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We study the production decisions of a firm that operates in co-production system (single input but
multiple simultaneous outputs) with random yield and demand. The firm uses its outputs to meet multiple
end-market demands with different quality requirements. Outputs serving a market segment may be a
result of a blending process of different quality products of the co-production system. After the realization
of yield and before the realization of demand, the firm has the option to upgrade the quality of outputs
in order to better position itself to meet market demands. With the goal of maximizing expected profits,
we formulate a three stage stochastic programming problem, to investigate the value of intermediate
upgrading flexibility. Using a stylized model of two products and two markets with different quality
requirements, we characterize the optimal decisions and show that the quality upgrading policy is of a
single-threshold type. Although upgrading is costly, it creates value for the firm through reducing total
production cost and better managing the yield uncertainty. Positive correlation between demands of the
end-markets decreases the value of upgrading. The more general model formulation offers the blueprint
of a stochastic programming model that can be solved for realistic applications.

Keywords: Stochastic programming, operational flexibility, random yield, product substitution,
newsvendor demand.

1. Introduction

Operational flexibility has been demonstrated to have tremendous value to supply chain manage-
ment. In a frequently used form of operational flexibility, its execution requires that multiple(one)
resources are used hedge demand or supply uncertainties in one(multiple) market segment(s).
The key in this form of flexibility is that firms have the capability to re-allocate or re-distribute
resources(products, capacities or services) after any uncertainty (demand or supply) has been re-
solved, in the most effective way to match supply and demand. Most of the value of this flexibility
comes from the risk pooling of the resources in handling a diverse set of demand or supply risks.
Examples of such flexibility include substitution(upgrading/downgrading of products or services)
and transshipment of products among retailers or distribution channels in a network system. We
are going to present a new application of this type of flexibility that involves costly upgrading of
the quality of the resources prior to demand uncertainty resolution in multi-segment markets with
varied quality requirements.

We consider a production/market environment with both yield and demand uncertainty. Yield
uncertainty is a common phenomenon in many production and service environments. Random
yield can emerge in many forms and measures, ranging from simple fraction defectives to broader
classification schemes based on some quantitative or qualitative evaluation resulting in a finite
number of quality levels. We study a co-production system where outputs are differentiated by
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quality levels. A co-production process is one that yields multiple outputs from a single input.
Outputs are used to meet demands in a multi-segment market, where each market imposes certain
quality requirement on the outputs that serve them. An output serving a market segment may be
the blended result of some of the original outputs of the co-production process.

Prior to decide how to blend the outputs of the co-production process to meet each market
segment demand, the firm has the opportunity to upgrade the quality levels of the original prod-
ucts through refining processes. These processes happen after the realization of the yield of the
co-production process and before the realization of market segment demands. We consider transfers
in the direction of increasing inventories of higher quality level outputs and refer to this option
as ”upgrading flexibility”. This practice is common in agriculture and chemical industries, where
post-production refining processes can improve quality levels of the crude products produced in
the co-production process(crushing, milling, etc). Although appealing in many respects, the up-
grading process is costly and needs to take place prior to the selling season when the uncertainty of
demand realizes. Therefore, a balance has to be made between the early production decision and
the subsequent upgrading decision in order to match supply and demand effectively.

We take the perspective of a profit maximizing firm operating in the described environment.
We outline a stylized three-stage stochastic model to study the structure of the optimal decisions
in this production and quality upgrading process of a co-production system, in the presence of
both yield and demand uncertainties. We are particularly interested in understanding the value of
upgrading flexibility in the co-production environment, and when it is best exercised.

1.1 Motivating Example

Our motivating example is the growth and production of vegetable seeds in the agriculture industry.
A typical process comprises of three main stages. (1) growing season, which can take between 6 to 24
months (depending on the seed type), when the firm decides the amount of seeds to grow (2) After
the harvest season and quality assessment, seeds are rated by quality levels. At this stage, the firm
has the opportunity to engage in upgrading processes, to increase the proportion of higher quality
seeds through refining of lower quality seeds inventory. The quality upgrading flexibility occurs
only before demand uncertainty is resolved. The two most important quality measures of seeds are
purity and germination. There are many complex processes to separate and enhance the purity
of seeds, and other processes/treatment to enhance the germination of seeds. All these processes
incur significant cost in order to improve the quality of seeds. (3) With the start of selling season,
the firm satisfies different markets’ demand according to quality requirements. High-end markets
(like North America) demand can be solely satisfied from higher quality product(higher purity and
germination), whereas the demand of low-end markets (like India, Bangladesh, Malaysia) can be
fulfilled through a blend of low and high quality seeds.

