1) is no simple task, since the number of feasible inventory

vector grows exponentially in τ . Further, even if given a blackbox oracle that can compute V1(x1)

for any initial inventory level x1, problem (2) remains non-trivial due its combinatorial nature.

In what follows, we address problems (1) - (3) under two different assumptions regarding the

set of feasible trailers that can be assigned to arriving trucks. In both cases, we show how our

approaches can be extended to approximate the inventory selection and trailer selection problems

both accurately and efficiently.

3. First Setting: No scalebacks

In the first setting, we assume that trailer weights cannot be altered in order to meet the gross

weight limit of 80,000 lbs. In other words, a trailer l ∈L can only be assigned to an arriving truck

b ∈ B if xl
t > 0 (inventory availability) and wl +wb ≤ 80,000 (weight requirement). This setting is

particularly relevant when scaleback events are costly or time consuming. Further, the policies and

ideas that we develop in this setting inspire heuristics for the general setting, which we eventually

show to be quite profitable. To encode this restriction, we set

rl,b =

{
wl · r, if wl +wb ≤ 80,000

0, o.w.
(4)

where r is the revenue gained per pound of weight loaded onto a truck. Due to the presence of the

dummy trailer, it will never be optimal to assign a trailer l≥ 1 to arriving bus b∈B with rl,b = 0.

Consequently, in solving the dynamic program in (1), the structure of rl,b is enough to ensure that

we do not make an infeasible assignment in this setting. We begin our analysis by focusing on the

trailer matching problem in this setting.
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3.1. The Trailer Matching Problem

In this section, we show that a simple greedy policy is optimal for (1) when the revenues take the

form of (4). To do so, we prove the following proposition.

Proposition 1. For any time period t, inventory vector xt and trailers l1, l2 ∈ L(xt) such that

l2 > l1, we have that

Vt(xt − el1)−Vt(xt − el2)≤ (wl2 −wl1)r.

Proof. We prove the result by induction over the time periods. The result is trivially true for

time period T + 1. Next, we assume that the result holds up to time period t+ 1 and prove the

result for time period t. To do so, we consider the optimal trailer assigned to each arriving truck

for a fixed time period t with inventory vectors xt − el2 and xt − el1 . For b∈B, let

k∗
2 = argmax

k2∈L(xt−el2
)

rk2,b +Vt+1(x− el2 − ek2)

and

k∗
1 = argmax

k1∈L(xt−el1
)

rk1,b +Vt+1(x− el1 − ek1)

be such trailer assignments. Since the arriving truck b∈B has been fixed, we drop the dependence

of b on these optimal trailer assignments to avoid cluttered notation. By the induction hypothesis

we have that

k∗
2 = argmax

k2∈L(xt−el2
)

rk2,b

and

k∗
1 = argmax

k1∈L(xt−el1
)

rk1,b

since rk1,b =wk1r and rk2,b =wk2r as long the trailers can be feasibly matched with the given truck.

Next, still fixing the arriving truck b ∈ B, we consider the three possible scenarios for how k∗
1 and

k∗
2 relate to each other. In each case, we let

∆(xt, k
∗
1 , k

∗
2) = (rk∗1 ,b +Vt+1(x− el1 − ek∗1 ))− (rk∗2 ,b +Vt+1(x− el2 − ek∗2 )),

and we show that ∆t(xt, k
∗
1 , k

∗
2)≤ (wl2 −wl1)r.

Case 1: k∗
1 = k∗

2 = k∗: In this first case, we have that

∆(xt, k
∗, k∗) =(rk∗,b +Vt+1(xt − el1 − ek∗))− (rk∗,b +Vt+1(xt − el2 − ek∗))

= Vt+1(xt − el1 − ek∗)−Vt+1(xt − el2 − ek∗)

= Vt+1(x
′
t − el1)−Vt+1(x

′
t − el2)

≤ (wl2 −wl1)r.

The second equality follows by setting x′
t = xt \ {k∗} and the inequality follows by the induction

hypothesis.
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Case 2: k∗
1 ̸= k∗

2 = l1: In this second case, the revenue difference can be written as

∆(xt, k
∗
1 , l1) = (rk∗1 ,b +Vt+1(xt − el1 − ek∗1 ))− (rl1,b +Vt+1(xt − el2 − el1))

≤ (wl2r+Vt+1(xt − el1 − el2))− (wl1r+Vt+1(xt − el2 − el1))

= (wl2 −wl1)r,

where the first inequality follows by the induction hypothesis due to the fact that k∗
1 ≤ l2, since

otherwise k∗
1 would also be optimal for the xt − el2 case.

Case 3: k∗
2 ̸= k∗

1 = l2: In this final case, the revenue difference can be written as

∆(xt, l2, k
∗
2) = (rl2,b +Vt+1(xt − el1 − el2))− (rk∗2 ,b +Vt+1(xt − el2 − el1))

≤ (wl2r+Vt+1(xt − el1 − el2))− (wl1r+Vt+1(xt − el2 − el1))

= (wl2 −wl1)r,

where the inequality follows by the induction hypothesis due to the fact that k∗
2 ≥ l1 since l2 was

optimal for the xt − el1 case.

Combining everything, we get that

Vt(xt − el1)−Vt(xt − el2) =
∑
b∈B

pb∆(xt, k
∗
1 , k

∗
2)

≤ (wl2 −wl1)r,

where the inequality follows due to the three case argument made above.

Applying this result for time period t+1 gives that wl2r+ Vt+1(xt − el2)≥wl1r+ Vt+1(xt − el1)

for l1, l2 ∈L such that l2 > l1. Further, since for any feasible matching, we have that rl,b =wlr, this

immediately yields the following corollary, which states that a greedy policy is optimal.

Corollary 1. For any time period t, inventory level xt and truck arrival b∈B, we have that

argmax
l∈L(xt)

{
rl,b +Vt+1(xt − el)

}
= argmax

l∈L(xt)

rl,b.

Not only does corollary 1 show that a simple, easy to implement policy is optimal, but it also

makes approximating V1(x1) far easier. To see this, consider any sample path of truck arrivals P =

{b1, . . . , bτ} and let V P
1 (x1) be the optimal revenue under sample path P . Since the greedy policy

described in corollary 1 only depends on the truck arrival in each time period, we can compute

V P
1 (x1) without recursively computing any of the value functions. Noting that V1(x1) =E[V P

1 (x1)],

where the expectation is taking with respect to the the sample path P , we can easily approximate

V1(x1) to arbitrary precision using Monte Carlo simulation. Consequently, when we tackle the

inventory selection problem in the next section, we assume that V1(x1) can be computed exactly

for any starting inventory vector x1 ∈X .
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3.2. The Inventory Selection Problem

In this section, we focus on the inventory selection problem given in (2). We show that V1(x1) can

be recast as a monotone submodular set function. Recall that a set function f(·) is monotone if for

all S ⊆ T we have that f(S)≤ f(T ). Further, the set function f(·) is submodular if for all S and

i, j /∈ S, we have that f(S ∪{i})+ f(S ∪{j})≥ f(S ∪{i, j})+ f(S).

We begin by showing how to recast the value function V1(x1) as a set function. To do so, we

duplicate each trailer l ∈L a total of τ times and define N (L) to be the set of all nτ trailers. The

one-to-one correspondence is now easy to see; choosing an initial inventory vector x1 is equivalent

to choosing an initial subset of trailers S1 ⊂N (L) that contains xl
1 copies of trailer l. For initial

set of trailers S1, we let Sl
1 ⊆ S1 be the subset of type l trailers. With this notation in hand, we

can reformulate problem (2) as

max
S1⊂N (L):|S1|=τ

E[V P
1 (S1)],

where the expectation is taken again with respect to the sample path of truck arrivals P . In the

proceeding proposition, we show that the submodularity results hold for any sample path of bus

arrivals, which in turn immediately gives the more general submodularity of V1(x1).

Proposition 2. For arbitrary sample P = (b1, . . . , bτ ) of truck arrivals over the τ time periods

and for any S ⊂N (L) and trailers i, j ∈N (L) \S, we have that

V p
1 (S ∪{i})+V p

1 (S ∪{j})≥ V p
1 (S ∪{i, j})+V p

1 (S).

Proof. Throughout the proof, we work under general P and hence to simplify notation, we

remove the dependence on P for each of the sets that we create. Let Li,j = (li,j1 , . . . , li,jτ ) and L∅ =

(l∅1, . . . , l
∅
τ ) be the optimal trailer assignments for initial inventories S∪{i, j} and S respectively. To

show the desired result, we construct feasible trailer assignments Li = (li1, . . . , l
i
τ ) and Lj = (lj1, . . . , l

j
τ )

for initial inventories S ∪{i} and S ∪{j} respectively that match the sum of the revenue accrued

by Li,j and L. We let Si,j
t , Si

t , S
j
t , and S∅

t represent the remaining inventory levels at time t for

initial inventory levels of S ∪ {i, j}, S ∪ {i}, S ∪ {j} and S respectively. We show that if the time

period t inventories satisfy

� Si,j
t = S∅

t ∪{m1,m2}

� Si
t = S∅

t ∪{m1}

� Sj
t = S∅

t ∪{m2}

for trailers m1,m2 ∈N (L), then we can choose lit and ljt such that li,jt ∪ l∅t = lit ∪ ljt and

� Si,j
t+1 = S∅

t+1 ∪{m′
1,m

′
2}

� Si
t+1 = S∅

t+1 ∪{m′
1}

� Sj
t+1 = S∅

t+1 ∪{m′
2}
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for trailers m′
1,m

′
2 ∈N (L). We note that having li,jt ∪ l∅t = lit∪ ljt for each time period t is enough to

show that the sum of the revenue accrued in each time period under initial inventories S ∪ {i, j}

and S is equal to the sum of the revenue accrued in each time period under initial inventories

S ∪{i} and S ∪{j}, hence proving the proposition.

The inventory condition is trivially satisfied for time period 1 and hence we prove the result for

general time period t. We consider three different cases based on all the possible values that li,jt

can take on.

Case 1: li,jt = l ∈ S∅
t : In this case, we must have l∅t = l due to the fact that a greedy policy

is optimal. We can then set lit = ljt = l to satisfy li,jt ∪ l∅t = lit ∪ ljt . Further, letting, m
′
1 =m1 and

m′
2 =m2 and that noting that S∅

t+1 = S∅
t \ {l} gives the desired conditions on the inventories for

time period t+1.