Our proposed modeling framework and problem formulation apply to other industries as well.
For instance, in the semiconductor industry, a single input of Silicon Dioxide can be fabricated
to silicon wafers of different quality grades. A frequently heard term ’ingot’, is an intermediate
outcome of the first manufacturing process which is referred to as crystal growth. It is then sliced
into substrates(wafers) before going through final polishing. Though current manufacturing pro-
cesses can control size(diameter), thickness and other geometric properties, they can not perfectly
control cleanness, flatness, and certain circuit properties of wafers, which are key quality measures
of them. However, there are recurrent/post polishing processes which are used to improve wafer
qualities, though they usually incur additional cost. For example, an Epi layer, which is an addi-
tional layer of purity Silicon, can be deposited on the top of a polished wafer substrate to improve
its quality. Finally, wafers of different qualities can be used to meet customers’ demands with varied
quality requirements. Another example could be found in the steel industry, where steel beams of
strong/weak strength are outputs of a co-production process and additional refinement processes
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can improve the weak strength steel beams, before they are used to meet customer demands with
varied quality requirements.

2. Related Literature

Relevant literature to this study can be divided into two streams: (1) co-production systems with
yield uncertainty and substitution; (2) value of operational flexibility.

In the co-production literature, a common feature of models is full downward substitution, i.e.
satisfying demand of lower quality specifications from the inventory of higher quality products.
Joint inventory and allocation decisions in different settings is the main goal of these papers. The
early work of Bitran and Dasu (1992), Bitran and Leong (1992), and Bitran and Gilbert (1994)
proposed heuristics and approximation methods for the N-product finite horizon problem with
deterministic demand and random yield. Motivated by semi-conductor industry, Hsu and Bassok
(1999) studied a two-stage stochastic model with N outputs in the presence of both demand and
yield uncertainty. Tomlin and Wang (2008) considers joint decisions of quantity, down-conversion
(converting high quality to low quality), pricing and allocation in a customer utility maximization
framework. In a beef supply chain, Boyabatl et al. (2011) analyzed a co-production system with
two output quality levels (boxed beef and ground beef), to study the impact of market conditions
on optimal sourcing decisions. While in most of these papers a unit demand of market with lower
quality expectations can be fully substituted by higher quality inventory, in our model, we require
a blend of low and high quality inventories to meet quality requirements for the lower-end market.
Furthermore, upgrading of quality of available outputs is possible prior to demand realization.

Operational flexibility provides firms with a hedge against uncertainties. There is a vast literature
on the value of operational flexibility in its various forms: e.g. postponement (Van Mieghem and
Dada 1999), component commonality (Van Mieghem 2004) , substitution (Bassok et al. 1999), and
responsive pricing (Tomlin and Wang 2008).

Closest to our work in modeling operational flexibility is the recent work of Dong et al. (2014), in
which they analyzed early procurement, production and later upgrading decisions of an oil refinery
facing price uncertainty in both input and output markets, with a co-production system producing
two quality levels of outputs that we used to meet demand in two end-markets. They investigated
two types of operational flexibilities: range flexibility (the ability to process crude oil of diverse
quality), and conversion flexibility (the ability to convert low-quality crude oil to high-quality crude
oil). In our paper, we only consider conversion flexibility of a low quality output to a high quality
output. While Dong et al. (2014) considered an environment without any yield uncertainty and with
end-market price uncertainty, we are interested in co-production systems with yield uncertainty
and end-markets with preset fixed prices but subject to random demand.

Contributions: While there is a rich body of literature on production planning under joint
demand and yield uncertainty, very few have focused on co-production systems with yield uncer-
tainty and upgrading flexibility of the output quality after yield realization but still in the presence
of demand uncertainty. Our main results are provided by a model with two products and two end-
markets. This stylized model offers useful managerial insights on the nature of upgrading policies
and for what environments upgrading flexibility pays off. Moreover, we formulate the more general
problem with n products and m demand segments(markets), and discuss how it can be solved. The
prevailing full downward substitution serves as a special case in our general model.

We have organized our remaining paper in 4 sections. In Section 3, we present notations and
our stylized two product, two market segment model. In Section 4, we present the solutions and
insights of the previously introduced stylized model. Next in Section 5 we extend the stylized model
to a general formulation. Finally we conclude our paper with Section 6.
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3. Model

In this section, we provide a three-stage stochastic optimization formulation for a single-period
upgrading problem with uncertain yield and demand. We analyze a two product, two market
model and explain the main trade-offs and results of our model.