Case 2: li,jt =m1 ̸= l∅t = k: In this case, setting lit =m1 and ljt = k is feasible and satisfies li,jt ∪ l∅t =

lit ∪ ljt . Further, letting m′
1 = k and m′

2 = m2 and noting that S∅
t+1 = S∅

t \ {k} gives the desired

conditions on the inventories for time period t+1.

Case 3: li,jt =m2 ̸= l∅t = k: This case is symmetric to Case 2.

Since V1(S1) is trivially monotone due to that fact that additional trailers can be added at no

cost, we can apply the classic result of G. L. Nemhauser and Fisher (1978) to find an initial set

of trailers that achieves an expected revenue of at least (1 − 1
e
)Z∗. The algorithm described in

G. L. Nemhauser and Fisher (1978), when applied in our setting, will build the initial inventory by

continuously adding the trailer type that gives the greatest marginal gain in revenue. We conclude

our analysis in this first setting by showing how we can efficiently approximate the initial trailer

selection problem given our results for the the inventory selection and trailer matching problems.

3.3. The Trailer Selection Problem

In this section, we assume that warehouse manager can select trailer types with any weight in

the interval [wmin,wmax]. We let U index the universe of possible trailer with such weights. The

restriction that we impose is wmin = 1. We note that this restriction is not necessary but aids in

simplifying the exposition of the gridding approach that we eventually propose. For a chosen set

of trailer types L⊂U , we use N (L) to denote the set of the τ copies of each trailer type in L. We

are now interested in the solving the following problem:

OPT =max
L⊂U

max
S1⊂N (L)

V1(S1), (5)

where OPT is the optimal expected revenue that can be achieved by optimizing over all three

problems. We let

(L∗, S∗
1) = argmax

L⊂U
argmax
S1⊂N (L)

V1(S1),
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be the optimal set of trailer types and initial inventories.

For fixed ϵ > 0, consider the set L̂ϵ = {l ∈ U :wl = (1+ ϵ)k, k = 0, . . . , ⌈log(wmax)/ log(1 + ϵ)⌉} of

trailer types, where ⌈ ⌉ is the operator that rounds up to the nearest integer. Note that |L̂ϵ| =
O(log(wmax)/ϵ). Let

Z∗(L̂ϵ) = max
S1⊂N (L̂ϵ)

V1(S1),

represent the optimal expected revenue over the τ truck arrivals when the set of trailer types is

fixed at L̂ϵ. The following proposition relates OPT to Z∗(L̂ϵ).

Proposition 3. For any ϵ > 0, we have that Z∗(L̂ϵ)≥ (1− ϵ)OPT .

Proof. We prove the result by constructing a feasible initial inventory of trailers S̃1 ⊂N (L̂ϵ)

that satisfies V1(S̃1) ≥ (1− ϵ)OPT . To do so, for trailer l∗ ∈ L∗, let ⌊l∗⌋ϵ = argmaxl∈L̂ϵ:wl≤wl∗
wl

represent wl∗ rounded down to the closest trailer weight of any trailer l ∈ L̂ϵ. We then construct

S̃1 by including |Sl∗
1 | copies of ⌊l∗⌋ϵ for each l∗ ∈L∗. For fixed sample P of truck arrivals, we show

that V P
1 (S̃1)≥ (1− ϵ)V P

1 (S∗
1), which establishes the desired claim. To do so, we construct a feasible

trailer matching policy under initial inventory S̃1. In time period t, if l∗t ∈L∗ is the trailer matched

when the starting inventory is S∗
1 , then match trailer l̃t = ⌊l∗t ⌋ϵ in time period t when the initial

inventory is S̃1. Under this feasible policy we get that

V P
1 (S̃1)≥

τ∑
t=1

wl̃t
r

≥ 1

1+ ϵ

τ∑
t=1

wl∗t
r

=
1

1+ ϵ
V P
1 (S∗

1)

≥ (1− ϵ)V P
1 (S∗

1),

where the second inequality follows by definitions of l̃t.

For any choice of trailer types L⊆ U , we denote the initial inventory obtained by applying the

greedy algorithm in G. L. Nemhauser and Fisher (1978) using N (L) as G(N (L)). As a last result

in this setting, we give the performance of the initial inventory G(N (L̂ϵ)) in the following theorem

Theorem 1. For any ϵ > 0 , the initial inventory G(N (L̂ϵ)) satisfies

V1(G(N (L̂ϵ)))≥ (1− ϵ)(1− 1

e
)OPT.

Proof. We have that

V1(G(N (L̂ϵ)))≥ (1− 1

e
)Z∗(L̂ϵ)

≥ (1− ϵ)(1− 1

e
)OPT.
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The first inequality follows by Proposition 2 and the second inequality follows by Proposition 3.

We conclude this first section with a quick analysis of the computation time needed to find

G(N (L̂ϵ)). We assume access to an oracle that can compute V1(S1) for any S1 ⊂N (L̂ϵ)) in O(1).

Given access to this oracle, the total runtime of the greedy procedure is O(τ log(wmax)

ϵ
), which

is polynomial in the input and 1
ϵ
and hence can be implemented quite efficiently as we later

demonstrate in our computational experiments.

4. Second Setting: Scalebacks permitted

In this second setting, we assume that trailer weight can be altered with a fixed per-pound removal

cost. The cost reflects operational cost associated with removing beer from preloaded trailers (e.g.,

labor, space), and we denote the unit cost by co. Consequently the revenue for matching trailer l

to truck b is given by

rl,b =

{
wl · r, if wl +wb ≤ 80,000

(80,000−wb) · r− [(wl +wb)− 80,000] · co o.w.
(6)

The term rl,b is the net revenue calculated as the revenue earned from shipping min{wl,80,000−wb}

pounds of beer minus any removal cost if the particular matching results in a violation of the 80,000

lbs. weight limit. In this section, we utilize techniques from approximate dynamic programming

to eventually build a linear program whose solution simultaneous approximates all three problems

at once. As was done in section 3, we consider each of the three underlying problems sequentially,

each time adding components to our linear program. We again initially fix the trailer types L when

considering the trailer matching and inventory selection problem. Then, we show how to optimally

choose a reasonable small set of trailer types in the trailer selection problem . Also, we revert

back to encoding the remaining inventories in time period t as the vector xt ∈ Zn
+. We begin by

addressing the trailer matching problem.

4.1. The Trailer Matching Problem

In this new setting, the greedy policy given in Corollary 1 can easily be shown to be sup-optimal.

Nonetheless, we are able to show a similar greedy-like structure on the optimal policy. The following

proposition, whose proof we delay to Appendix A due to its similarity to the proof for Proposition

1, allows us characterize the optimal matching policy.

Proposition 4. For any time period t and inventory xt ∈X , l1, l2 ∈L(xt) such that l2 > l1, we

have that

(wl1 −wl2)co ≤ Vt(xt − el1)−Vt(xt − el2)≤ (wl2 −wl1)r.
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Noting that the above proposition holds for any time period t, we get that the optimal trailer to

assign to each bus b∈B in time period t when the inventory is xt must be either the highest revenue

trailer l ∈ L(xt) whose weight satisfies wl + wb ≤ 80,000 or the highest revenue trailer l ∈ L(xt)

whose weight satisfies wl +wb > 80,000. More formally, we let

L1(xt, b) = argmax
l∈L(xt):wl+wb≤80,000

wl

and

L2(xt, b) = argmin
l∈L(xt):wl+wb>80,000

wl.

Finally, letting L(xt, b) =L1(xt, b)∪L2(xt, b), the following corollary of Proposition 4 provides some

structure on the optimal matching policy.

Corollary 2. For any time period t, inventory level xt and truck arrival b∈B, we have that

argmax
l∈L(xt)

{
rl,b +Vt+1(xt − el)

}
= argmax

l∈L(xt,b)

{
rl,b +Vt+1(xt − el)

}
.

It is important to note that even with Corollary 2, in order to find an optimal policy, we still must

recursively compute each of the value functions. However, as we will go on to show, this tidbit of

structure on the optimal policy plays a critical role within our approximate dynamic programming

framework, which we present next.

The approximate dynamic programming framework. Our approach is based on the linear pro-

gramming formulation of the dynamic program for the trailer matching problem given in (1). The

linear program that we consider is given below.

V1(x1) = min
Vt(·),z

V1(x1) (LP-EXACT)

s.t. Vt(xt)≥
∑
b∈B

pb · z(b,xt) xt ∈Xt.

z(b,xt)≥ rl∗,b +Vt+1(xt − el∗) ∀xt ∈Xt, b∈B, l∗ ∈L(xt, b).

Note that the two constraints together enforce that

Vt(xt)≥
∑
b∈B

pb max
l∈L(xt,b)

{
rl,b +Vt+1(xt − el)

}
.

The number of constraints and decision variables in LP-EXACT grows exponentially in τ and

thus it is computationally intensive to solve directly. To partially side-step this issue, we borrow

the approach of Kunnumkal and Talluri (2015) who approximate the value functions through the

following piecewise linear approximation

Vt(xt)≈
∑
l∈L

ql,t(x
l),
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where ql,t(x
l) can be interpreted as the value of of having xl type l trailers in time period t. Plugging

this approximation into (LP-EXACT) yields the following linear program

J(x1) = min
ql,t(·),z

∑
l∈L

ql,1(x
l
1) (LP-APPROX)

s.t.
∑
l∈L

ql,t(x
l)≥

∑
b∈B

pb · ztb,x ∀t, x∈Xt (7)

ztb,x ≥ rl∗,b +
∑
l∈L

ql,t+1(x
l −1l=l∗) ∀x∈Xt, b∈B, l∗ ∈L(xt, b) (8)

Additionally, we incorporate the following constraints, which ensure that the value of each trailer’s

inventory is marginally decreasing and that more inventory units is always more valuable than

fewer.

ql,t(y)− ql,t(y− 1)≥ ql,t(y+1)− ql,t(y) ∀t, l ∈L, y ∈ {1, . . . , τ} (9)

ql,t(y)≥ ql,t(y− 1) ∀t, l ∈L, y ∈ {1, . . . , τ} (10)

Not only do these additional constraints help to generate a more accurate approximation, but

they will also be critical when we move to using LP-APPROX to approximate the inventory

selection problem. We also enforce that ql,τ+1(·) = 0, which is a natural assumption on the terminal

condition. Similar to Kunnumkal and Talluri (2015), it turns out that adding these constraints to

the piecewise linear approximation does not affect its optimal solution. In Appendix A, we show

that these constraints are satisfied by any optimal solution of LP-APPROX (without enforcing

these two sets of constraints) given that we can enforce constraint (9) only for y= 1. Consequently,

for the remainder of this paper, we assume that these constraints are implicitly a part of all future

linear program that result from piecewise linear approximations.