To be more specific, we assume that the firm is selling two products in two markets. The
end markets are high-end(H) and low-end(L), and the products are high quality(H) and low
quality(L). As in the agribusiness example, North America is a high-end market, and In-
dia/Indonesia/Malaysia/other countries are low-end markets. The firm is a price taker in both
end markets with exogenous prices for high and low end markets denoted as pH and pL respec-
tively. The prices are dependent on the end markets which impose certain requirements on product
qualities. In other words, the prices are market specific, not product specific. Given these prices, end
markets demands are random. The joint distribution of end market demands is characterized by a
density function f(dH , dL), where dH , dL is the demand in each market. To supply the markets, the
firm makes production and quality upgrading decisions in the presence of demand uncertainty, and
market allocation decisions after demand is realized. The detailed decision process is characterized
as follows:

Stage 1: Production. The firm decides on the quantity Q of the single input to be produced at
an exogenous unit production cost. The yield is uncertain, with αQ realized as high quality
and (1− α)Q as low quality product.

Stage 2: Upgrading. After observing the availability of each quality grade (yH , yL), the firm
has the option to upgrade (transfer) inventories from lower to higher quality grade at an
exogenous unit upgrading cost. After the upgrading, the firm has inventory levels of (qH , qL)
of the two products .

Stage 3: Allocation. With end market demand realized, the firm satisfies demand from available
inventory. The quantity of product j allocated to market k is xjk where j ∈ {H,L} and
k ∈ {H,L}. The allocation decision is subject to the usual product supply and end market
demand constraints as well as quality requirement constraints imposed by each market. We
will discuss these quality constraints.
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Figure 1. Simple model diagram
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3.1 Quality Constraints

The markets have heterogeneous requirement on product qualities. For instance, in the agribusi-
ness industry North America market has a higher requirement on seed quality than Asian/South
American countries.

In our model, we normalize the high quality level gH = 1, and the low quality level gL = 0.
The high end market only accepts high quality product, while the low end market expects that the
average quality of offered products is above a quality threshold γ. If xjk, j ∈ {H,L}, k ∈ {H,L}
represents the quantity of product j allocated to market k, then xHL ≥ γ(xHL + xLL), or

γxLL − (1− γ)xHL ≤ 0

3.2 Mathematical Formulation

Based on the model specification above, we formulate a three stage mathematical programing. Our
notational convention is that when we compress subscripts of a variable, we denote a vector of the
corresponding variable.

In Stage three, the firm has to decide on the allocation of the two products to the two end markets.
xHH and xHL are the allocation of the high quality product to markets H and L respectively,
while xLL is the only possible allocation of the low quality product to the low-end market. The
optimization problem in this stage, referred to as the ”Allocation” Problem (AP) is:

(AP) r(q, d) = max
xHH ,xHL,xLL

pHxHH + pL(xHL + xLL) (1)

subject to: xHH ≤ dH (1a)

xHL + xLL ≤ dL (1b)

xHH + xHL ≤ qH (1c)

xLL ≤ qL (1d)

γxLL − (1− γ)xHL ≤ 0 (1e)

xHH , xHL, xLL ≥ 0 (1f)

The revenue function r(q, d) has as its state variables the vector of available quantities of the two
product q and the vector of realized demand d. Constraints (1a) and (1b) are demand constraints
on allocated quantities in each market for meeting realized demand. Constraints (1c) and (1d) are
supply constraints on available quantities of the two products. Constraint (1e) captures the quality
requirement imposed by blending or mixing the quantities of the two quality products in an effort
to meet the low end market quality requirement.

In stage two, after the co-production process had its realized yield of high and low quality
products, the firm decides on how much of the low quality product to upgrade via refined processing
to bring up to the high quality level. The resulting optimization problem referred to as ”Upgrading”
problem (UP) is:

(UP) Π(y) = max
qH ,qL

Ed [r(q, d)]− cu(qH − yH) (2)

subject to: qH + qL = yH + yL, (2a)

qH ≥ yH , (2b)

qL ≥ 0. (2c)

The objective function Π(y) has an state variable the vector of available quantities of the two
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products after the production stage, including any leftover units from previous periods, and is the
expected profit from the upgrading decision, which reflects the subsequent allocation decision in
stage three and the costs of upgrading. The upgrading constraints (2a) and (2b) reflect that only
low quality product can be upgraded and the total quantity of the two quality products is preserved
under upgrading.

Finally, in the first stage our firm makes a production decision on the total quantity of input in
the co-production process, Q. The objective function J(Q) will account for all expected profits and
costs of the upgrading and allocation stages, Eα [Π(αQ, (1− α)Q)], and the relevant production
cost of the co-production system, cQ. Thus, our first stage ”Production” problem (PP) is:

(PP) max
Q≥0

J(Q) = Eα [Π(αQ, (1− α)Q)]− cQ (3)

In order to calculate the impact of upgrading flexibility, we define the value of upgrading (VoU)
as the difference between optimal expected profits with upgrading JU (Q∗U ), and without upgrading
JO(Q∗O):

V oU = JU (Q∗U )− JO(Q∗O) (4)

where JO(Q∗O) is solved by imposing q = y(no upgrading).