An optimal solution {q∗l,t(y) : ∀t, l ∈ L, y ∈ {0, . . . , τ}} to LP-APPROX can be useful in a few

ways. First, the optimal objective J(x1) =
∑

l∈L q
∗
l,1(x

l
1) provides an upper bound for V1(x1). To see

this, note that the solution Vt(xt) =
∑

l∈L q
∗
l,t(x

l) is trivially feasible to LP-EXACT and achieves

an objective of J(x1). We then can use this upper bound to measure the efficacy of any approach

for the trailer matching problem such as the heuristic policy that results from approximating the

value functions Vt(xt) in (1) with
∑

l∈L q
∗
l,t(x

l). Finding this optimal solution, however, is no simple

task. Note that while the piecewise linear programming approximation helps reduce the number

of decision variables to O(τ 2n), constraints (7) and (8) are required for every potential inventory

vector and hence the number of these constraints grows exponentially in τ . Consequently, in order

to solve LP-APPROX, we must develop an efficient way to employ constraint generation.
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The constraint generation procedure. In order to efficiently solve LP-APPROX, we develop a sim-

ple dynamic program to solve the subproblem that results from a constraint generation approach.

Before describing our constraint generation approach, we note that for any inventory vector x∈Xt,

constraints (7) and (8) can be combined into the following single nonlinear constraint:∑
l∈L

ql,t(x
l)≥

∑
b∈B

pb max
l∗∈L(xt,b)

{
rl∗,b +

∑
l∈L

ql,t+1(x
l −1l=l∗)

}
. (11)

Our constraint generation procedure begins by formulating LP-APPROX with only a small subset

of the constraints (7) and (8). We refer to this linear problem as the master linear problem, to which

we will sequentially add violated constraints. In each iteration of the constraint generation, we

solve the master problem, which yields optimal decision variables {q̂l,t(y) : ∀t, l ∈L, y ∈ {0, . . . , τ}}.

Given this optimal solution, we can find a violated constraint by solving the following subproblem

for each time period t.

θ∗t =max
x∈Xt

θt(x), (CG)

where

θt(x) =
∑
b∈B

pb max
l∈L(xt,b)

{
rl,b −∆q̂l,t+1(x

l)
}
+
∑
l∈L

(q̂l,t+1(x
l)− q̂l,t(x

l)). (12)

We use the shorthand ∆q̂l,t+1(x
l) = q̂l,t+1(x

l)− q̂l,t+1(x
l − 1) to represent the marginal value of the

trailer l’s xl-th unit in time period t. Note that (12) is obtained by subtracting
∑

l∈L q̂l,t+1(x
l)

from both sides of (11) and noting that
∑

b∈B pb = 1. If θ∗t > 0, then the associated constraint for

inventory vector

x∗ = argmax
x∈Xt

∑
b∈B

pb max
l∈L(xt,b)

{
rl,b −∆q̂l,t+1(x

l)
}
+
∑
l∈L

(q̂l,t+1(x
l)− q̂l,t(x

l)),

is violated. We then add this constraint to the master linear program and repeat the procedure.

The main difficulty in solving subproblem (CG) is that the inner maximization over the trailers

to assign to each potential arriving bus b∈B can only seemingly be determined once the inventory

vector x ∈ Xt is fully specified. However, by exploiting the special structure of the two trailers

specified by L(x, b), we are able to derive a dynamic programming formulation of (CG) that can

be solved in polynomial time.

Before giving our dynamic programming formulation, we introduce an alternative, representation

of any inventory vector, which helps illuminate the recursive manner in which we solve (CG).

Any inventory vector x ∈ Zn
+ can equivalently be represented as a vector indicating trailer types

in L(x) with non-zero inventory, which we denote as (l(1), . . . , l(γ)). In addition, we must also

specify the corresponding inventory levels of each of these trailer types. We do so using the vector

(xl(1) , . . . , xl(γ)). With regards to these two vectors, we have that γ(x) =
∑n

l=1 1{xl>0} gives the total
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number of trailers types with non-zero inventory and we use the convention that l(i) ∈ L(x) gives
the i-th smallest indexed trailer in L(x) with inventory level xl(i) . Unless otherwise stated, we work

under a fixed inventory vector x, and hence to avoid cluttered notation, we drop the dependence of

the above parameters on x. In addition to trailer type 0, we introduce another dummy trailer type

n+ 1. We set l(0) = 0, l(γ+1) = n+ 1 and also enforce that q̂0,t(·) = q̂n+1,t(·) = 0 and rn+1,b = −∞
which makes sure trailer type n+1 will never be assigned to any truck.

Given this notation, we know that if L1(x, b) = l(i), then we must have L2(x, b) = l(i+1) for any

truck arrival b ∈ B. Consequently, for trailers l(i), l(i+1) ∈ L(x) we define B(l(i), l(i+1)) = {b ∈ B :

80,000−wl(i+1) <wb ≤ 80,000−wl(i)} to be the buses that satisfy L1(x, b) = l(i) and L2(x, b) = l(i+1).

Noting that

B =∪γ
i=0B(l(i), l(i+1)),

it is easy to see that (12) can be rewritten as

θt(x) =

γ∑
i=0

 ∑
b∈B(l(i),l(i+1))

pb max
l∈{l(i),l(i+1)}

{
rl,b −∆q̂l,t+1(x

l)
}
+

∑
l(i)<l<l(i+1)

[q̂l,t+1(0)− q̂l,t(0)]+ [q̂l(i+1),t+1(x
l(i+1)

)− q̂l(i+1),t(x
l(i+1)

)]

 .

For any i∈ {0, . . . , γ}, the inner sum can be computed with only knowledge of the trailers l(i) and

l(i+1) and their respective inventory levels xl(i) and xl(i+1)
. Consequently, to help with proving the

correctness of the dynamic program that we present for (CG), we define

θt(l
(k), . . . , l(γ), xl(k) , . . . , xl(γ)) =

γ∑
i=k

f(l(i), xl(i) , l(i+1), xl(i+1)

)

= f(l(k), xl(k) , l(k+1), xl(k+1)

)+ θt(l
(k+1), . . . , l(γ), xl(k+1)

, . . . , xl(γ)),

where we define θt(n+1, ·) = 0 and

f(l, x, l′, x′) =
∑

b∈B(l,l′)

pb max
l∗∈{l,l′}

{
rl∗,b−1l∗=l∆q̂l,t+1(x)−1l∗=l′∆q̂l,t+1(x

′)
}
+∑

l<l<l′

[q̂l,t+1(0)− q̂l,t(0)]+ [q̂l′,t+1(x
′)− q̂l′,t(x

′)]

for any trailers l, l′ ∈ L that satisfy l < l′ and non-zero inventories x,x′ > 0. The term

θt(l
(k), . . . , l(γ), xl(k) , . . . , xl(γ)) can be interpreted as the contribution of the γ − k heaviest trailers

in L(x) to (12) and hence we have that θt(x) = θt(l
(0), . . . , l(γ), xl(0) , . . . , xl(γ)).

The Bellman equations of our dynamic programming formulation of (CG) are presented below

J(l, x, c) = max
l<l′≤n+1, x′>0

f(l, x, l′, x′)+J(l′, x′, c+x′1{l′ ̸=n+1}) (CG-DP)

where the elements of the state space have the following meaning.
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on inventory selection 
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Figure 1 Illustration of Dynamic Program (CG-DP)

In this example with n= 6, each circle represents a pair (l, x) - trailer type and its inventory level.

An edge between two dark circles represents the step reward which is given by f(l, x, l′, x′). A chosen

sequence of trailer types and inventory levels as highlighted in this picture is (3,4), (4,2), (5,6). At

the terminal node 7, the total assigned inventory is
∑3

i=1 x
l(i) = 12 which is used to assess feasibility

to the original problem. The optimal solution given by the dynamic program corresponds to the

maximum revenue path from circle (0,0) to (7,0).

� l≤ n+1: a trailer l ∈L.

� x: the inventory level of trailer l.

� c: total inventories assigned up to trailer l (exclusive of virtual trailer n+1).

Additionally, we have the following two terminal conditions. For τ − (t− 1)≤ c≤ τ , we have that

J(n+1, ·, c, ·) = 0 and for c < τ − (t− 1) and c > τ we have that J(n+1, ·, c, ·) =−∞. The latter

case ensures that we choose inventory levels across all trailers that are feasible for time period t.

Since the inventory state in period t must satisfy τ − (t− 1)≤
∑n

l=1 x
l
t ≤ τ , we need to keep track

of cumulative inventory assigned in our dynamic program and impose a high penalty at terminal

state to enforce feasibility. Figure 1 illustrates the dynamic program for n= 6.

The following proposition proves the correctness of our dynamic programming formulation.

Proposition 5. For any l ∈L(x), c,x≥ 0 and 1≤ l≤ n we have that

J(l, x, c) = max
(l(k+1),...,l(γ),xl

(k+1)
,...,xl

(γ)
):

τ−(t−1+c)≤
∑γ

i=k+1
xl

(k)
≤τ−c

θt(l
(k) = l, l(k+1), . . . , l(γ), xl(k) = x,xl(k+1)

, . . . , xl(γ)).

Proposition 5, which is proved in Appendix A, immediately yields θ∗t = J(0,0,0). Next, we con-

sider overall runtime of our dynamic programming approach. The sets B(l1, l2) can be precomputed

in O(n2m) since there are O(n2) pairs of trailers l1, l2 ∈L and m total trucks. Each value function
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J(·, ·, ·) can computed in O(nτ) by simply enumerating over all possible choices for l′ and x′. Fur-

ther, since the dynamic program has at most O(nτ 2) states, the total runtime to solve problem

(CG) is O(n2(τ 3 +m)).

We conclude this section by showing how we can obtain an upper bound on J(x1) at each iter-

ation of the constraint generation using the values of θ∗t . This upper bound allows us to compute

an optimality gap that can be used as a stoping criterion during constraint generation. Recall that

we denote the solution to the master problem in each iteration by {q̂l,t(y) : ∀t, l ∈L, y ∈ {0, . . . , τ}}

whose corresponding objective value we denote as Ĵ(x1). The upper bound presented in the follow-

ing proposition resemble the bound presented in Adelman (2007) for the affine approximations to

the value functions in the network revenue management setting, however the proof that we present

for establishing these bounds is quite different from Adelman (2007).

Proposition 6. The optimal solution J(x1) to (LP-APPROX) is bounded by:

Ĵ(x1)≤ J(x1)≤ Ĵ(x1)+
τ∑

t=1

θ∗t (13)

ff Ĵ(x1)≤ J(x1) is trivial since the master problem in each iteration employs a subset of the

constraints in (LP-APPROX) which yields a lower bound. To prove J(x1)≤ Ĵ(x1) +
∑τ

t=1 θ
∗
t , by

(CG) and (12), we have

θ∗t ≥
∑
b∈B

pb max
l∈L(xt,b)

{
rl,b −∆q̂l,t+1(x

l)
}
+
∑
l∈L

(q̂l,t+1(x
l)− q̂l,t(x

l)).

for any t, l, xl, which is equivalent to

θ∗t +
∑
l∈L

q̂l,t(x
l)≥

∑
b∈B

pb max
l∈L(xt,b)

{
rl,b −∆q̂l,t+1(x

l)
}
+
∑
l∈L

q̂l,t+1(x
l) (14)

for any t ∈ {1. · · · , τ}, x ∈ Xt. We construct a feasible solution {q̄l,t(y) : ∀t, l ∈ L, y ∈ {0, . . . , τ}} to

problem (LP-APPROX) as following:

q̄l,t(x
l)≜ q̂l,t(x

l)+
1

n

τ∑
s=t

θ∗s

for any t, l, xl. To show q̄l,t(x
l) is a feasible solution, we just need to verify that (9), (10) and (11)

hold.

First, (9) and (10) hold trivially since the additional part 1
n

∑τ

s=t θ
∗
s cancels out on both sides of

the constraints in (9) and (10). Next we show (11) holds for all t, l, xl, which is∑
l∈L

q̄l,t(x
l)≥

∑
b∈B

pb max
l∈L(xt,b)

{
rl,b −∆q̄l,t+1(x

l)
}
+
∑
l∈L

q̄l,t+1(x
l)
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where ∆q̄l,t+1(x
l) = q̄l,t+1(x

l)− q̄l,t+1(x
l − 1). Based on the definition, we have

∑
l∈L

q̄l,t(x
l) =

n∑
l=1

(
q̂l,t(x

l)+
1

n

τ∑
s=t

θ∗s

)

=
n∑

l=1

q̂l,t(x
l)+ θ∗t +

τ∑
s=t+1

θ∗s

≥
∑
b∈B

pb max
l∈L(xt,b)

{
rl,b −∆q̂l,t+1(x

l)
}
+
∑
l∈L

q̂l,t+1(x
l)+

τ∑
s=t+1

θ∗s

=
∑
b∈B

pb max
l∈L(xt,b)

{
rl,b −∆q̄l,t+1(x

l)
}
+
∑
l∈L

q̄l,t+1(x
l)

The inequality holds by (14) and the rest are by definition of q̄∗l,t(x
l).

The objective value obtained at this feasible solution is∑
l∈L

q̄l,1(x
l
1) =

∑
l∈L

q̂l,1(x
l
1)+

τ∑
s=1

θ∗s = Ĵ(x1)+
τ∑

t=1

θ∗t .

Since it is a feasible solution, we have J(x1)≤ Ĵ(x1)+
∑τ

t=1 θ
∗
t .

4.2. The Inventory Selection Problem

In this section, we show that the linear program that arises through our piecewise linear approxi-

mation to the value functions can be extended to select the initial inventory levels for fixed set of

trailer types L. To do so, we first extend LP-EXACT as follows

Z∗ = min
Vt(·),z,Q

Q (EXACT-INV)

s.t. Q≥ V1(x1) ∀x1 ∈X1 (15)

Vt(xt)≥
∑
b∈B

pb · ztb,x ∀t, x∈Xt

z(b,xt)≥ rl∗,b +Vt+1(xt − el∗) ∀xt ∈Xt, b∈B, l∗ ∈L(xt, b).

It is easy to see that the optimal objective to EXACT-INV is the optimal revenue of the inven-

tory selection problem given in (2) since the addition of constraint in (15) ensures that Q =

maxx1∈X1
V1(x1) at optimality. Plugging the piecewise linear approximation into EXACT-INV

yields the following second version of our approximate linear program

J∗ = min
ql,t(·),z,Q

Q (APPROX-INV)

s.t. Q≥
∑
l∈L

ql,1(x
l
1) ∀x1 ∈X1 (16)∑

l∈L

ql,t(x
l)≥

∑
b∈B

pb · ztb,x ∀t, x∈Xt.

ztb,x ≥ rl∗,b +
∑
l∈L

ql,t+1(x
l −1l=l∗) ∀x∈Xt, b∈B, l∗ ∈L(xt, b).
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The inventory vector x∗
1 = argmaxx1∈X1

∑
l∈L ql,1(x

l
1) can then be selected as the initial inventory.

Further, it is again trivial to see that J∗ ≥Z∗ and hence J∗ can be used to bound the optimal gap

of any policy for the inventory selection problem.

The tractability of APPROX-INV. Since the constraint generation procedure described in the

previous section does not apply to the constraints in (16), we no longer have an efficient way to

solve APPROX-INV since |X1| is exponential in τ . In what follows, we show that we can formulate

an equivalent version of APPROX-INV where the constraints in (16) are recast as equivalent set

of just O(nτ) constraints. This more concise version linear program is given below.

J∗
c = min

ql,t(·),z,αl,β

∑
l∈L

αl + τβ (CONCISE-INV)

s.t. αl +xlβ ≥ ql,1(x
l) ∀xl ∈ {0, . . . , τ}, l ∈L (17)∑

l∈L

ql,t(x
l)≥

∑
b∈B

pb · ztb,x ∀t, x∈Xt.

ztb,x ≥ rl∗,b +
∑
l∈L

ql,t+1(x
l −1l=l∗) ∀x∈Xt, b∈B, l∗ ∈L(xt, b).

First, we show that the two linear programs have the same optimal objective value and then we

show how to recover x∗
1 from CONCISE-INV. We remind the reader that constraints (9) and (10)

continue to be enforced. The following proposition accomplishes the first task.

Proposition 7. J∗
c = J∗.

W e first show that J∗
c ≤ J∗. Let Q∗, {q∗l,t(xl) : ∀t, l ∈L, xl ∈ {0, . . . , τ}}, and {z∗tb,x : ∀t, x∈Xt, b∈

B} be the optimal solution to APPROX-INV. We construct a feasible solution β̂, {α̂l : ∀l ∈ L},
{q̂l,t(xl) : ∀t, l ∈L, xl ∈ {0, . . . , τ}}, and {ẑtb,x : ∀t, x ∈Xt, b ∈ B} to CONCISE-INV that achieves an

objective of J∗ To start, we set q̂l,t(x
l) = q∗l,t(x

l) and ẑtb,x = z∗tb,x and hence we trivially satisfy the

bottom two constraints of CONCISE-INV. Next, we go about choosing β̂, {α̂l : ∀l ∈ L} that is

feasible for constraint (17) and satisfies
∑

l∈L α̂l + τ β̂ =Q∗ = J∗.

Recall that we have defined x∗
1 = argmaxx1∈X1

∑
l∈L q

∗
l,1(x

l
1). We set

β̂ =max
l∈L

q∗l,1(x
∗l
1 +1)− q∗l,1(x

∗l
1 ), α̂l = ql,t(x

∗l
1 )−x∗l

1 β̂

and define

l∆ = argmax
l∈L

q∗l,1(x
∗l
1 +1)− q∗l,1(x

∗l
1 ).

If the solution defined above is feasible, then its objective value satisfies

J∗
c ≤

∑
l∈L

(q∗l,t(x
∗l
1 )−x∗l

1 β̂)+ β̂τ

=
∑
l∈L

(q∗l,t(x
∗l
1 )

= J∗,
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where the inequality follows because
∑

l∈L x
∗l
1 = τ . To show that our proposed solution satisfies

constraint (17), we define

x̃l = argmax
xl∈{0,...,τ}

q∗l,1(x
l)−xlβ̂

and we show that x̃l = x∗l
1 for each l ∈L.

First, we assume by way of contradiction, that there exists a k ∈ L such that x̃k > x∗k
1 . In this

case, we have that q∗k,1(x̃
k)− q∗k,1(x

∗k
1 )> (x̃k −x∗k

1 )β̂ ≥ β̂, which is not possible given our definition

of β̂. Next, we again assume by way of contradiction that there exists k ∈L such that x̃k <x∗k
1 . In

this case, we get that

β̂ = ql∆,1(x
∗l∆
1 +1)− ql∆,1(x

∗l∆
1 )>

q∗k,1(x
∗k
1 )− q∗k,1(x̃

k)

(x∗k
1 − x̃k)

≥ min
x∈{x̃k+1,...,x∗k1 }

q∗k,1(x)− q∗k,1(x− 1)

= q∗k,1(x
∗k
1 )− q∗k,1(x

∗k
1 − 1).

The last inequality follows due to constraint (9). With this is hand, we elucidate the contradiction

by first noting that k ̸= l∆, since otherwise we would have violated (9). Consequently, we have that

Q∗ =
∑
l∈L

q∗l,1(x
∗l
1 )

<
∑
l∈L

q∗l,1(x
∗l
1 )+ (ql∆,1(x

∗l∆
1 +1)− q∗l∆,1(x

∗l∆
1 ))− (q∗k,1(x

∗k
1 )− q∗k,1(x

∗k
1 − 1))

=
∑

l∈L\{l∆,k}

q∗l,1(x
∗l
1 )+ q∗l∆,1(x

∗l∆
1 +1)+ q∗k,1(x

∗k
1 − 1).

So that constraint (16) is violated for initial inventory vector x1 that satisfies

xl
1 =


x∗l
1 , if l /∈ {l∆s, k}

x∗l
1 − 1, if l= k

x∗l
1 +1, if l= l∆.

(18)

Next, we show that J∗ ≤ J∗
c . To do so, we start with an optimal solution β∗, {α∗

l : ∀l ∈ L},

{q∗l,t(xl) : ∀t, l ∈ L, xl ∈ {0, . . . , τ}}, and {z∗tb,x : ∀t, x ∈ Xt, b ∈ B} to CONCISE-INV and then con-

struct a feasible solution Q̂, {q̂l,t(xl) : ∀t, l ∈ L, xl ∈ {0, . . . , τ}}, and {ẑtb,x : ∀t, x ∈ Xt, b ∈ B} to

APPROX-INV that has objective J∗
c =

∑
l∈Lα

∗
l +τβ∗. We again set q̂l,t(x

l) = q∗l,t(x
l) and ẑtb,x = z∗tb,x

and hence we trivially satisfy the bottom two constraints of APPROX-INV. Next, we set Q̂ =

α∗
l + τβ∗ and that if this assignment is feasible, we get that J∗ ≤ Q̂= J∗

c . To show that constraint

((16)) is satisfied, consider arbitrary x1 ∈X1 and note that∑
l∈L

q∗l,1(x
l
1)≤

∑
l∈L

α∗
l +xl

1β
∗
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= τβ∗ +
∑
l∈L

α∗
l

= Q̂,

where the inequality follows since for any x1 ∈X1, we must have that
∑

l∈L x
l
1 = τ .

While Proposition 7 establishes that we recover the upper bound for the inventory selection

problem J∗ by solving CONCISE-INV, it does not immediately give us a way to recover the initial

inventory vector x∗
1. However, given optimal decision variables {q∗l,1(xl) : ∀l ∈L, xl ∈ {0, . . . , τ}} to

CONCISE-INV, we show that we can recover x∗
1 by solving the following linear program, which

is a special case of the classic multiple choice knapsack problem (MCKP) described in Sinha and

Zoltners (1979).

max
yl,x∈[0,1]

∑
l∈L

τ∑
x=0

q∗l,1(x)yl,x (KNAP)

s.t.
τ∑

x=0

yl,x = 1 ∀l ∈L\ {0}

∑
l∈L\{0}

τ∑
x=0

xyl,x = τ.

While we allow yl,x to vary continuously over the interval [0,1], we eventually show that there

always exists an optimal integral solution. As a result, the decision variable yl,t can be interpreted

as an indicator of whether or not we set the initial inventory level of l ∈ L to x. The first set of

constraints in KNAP ensure that we only choose a single inventory level for each trailer type while

the second constraint ensures that we choose exactly τ trailers to preload across all trailer types.

We begin with a structural result regarding the number of fractional decision variables of an

optimal solution to KNAP. Let y∗
l,t be the optimal decision variables to this linear program and

F = {(l, x) : 0 < y∗
l,x < 1} give the tuples of indices for fractional optimal decision variables. The

following lemma restates a classic result of Sinha and Zoltners (1979), who show that the optimal

solution of the linear programming relaxation of any MCKP must contain at most two fractional

variables. For completeness, we include the proof in Appendix A.

Lemma 1. The optimal decision variables to the linear programming relaxation of KNAP must

satisfy |F| ≤ 2. Moreover if (l1, x1), (l2, x2)∈F , then we must have l1 = l2.

Building on this general result for the MCKP, we show that for our special case, the linear pro-

gramming relaxation is tight.

Lemma 2. There exists optimal decision variables to the linear programming relaxation of KNAP

that satisfies |F|= 0.
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L emma 1 states that the optimal decision variables of KNAP must satisfy |F|< 2. The first

constraint of KNAP ensures that |F| ≠ 1. To eliminate the only remaining case, we assume by way

of contradiction that |F|= 2, where y∗
l,x1

and y∗
l,x2

are the two fraction decision variables. We define

x∗ = x1y
∗
l,x1

+ x2y
∗
l,x2

. Since x∗ is a convex combination of x1 and x2, we know that x1 ≤ x∗ ≤ x2.

Further, since
∑

l∈L
∑τ

x=1 xy
∗
l,t = τ , we must have that x∗ ∈Z+. As a result, the alternative solution,

which sets ŷl,x∗ = 1, ŷl,x1 = ŷl,x2 = 0 and ŷl,x = y∗
l,x otherwise, is feasible to KNAP. Further, since

the q∗l,1(x) are marginally decreasing in x, we must have that q∗l,1(x
∗)≥ q∗l,1(x1)y

∗
l,x1

+ vl,1(x2)y
∗
l,x2

,

which shows that this new solution achieves at least as high an objective value while maintaining

integrality .

Let {y∗
l,x : ∀l ∈L, x∈ {0, . . . , τ}} denote the optimal decision variables of KNAP. Lemma 2 shows

choosing an initial inventory vector that satisfies xl
1 =

∑
l∈L\{0}

∑τ

x=0 xy
∗
l,x, we recover recover x∗

1.

We conclude our theoretical analysis with a simple extension of our approach to approximate the

trailer selection problem.

4.3. The Trailer Selection Problem

In this section, we assume again that ABI can select trailer types with any weight in the interval

[wmin,wmax]. We let U index the universe of possible trailer with such weights. We still impose the

restriction that wmin = 1, which is again not necessary, but dramatically simplifies our exposition.

We now write the objective of EXACT-INV as a function of our choice of the trailer types L

Z∗(L) = min
Vt(·),z,Q

V1(x1)

s.t. Q≥ V1(x1) ∀x1 ∈X1

Vt(xt)≥
∑
b∈B

pb · ztb,x ∀t, x∈Xt

z(b,xt)≥ rl∗,b +Vt+1(xt − el∗) ∀xt ∈Xt, b∈B, l∗ ∈L(xt, b).

The trailer selection problem can then be written as

OPT =max
L⊆U

Z∗(L).

For fixed ϵ > 0, we again consider the set L̂ϵ = {l ∈ U :wl = (1+ ϵ)k, k= 0, . . . , ⌈log(wmax)/ log(1+

ϵ)⌉} of trailer types, where ⌈ ⌉ is the operator that round up to the nearest integer. Our final

theorem shows an an upper bound for OPT can be derived by solving CONCISE-INV with L= L̂ϵ.

Theorem 2. Let J∗ϵ
c be the optimal solution of CONCISE-INV when with L= L̂ϵ, for any ϵ > 0.

We have that

J∗ϵ
c (1+ ϵ)≥OPT.
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W e have that J∗ϵ
c ≥Z(L̂ϵ) and by Proposition 3, we have that Z(L̂ϵ)(1+ϵ)≥OPT . Combining

these two claims yields the desired claim.

Moreover, we can obtain J∗ϵ
c in time that is polynomial in the input and 1

ϵ
based on our discussion

throughout this section. The remaining sections are devoted to testing the efficacy of the algorithms

proposed and the tightness of the upper bounds developed on real truck arrival data from AB.

5. Computational Experiments

In this section, we test the efficacy of the approaches developed above for the ABI trailer problem

using real data from two brewery warehouses in Cartersville, Georgia (CRTV) and Fort Collins,

Colorado (FCL). We only consider instances of the ABI trailer problem where scalebacks are

allowed. We begin by providing a detailed overview of the data set given to us, which guides our

parameter selection and gives a sense of the scale of the problems that we are able to solve.

ABI Data Description. For each of the two warehouses, we have access to a bevy of information

that allows us to simulate realistic instances of the ABI trailer problem. More specifically, we

have been given historical third party truck arrival data from February to July of 2016 at both

warehouses. For each truck arrival, we have a timestamp giving the truck’s arrival time and date,

the weight of the truck and its associated carrier, which denotes the unique third party delivery

service to which it belongs. Since ABI typically preloads a distinct set of trailers for each carrier

at the beginning of the day, we solve separate ABI trailer problems for each warehouse-carrier

pair. The distribution B of truck arrivals for each carrier is taken to be the empirical distribution

derived from the full six month history of arrivals. In creating this distribution for each carrier, we

round the weights of the trucks to the closest multiple of 100 to keep the cardinality of B tractable.

Since the average weight of each truck exceeds 18,000 lbs., this rounding is not likely to have a

dramatic effect on our results. The number of arrivals τ is assumed to be the maximum number of

arrivals that are observed in any single day day over the six months of historical arrivals. Finally,

estimates of the revenue per pound r and the overage cost co were given to us for each carriers. A

full summary of these parameters for each carrier at each warehouse is given in Tables 1a and 1b.

Computational setup. For each carrier at each warehouse, we test the following three policies for

the corresponding ABI trailer problem, where a policy refers to an approach to solve the inventory

selection and the trailer matching problems. To choose the collection of trailer types , we use the

exponential spaced set of grid points over the interval [80K−maxb∈Bwb,80K−minb∈Bwb] for both

policies. It is easy to see that this range of potential trailer types includes the smallest and largest

trailer weights that one would ever consider choosing. We created instances of this exponential grid

with ϵ ∈ {0.02,0.05}. For ϵ= 0.05 , the average cardinality over all carriers of L̂0.05 was 2.83 and

3.18 for CRTV and FCL respectively. For ϵ= 0.02, these numbers increased to 4.92 and 5.54 for

warehouses CRTV and FCL respectively.
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carrier τ |B| co r

AHLY 13 25 0.047 0.006
WENX 34 33 0.047 0.012
GTGA 23 30 0.047 0.007
PRIJ 33 38 0.047 0.015
MTNF 22 24 0.047 0.008
WENL 13 25 0.047 0.012
TAMI 13 23 0.047 0.020
AIOE 12 38 0.047 0.015
WSXI 16 24 0.047 0.008
PASC 11 27 0.047 0.009
MTEN 10 33 0.047 0.009
JBHI 12 41 0.047 0.018

(a) CRTV

carrier τ |B| co r

WERD 38 35 0.050 0.004
WENZ 16 39 0.050 0.013
CRTC 19 39 0.050 0.009
WERS 24 31 0.050 0.005
TAMI 25 28 0.050 0.005
WENP 36 47 0.050 0.008
AQIR 14 31 0.050 0.008
MVT 16 34 0.050 0.011
CRFR 16 20 0.050 0.008
SWFT 14 34 0.050 0.007
VYGR 15 23 0.050 0.008
TMXI 18 32 0.050 0.013

(b) FCL

Table 1 Parameters for each instance of the ABI trailer problem at warehouses CRTV and FCL.

1. Piecewise linear approximation: This policy is developed using the piecewise linear approxi-

mation that is detailed in section 4. More specifically, we begin by solving CONCISE-INV via the

constraint generation procedure that we outline above. We randomly generate an initial set of con-

straints so as to ensure that each trailer type is represented at least once for each possible inventory

type at each time period. Then, using Proposition 6, we measure the optimality gap of our current

solution at each iteration of the constraint generation procedure and stop constraint generation

either when the optimality gap is within 1% or after 50 iterations of constraint generation. For

each instance, we store the upper bound that is developed in Proposition 6, which we use to test

the efficacy of all of the heuristics that we test. We find that even when the constraint generation

terminates after 50 iterations, our upper bounds remain quite tight. After solving CONCISE-INV,

we then solve KNAP to recover x∗
1, which we use as our initial inventory vector. Given this initial

inventory state, we implement the policy that rolls forward the dynamic program given in (1) using

the piecewise linear approximation to the value functions:

Vt(xt)≈
∑
l∈L

q∗l,t(x
l).

We abbreviate this policy as PL for short.

2. Greedy : This policy will always match the available trailer type that has the largest immediate

revenue to the arriving truck. Namely, in time period t with truck arrival b ∈ B, the trailer l ∈

L(xt, b) with the larger revenue will be matched. Since Corollary 2 shows that one of these two

trailers must be optimal, this greedy policy is a natural heuristic to investigate. It is not too

difficult to see that the submodularity result of Proposition 2 continues to hold when the value

functions in the proposition statement are computed through the aforementioned greedy policy.

Consequently, we select the initial inventory levels of each trailer type by employing the greedy

procedure that is described at the end of section 3. Implementing this greedy procedure requires
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access to the expected revenue of any given initial inventory vector, which we estimate using Monte

Carlo simulation with 10,000 trials. We abbreviate this policy as GR for short.

3. Single: This policy chooses the optimal single trailer type to stock through complete enumer-

ation over the possible trailer types in L̂ϵ. We abbreviate this policy as SG for short.

For policy π ∈ {PL,GR,SG} we let xπ
1 be the initial inventory vector suggested by the given policy

and Ṽ π
1 (xπ

1 ) be the expected revenue of this initial inventory decision under the given policy. Since

Ṽ π
1 (xπ

1 ) cannot be computed exactly, we estimate its value via Monte Carlo simulation with 10,000

trials. All experiments used Python 2.7 on an Intel Core i5 with 3.2 GHz CPU and 32GB of RAM

and Gurobi 6.5.1 as the linear programming solver.

Results. The performance of the three policies at each of the warehouses is reported in Tables

2a and 2b. Columns 1 and 2 of these tables give the carrier and value of ϵ used to derive the set

of trailers L̂ϵ for each instance, respectively. Columns 3 through 5 report the optimality gap of the

three policies, which for policy π ∈ {PL,GR,SG} is computed as 100× (UB− Ṽ π
1 (xπ

1 ))/UB, where

UB is the upper bound on the optimal expected revenue that can be derived using Proposition 6.

We note that this optimality gap does not take into account the gap from choosing a potentially

suboptimal collection of trailer types in the trailer selection problem. The final column in this table

gives the number of iterations of constraint generation that are implemented before termination.

We observe that all three policies perform quite well over all carriers at both warehouses, indi-

cating that simple policies can perform quite well for the ABI trailer problem. Nonetheless, the

performance of the greedy policy provides a clear improvement over the other two policies. For

ϵ= 0.05, the average optimality gap for PL over all carriers is 1.03% and 0.95% at CRTV and FCL

respectively. For policy GR, the average optimality gaps are 0.75% and 0.83% at CRTV and FCL

respectively. For ϵ= 0.02, the average performance of all policies drops, but the dip is more pro-

nounced for PL, whose average optimality gap is 2.44% for warehouse FCL. On the other hand, the

average optimality gap for GR never exceeds 1% in either warehouse for ϵ= 0.02. When ϵ= 0.05,

the policy GR outperforms policy SG by over 0.8% and 0.65% on average at warehouses CRTV

and FCL respectively, for carriers in which the greedy policy selected more than one trailer. The

improvements in performance of policy GR over SG for the instances in which ϵ= 0.02 all exceed

0.4%.

We note that the increase in the optimality gap as ϵ decreases is due to the fact that the reported

optimality gaps do not incorporate the loss in revenue due to a suboptimal choice of trailer types. In

other words, the optimality gaps reported are conditioned on the choice of trailer types, and since

a smaller ϵ leads to more trailer types and hence a more difficult problem, it is no surprise that the

optimality gaps increase as ϵ is decreased. Interestingly, the performance of PL is still reasonably

good even when constraint generation is terminated early due to hitting the 50 iteration limit.
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% Opt. Gap % Opt. Gap % Opt. Gap
carrier ϵ PL GR SG CG iters.

AHLY 0.05 0.53 0.53 0.53 18
AHLY 0.02 1.86 0.75 0.76 26

WENX 0.05 0.88 0.87 1.68 31
WENX 0.02 2.85 2.40 3.05 50

GTGA 0.05 1.07 0.89 2.32 24
GTGA 0.02 2.43 0.91 1.74 50

PRIJ 0.05 0.71 0.76 1.56 22
PRIJ 0.02 1.61 0.90 1.49 50

MTNF 0.05 0.85 0.91 1.81 15
MTNF 0.02 1.18 0.73 1.05 26

WENL 0.05 0.97 0.97 0.97 11
WENL 0.02 2.37 0.61 1.14 39

TAMI 0.05 1.45 0.23 0.23 4
TAMI 0.02 0.97 0.89 0.97 11

AIOE 0.05 1.11 0.74 1.25 9
AIOE 0.02 1.28 0.76 1.39 26

WSXI 0.05 0.75 0.75 0.75 4
WSXI 0.02 0.93 0.79 1.55 10

PASC 0.05 2.09 0.81 0.81 11
PASC 0.02 1.14 0.82 0.98 38

MTEN 0.05 0.91 0.91 0.91 14
MTEN 0.02 1.37 0.91 1.00 35

JBHI 0.05 1.11 0.67 1.09 13
JBHI 0.02 1.42 0.75 1.22 23

(a) CRTV

% Opt. Gap % Opt. Gap % Opt. Gap
carrier ϵ PL GR SG CG iters.

WERD 0.05 0.88 0.87 1.75 47
WERD 0.02 4.53 3.79 5.18 50

WENZ 0.05 1.58 0.83 1.16 45
WENZ 0.02 2.87 2.04 2.36 50

CRTC 0.05 0.91 0.89 1.87 33
CRTC 0.02 1.26 1.28 1.66 50

WERS 0.05 0.98 0.98 1.41 30
WERS 0.02 4.13 2.95 4.18 50

TAMI 0.05 0.99 0.99 0.99 23
TAMI 0.02 0.85 0.78 0.94 43

WENP 0.05 0.82 0.90 1.70 47
WENP 0.02 4.61 2.69 3.65 50

AQIR 0.05 0.57 0.61 0.61 19
AQIR 0.02 2.21 0.80 1.06 39

MVT 0.05 1.37 0.78 0.9 16
MVT 0.02 3.20 0.72 0.97 35

CRFR 0.05 1.04 0.91 2.29 16
CRFR 0.02 2.52 0.81 1.93 42

SWFT 0.05 0.96 0.91 0.97 17
SWFT 0.02 0.77 0.68 1.01 36

VYGR 0.05 0.63 0.63 0.63 18
VYGR 0.02 0.98 0.85 1.42 22

TMXI 0.05 0.65 0.67 1.56 17
TMXI 0.02 1.44 1.07 1.53 50

(b) FCL

Table 2 Performance metrics for the two heuristic policies at warehouses CRTV and FCL.
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The worst observed optimality gap when constraint generation terminates early is 4.61% for PL.

Finally, it is worth noting that while the policy produced from the piecewise linear approximation

is generally not as lucrative as the greedy approach, there is still great value in being able to

solve CONCISE-INV efficiently, as our results show that the upper bound provided by the optimal

objective are generally very tight and hence prove useful in measuring the quality of any possible

heuristic.

6. Conclusion

In this paper, we introduce the ABI trailer problem to model how ABI delivers its beer to whole-

salers via third party delivery trucks. First, ABI must solve the trailer type selection problem,

which involves choosing the set of preloaded trailer weights that ABI will consider loading. Next,

they must choose the inventory levels of each trailer type, which we aptly denote as the inventory

selection problem. In the third and final problem that makes up the ABI trailer problem, the

trailers must be matched to arriving third party trucks so as to maximize expected revenue for a

fixed number of truck arrivals. We develop two approaches, which simultaneously address all three

problems under two different setting that are distinguished by whether or not ABI is allowed to

alter preloaded trailers in an online fashion. Through a series of computational experiments using

real data from AB, we show that the approaches that we develop lead to solutions that are within

fractions of a percent of optimal.

There are several interesting avenues for future research. Specific to the ABI trailer problem,

a compelling direction for future work could involve developing a policy for the trailer matching

problem with scalebacks that has a provable performance guarantee. A more general direction for

future work could consider incorporating inventory decisions into classic online resource allocation

problems as described in the introduction. For example, it would be interesting to see if an initial

inventory decision can be incorporated into the personalized assortment problem studied by Rus-

mevichietong et al. (2014) or the classic network revenue management problem on parallel flight

legs originally studied by Zhang and Cooper (2004).
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Appendix A: Additional Proofs

A.1. Proof of Proposition 4

We prove by induction. It holds for t= τ +1 since by definition Vτ+1(·) = 0. Suppose it holds for t+1, and

we show it holds for t.

Define

k∗
1 = argmax

l∈L(x−el1 )

rl,b +Vt+1(x− el1 − el)

k∗
2 = argmax

l∈L(x−el2 )

rl,b +Vt+1(x− el2 − el)

and

∆b(x,k
∗
1, k

∗
2) = [rk∗

1 ,b
+Vt+1(x− el1 − ek∗

1
)]− [rk∗

2 ,b
+Vt+1(x− el2 − ek∗

2
)]

We show that co(wl1 −wl2)≤∆b(x,k
∗
1, k

∗
2)≤ r(wl2 −wl1) for any b. Once this is shown, by Vt(x− el1)−

Vt(x− el2) =
∑

b∈B pb∆b(x,k
∗
1, k

∗
2), we prove the proposition.

1. We show the following result first: for any l2 > l1, it always holds that

co(wl1 −wl2)≤ rl2,b − rl1,b ≤ r(wl2 −wl1) (19)

To prove this, we show for three possible scenarios of b:

(a) wb ∈ [0,80,000−wl2 ]. In this case, rl2,b = rwl2 and rl1,b = rwl1 . We have rl2,b − rl1,b = r(wl2 −wl1).

Also by definition wl2 >wl1 . Hence (19) holds.

(b) wb ∈ [80,000− wl2 ,80,000− wl1 ]. In this case, rl2,b = r(80,000− wb)− co(wl2 + wb − 80,000) and

rl1,b = rwl1 . Notice rl2,b ≤ rwl2 which yields rl2,b − rl1,b ≤ r(wl2 − wl1). On the other hand, rl2,b − rl1,b =

r(80,000−wb −wl1)− co(wl2 +wb − 80,000) = r(80,000−wb −wl1)− co(wl1 +wb − 80,000)+ co(wl1 −wl2) =

(r+ co)(80,000−wb −wl1)+ co(wl1 −wl2)≥ co(wl1 −wl2). Hence (19) holds.

(c) wb ∈ [80,000−wl1 ,80,000]. In this case, rl2,b = r(80,000−wb)− co(wl2 +wb − 80,000) and rl1,b =

r(80,000− wb)− co(wl1 + wb − 80,000). We have rl2,b − rl1,b = co(wl1 − wl2). Also by definition wl2 > wl1 .

Hence (19) holds.

2. We show ∆b(x,k
∗
1, k

∗
2)≤ r(wl2 −wl1).

(1) If k∗
1 ∈L(x− el2): by optimal choice of k∗

2, we have

rk∗
1 ,b

+Vt+1(x− el2 − ek∗
1
)≤ rk∗

2 ,b
+Vt+1(x− el2 − ek∗

2
) (20)

With this,

∆b(x,k
∗
1, k

∗
2) =[rk∗

1 ,b
+Vt+1(x− el1 − ek∗

1
)]− [rk∗

2 ,b
+Vt+1(x− el2 − ek∗

2
)]

=[rk∗
1 ,b

+Vt+1(x− el2 − ek∗
1
)]− [rk∗

2 ,b
+Vt+1(x− el2 − ek∗

2
)]

+Vt+1(x− el1 − ek∗
1
)−Vt+1(x− el2 − ek∗

1
)

≤Vt+1(x− el1 − ek∗
1
)−Vt+1(x− el2 − ek∗

1
)

≤r(wl2 −wl1)
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where the first inequality is due to (20) and the second inequality holds by induction.

(2) if k∗
1 /∈L(x− el2), it must be k∗

1 = l2.

∆b(x,k
∗
1, k

∗
2) =[rl2,b +Vt+1(x− el1 − el2)]− [rk∗

2 ,b
+Vt+1(x− el2 − k∗

2)]

=rl2,b − rl1,b + [rl1,b +Vt+1(x− el1 − el2)]− [rk∗
2 ,b

+Vt+1(x− el2 − ek∗
2
)]

≤rl2,b − rl1,b

≤r(wl2 −wl1)

where the first inequality is due to optimality of k∗
2 and second inequality is due to (19).

3. We show ∆b(x,k
∗
1, k

∗
2)≥ co(wl1 −wl2).

(1) If k∗
2 ∈L(x− el1): by optimal choice of k∗

1, we have

rk∗
1 ,b

+Vt+1(x− el1 − ek∗
1
)≥ rk∗

2 ,b
+Vt+1(x− el1 − ek∗

2
) (21)

With this,

∆b(x,k
∗
1, k

∗
2) =[rk∗

1 ,b
+Vt+1(x− el1 − ek∗

1
)]− [rk∗

2 ,b
+Vt+1(x− el2 − ek∗

2
)]

=[rk∗
1 ,b

+Vt+1(x− el2 − ek∗
1
)]− [rk∗

2 ,b
+Vt+1(x− el1 − ek∗

2
)]

+Vt+1(x− el1 − ek∗
2
)−Vt+1(x− el2 − ek∗

2
)

≥Vt+1(x− el1 − ek∗
2
)−Vt+1(x− el2 − ek∗

2
)

≥co(wl1 −wl2)

where the first inequality is due to (21) and the second inequality holds by induction.

(2) if k∗
2 /∈L(x− el1), it must be k∗

2 = l1. Therefore,

∆b(x,k
∗
1, k

∗
2) =[rk∗

1 ,b
+Vt+1(x− el1 − ek∗

1
)]− [rl1,b +Vt+1(x− el2 − el1)]

=rl2,b − rl1,b + [rk∗
1 ,b

+Vt+1(x− el1 − ek∗
1
)]− [rl2,b +Vt+1(x− el2 − el1)]

≥rl2,b − rl1,b

≥co(wl1 −wl2)

where the first inequality is due to optimality of k∗
1 and second inequality is due to (19).

A.2. Proof of Concave and Increasing Property

We prove that (9) and (10) hold for y≥ 2, and by imposing (9) to hold at y= 1 we conclude that (10) holds

at y= 1 as well. We first prove the following Lemma which accomplishes the first part. We then enforce (9)

to hold at y = 1 and show it yields (10) to hold at y = 1 as well. Our proof borrows the same approach as

used in Kunnumkal and Talluri (2015).

Lemma 3. There exists an optimal solution {q∗l,t(xl)} to (APPROX-INV) such that

1. For any xl ∈ {2, · · · , τ},

q∗l,t(x
l)− q∗l,t(x

l − 1)≥ q∗l,t+1(x
l)− q∗l,t+1(x

l − 1) (22)
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2. for any xl ∈ {2, · · · , τ}, where q∗l,t(τ +1)≜ q∗l,t(τ),

q∗l,t(x
l)− q∗l,t(x

l − 1)≥ q∗l,t(x
l +1)− q∗l,t(x

l) (23)

D efine for any l ∈L

Rl(x
l) = {q∈X |ql = xl}

be the set of inventory vectors which satisfy the inventory level of trailer l is fixed at xl. Given a separable

piecewise-linear approximation Q= {ql,t(xl
t)|∀t, l ∈L, xl

t ∈ {0, · · · , τ}}, we let

ϵl,t(x
l,Q) = min

x∈Rl(xl),lbx∈L(x,b)

∑
l∈L

ql,t(x
l)−

∑
l∈L

ql,t+1(x
l)

−
∑
b∈B

[
pb ·
(
rlbx,b + qlbx,t+1(x

lbx − 1)− qlbx,t+1(x
lbx)
)]

(24)

Note that ifQ is feasible to problem (APPROX-INV), ϵl,t(x
l,Q)≥ 0 for all l, t, xl. We begin with a preliminary

result.

We first prove the following lemma, by which we prove Lemma 3:

Lemma 4. There exists an optimal solution Q∗ = {q∗l,t(xl
t)|∀t, l ∈L, xl

t ∈ {0, · · · , τ}} such that ϵl,t(x
l,Q∗) =

0 for all l, t and xl.

Proof of Lemma 4: Let Q = {ql,t(xl)} be an optimal solution to problem (APPROX-INV). Let s be the

largest time period such that there exists l0 and xl0 with ϵl0,s(x
l0 ,Q)> 0. This means that ϵl,t(x

l,Q) = 0 for

any l, xl and t > s. We define another solution Q∗ as following:

q∗l,t(x) =

{
ql,t(x)− ϵl,t(x

l,Q) if l= l0, t= s,x= xl

ql,t(x) otherwise
(25)

Obviously q∗l,t(x) ≤ ql,t(x) for all l, t, x. Therefore
∑

l∈L q∗l,1(x
l
1) ≤

∑
l∈L ql,1(x

l
1). Next we show that Q∗ is

feasible to problem (APPROX-INV). Since there is only one instance of q∗l,t(x) that q∗l,t(x) ̸= ql,t(x), all

constraints in problem (APPROX-INV) are satisfied byQ∗ except those that contain q∗l0,s(x
l0). Note q∗l0,s(x

l0)

only appears in constraints corresponding to time periods s− 1 and s.

For periods s, ∀x= {x1, .., xl0 , .., xn} ∈ X and {lbx ∈L(x, b) : b= 1, ...,m},∑
l∈L

q∗l,s(x
l) =

∑
l∈L

ql,s(x
l)− ϵl,s(x

l0 ,Q)

≥
∑
b∈B

[
pb ·
(
rlbx,b + qlbx,s+1(x

lbx − 1)− qlbx,s+1(x
lbx))
)]

+
∑
l∈L

ql,s+1(x
l)

=
∑
b∈B

[
pb ·
(
rlbx,b + q∗lbx,s+1(x

lbx − 1)− q∗lbx,s+1(x
lbx))
)]

+
∑
l∈L

q∗l,s+1(x
l)

where the first equality holds by (25), second inequality holds by (24), and last equality holds by (25).

For periods s− 1, ∀x= {x1, ..., xn} ∈ X and {lbx ∈L(x, b) : b= 1, ...,m},∑
l∈L

q∗l,s−1(x
l) =

∑
l∈L

ql,s−1(x
l)

≥
∑
b∈B

[
pb ·
(
rlbx,b + qlbx,s(x

lbx − 1)− qlbx,s(x
lbx))
)]

+
∑
l∈L

ql,s(x
l)
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=
∑
b∈B

[
pb ·
(
rlbx,b + qlbx,s(x

lbx − 1)
)]

+
∑
l∈L

[(1−
∑

{b:lbx=l}

pb)ql,s(x
l)]

≥
∑
b∈B

[
pb ·
(
rlbx,b + q∗lbx,s(x

lbx − 1)
)]

+
∑
l∈L

[(1−
∑

{b:lbx=l}

pb)q
∗
l,s(x

l)]

=
∑
b∈B

[
pb ·
(
rlbx,b + q∗lbx,s(x

lbx − 1)− q∗lbx,s(x
lbx))
)]

+
∑
l∈L

q∗l,s(x
l)

where the first equality holds by (25), second inequality holds because {ql,t} are feasible to problem

(APPROX-INV), third and last equality holds by rearranging terms, and fourth inequality holds by q∗l,t(x)≤
ql,t(x) and all the coefficients in front of ql,t(x) are non-negative.

So far we have constructed a Q∗ such that ϵl0,t(x
l0 ,Q∗) = 0 and

∑
l∈L q∗l,1(x

l
1) ≤

∑
l∈L ql,1(x

l
1). We can

continue such an approach by looping through the periods backwards (till period 1) and in every period

checking for all l ∈L that the condition ϵl,t(x
l,Q∗) = 0 is met. Lemma 4 proof is done.

Now we are ready to prove Lemma 3. It holds for τ +1 trivially. We assume that Lemma 3 holds for period

t+1, and next prove it holds for t.

(1) We prove (22) for period t. Pick any trailer type l∗ with xl∗ > 0, by Lemma 4, there exist an x∈Rl∗(x
l∗)

such that ϵl∗,t(x
l∗ ,Q) = 0. In other words there exist x = {x1, .., xl∗ , ..xn} ∈ Rl∗(x

l∗) and {l1x, ..., lmx } : lbx ∈
L(x, b) such that∑

l ̸=l∗

ql,t(x
l)+ ql∗,t(x

l∗)

=
∑
b∈B

[
pb ·
(
rlbx,b + qlbx,t+1(x

lbx − 1)− qlbx,t+1(x
lbx)
)]

+
∑
l∈L

ql,t+1(x
l)

=
∑

{b∈B|lbx ̸=l∗}

[
pb ·
(
rlbx,b + qlbx,t+1(x

lbx − 1)− qlbx,t+1(x
lbx)
)]

+

∑
{b∈B|lbx=l∗}

[
pb ·
(
rl∗,b + ql∗,t+1(x

l∗ − 1)− ql∗,t+1(x
l∗)
)]

+
∑
l ̸=l∗

ql,t+1(x
l)+ ql∗,t+1(x

l∗)

Now let x̄= x+ el∗ . The lbx defined above satisfies lbx ∈L(x̄, b) too, because xl∗ > 0. Therefore it must satisfy

the constraint:∑
l ̸=l∗

ql,t(x̄
l)+ ql∗,t(x̄

l∗)

≥
∑

{b∈B|lbx ̸=l∗}

[
pb ·
(
rlbx,b + qlbx,t+1(x̄

lbx − 1)− qlbx,t+1(x̄
lbx)
)]

+

∑
{b∈B|lbx=l∗}

[
pb ·
(
rl∗,b + ql∗,t+1(x̄

l∗ − 1)− ql∗,t+1(x̄
l∗)
)]

+
∑
l ̸=l∗

ql,t+1(x̄
l)+ ql∗,t+1(x̄

l∗)

Notice that x̄l = xl if l ̸= l∗ and x̄l = xl +1 if l= l∗. By taking the difference,

ql∗,t(x
l∗ +1)− ql∗,t(x

l∗)

≥
∑

{b∈B|lbx=l∗}

[
pb ·
(
rl∗,b + ql∗,t+1(x̄

l∗ − 1)− ql∗,t+1(x̄
l∗)
)]

+ ql∗,t+1(x̄
l∗)−

∑
{b∈B|lbx=l∗}

[
pb ·
(
rl∗,b + ql∗,t+1(x

l∗ − 1)− ql∗,t+1(x
l∗)
)]

− ql∗,t+1(x
l∗)

=[
∑

{b∈B|lx,b=l∗}

pb][ql∗,t+1(x
l∗)− ql∗,t+1(x

l∗ +1)− ql∗,t+1(x
l∗ − 1)+ ql∗,t+1(x

l∗)]+
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ql∗,t+1(x
l∗ +1)− ql∗,t+1(x

l∗)

≥ql∗,t+1(x
l∗ +1)− ql∗,t+1(x

l∗)

where the last inequality is by induction.

(2) We prove (23) for period t for all xl > 1. Pick any l∗ and xl∗ > 1. By Lemma 4, there exist an

x̄∈Rl∗(x
l∗ +1) such that ϵl∗,t(x

l∗ +1,Q) = 0. In other words there exist x̄= {x1, .., xl∗ +1, ..xn} ∈Rl∗(x̄
l∗)

and {l1x̄, ..., lmx̄ } : lbx̄ ∈L(x̄, b) such that∑
l ̸=l∗

ql,t(x̄
l)+ ql∗,t(x̄

l∗)

=
∑
b∈B

[
pb ·
(
rlbx̄,b + qlbx̄,t+1(x̄

lbx̄ − 1)− qlbx̄,t+1(x̄
lbx̄)
)]

+
∑
l∈L

ql,t+1(x̄
l)

=
∑

{b∈B|lbx̄ ̸=l∗}

[
pb ·
(
rlbx̄,b + qlbx̄,t+1(x̄

lbx̄ − 1)− qlbx̄,t+1(x̄
lbx̄)
)]

+

∑
{b∈B|lbx̄=l∗}

[
pb ·
(
rl∗,b + ql∗,t+1(x̄

l∗ − 1)− ql∗,t+1(x̄
l∗)
)]

+
∑
l ̸=l∗

ql,t+1(x̄
l)+ ql∗,t+1(x̄

l∗ +1)

Let x= x̄− el
∗
. The above defined lbx̄ also satisfies lbx̄ ∈L(x, b) because xl∗ > 1. Therefore it must be feasible

and satisfy: ∑
l ̸=l∗

ql,t(x
l)+ ql∗,t(x

l∗)

≥
∑

{b∈B|lbx̄ ̸=l∗}

[
pb ·
(
rlbx̄,b + qlbx̄,t+1(x

lbx̄ − 1)− qlbx̄,t+1(x
lbx̄)
)]

+

∑
{b∈B|lbx̄=l∗}

[
pb ·
(
rl∗,b + ql∗,t+1(x

l∗ − 1)− ql∗,t+1(x
l∗)
)]

+
∑
l ̸=l∗

ql,t+1(x
l)+ ql∗,t+1(x

l∗)

Notice that x̄l = xl if l ̸= l∗ and x̄l = xl +1 if l= l∗. By taking the difference,

ql∗,t(x̄
l∗)− ql∗,t(x

l∗)

≤
∑

{b∈B|lbx̄=l∗}

[
pb ·
(
rl∗,b + ql∗,t+1(x̄

l∗ − 1)− ql∗,t+1(x̄
l∗)
)]

+ ql∗,t+1(x̄
l∗)−

∑
{b∈B|lbx̄=l∗}

[
pb ·
(
rl∗,b + ql∗,t+1(x

l∗ − 1)− ql∗,t+1(x
l∗)
)]

− ql∗,t+1(x
l∗)

=[
∑

{b∈B|lbx̄=l∗}

pb][ql∗,t+1(x
l∗)− ql∗,t+1(x

l∗ +1)− ql∗,t+1(x
l∗ − 1)+ ql∗,t+1(x

l∗)]+

ql∗,t+1(x
l∗ +1)− ql∗,t+1(x

l∗)

=[
∑

{b∈B|lx,b=l∗}

pb][ql∗,t+1(x
l∗)− ql∗,t+1(x

l∗ − 1)]+ [1−
∑

{b∈B|lx,b=l∗}

pb][ql∗,t+1(x
l∗ +1)− ql∗,t+1(x

l∗)]

≤ql∗,t+1(x
l∗)− ql∗,t+1(x

l∗ − 1)

≤ql∗,t(x
l∗)− ql∗,t(x

l∗ − 1)

where the second to last inequality is due to induction assumption for period t+1 and the last inequality

is using results in (1).
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It is obvious that (23) is equivalent to (9) for y≥ 2. To see (10) holds for y≥ 2, we first apply t= τ to (22)

and conclude (10) holds for y≥ 2 at t= τ , and then we roll t backwards and apply to (22) which yields (10)

holds for y≥ 2 at all t.

If we enforce that (9) holds at y = 1 for all t, then (10) holds at y = 1 for all t as well by applying the

enforcement and (10) holding at y= 2.

A.3. Proof of Proposition 5

We prove the results via induction over k. The result holds trivially when l= γ. Next, we assume the result

holds for all k+1≤ k≤ γ and show that the result holds for k= k.

max
(l(k+1),...,l(γ),xl(k+1)

,...,xl(γ)
):

τ−(t−1+c)≤
∑γ

i=k+1
xl(k)

≤τ−c

θt(l
(k) = l, l(k+1), . . . , l(γ), xl(k)

= x,xl(k+1)

, . . . , xl(γ)

) =

max
(l(k+1),...,l(γ),xl(k+1)

,...,xl(γ)
):

τ−(t−1+c)≤
∑γ

i=k+1
xl(k)

≤τ−c

f(l, x, l(k+1), xl(k+1)

)+ θt(l
(k+1), . . . , l(γ), xl(k+1)

, . . . , xl(γ)

) =

max
l<l′≤n+1, x′>0

f(l, x, l′, x′)+ max
(l(k+2),...,l(γ),xl(k+2)

,...,xl(γ)
):

τ−(t−1+c+x′)≤
∑γ

i=k+2
xl(k)

≤τ−c−x′

θt(l
(k+1) = l′, . . . , l(γ), xl(k+1)

= x′, . . . , xl(γ)

)

=

max
l<l′≤n+1, x′>0

{f(l, x, l′, x′)+J(l′, x′, c+x′1{l′ ̸=n+1})}

where the third equality follows by the induction hypothesis.

A.4. Proof of Lemma 1

Since there are n+1 constraints, any basis can contain at most n+1 positive variables. Moreover, the first

constraint of KNAP ensures that each of the n groups must contribute at least one basic variables. Further,

if a group contains a fractional variable, then there must be another fractional variable in this group due

again to the first constraint. Consequently, there can be at most one group with two fractional variables,

otherwise the basis would contain more than n+1 variables.