4. Analytical Results

In the following subsections, we first characterize optimal allocation decision, then the optimal
upgrading decision, and finally the optimal production decision.

4.1 Optimal Allocation Decision

The optimal allocation decision is determined by the realization of the demand, relative availability
of the two products, as well as relative profitability of products due to substitution scheme in place.
We assume that market prices (pH , pL) favor the high quality product; i.e., γpH ≥ pL. As a result,
the firm prioritizes demand of high-end market.

Figure 2 illustrates optimal allocation decision. Two graphs indicate different cases based on
relative availability of two products. When available inventory of high quality is low (left), leftover
of low-quality product is non-negative. This is due to the quality requirement of low demand class
and low availability of high quality product. When there is ample supply of high quality product

(right), there are instances with no leftover inventory of either products (region Ω
(2)
1 ).

Table 1. Optimal allocation and shadow prices

Region (x∗HH , x
∗
HL + x∗LL) λ(q, d)

Ω0 (dH , dL) (0, 0)
Ω1 (dH , qH + qL − dH) (pL, pL)

Ω2 (dH ,
qH−dH

γ
) ( pL

ρL
, 0)

Ω3 (qH , 0) (pH , 0)

It is clear from table 1 that the marginal value of low quality product is non-zero in region Ω
(2)
1 .

The difference in the area corresponding to each region depends on relative availability of products
qH and qL. Next result is about the property of expected value of optimal allocation profit, which
is analogous to results of multidimensional newsvendor model.

6



 

H
q

γ
  

D  

Ld  Ld  

Hd  

H L
q     q+  

 

2
Ω

0
Ω

H
q

H
q

  
1

L
q

γ−

  

1

L
H

q
q

γ

γ
−

−

  

D  

3
Ω

2
Ω

Hd   

(1)

(1)

3
Ω
(1)

(2)

(2)

1
Ω
(2)

0
Ω

(2)

H L
q     q+  

H L
q     q+  

H L
q     q+  

Figure 2. Left: qH ≤ γ(qH + qL), Right: qH > γ(qH + qL), line D : dH = qH − γdL

Lemma 1. Let d be a continuous random variable that is finite with probability 1. Then the expected
profit function Edr(q, d) is differentiable in q and the gradient is equal to expected shadow price
∇Edr(q, d) = Edλ(q, d), where λ(q, d) is the shadow price of q.

The proof follows directly from Harrison and Van Mieghem (1999) and is omitted.

4.2 Optimal Upgrading Decision

At the upgrading stage, the firm adjusts the inventories of the two products by refined processing of
some of the lower quality product while anticipating demand. The processing is costly and results
in increasing the inventory of high quality product. Figure 3 illustrates the decision space of the
upgrading problem for a given realized inventory yH and yL of the high and low quality products
respectively. We assume that yH ≥ αQ and yL ≥ (1−α)Q with the interpretation that (yH −αQ)
and (yL − (1 − α)Q) represent initial inventories of the two products before production in this
period, as a result of previous procurement or production decisions(e.g., in the case of extension
to a multi-period problem).
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Figure 3. Upgrading decision space

The following result characterizes the optimal upgrading policy.

Proposition 1. Given total production quantity Q, there exists a unique threshold qt ∈ [0, Q]
such that for realized inventory y, the optimal post-upgrading inventory of high quality product is
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q∗H(y) = max
{
qt, yH

}
. Furthermore, qt(Q) is non-decreasing in Q and there exist thresholds Q and

Q, with Q ≤ Q, such that qt(Q) = Q when Q ≤ Q and qt(Q) is constant when Q ≥ Q.

This result states that optimal upgrading decision is a single-threshold policy; i.e., if available
high quality product quantity yH is less than qt(Q), the firm should upgrade (qt(Q) − yH) units
of its low quality product to reach the optimal target level qt(Q), otherwise, no action is required.
Figure 4 illustrates the optimal upgrading policy.
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Figure 4. Optimal Upgrading Policy

4.3 Optimal Production Decision

In this section, we prove that the production stage objective function is concave in Q and an
optimal Q exists. We are particularly interested in studying the properties of optimal expected
profit of the upgrading problem and compare with the case of no-upgrading as a benchmark. We
use JU and JO to refer to profit functions of upgrading model and benchmark, respectively:

JU (Q) = −cQ+ Eα [Π(αQ, (1− α)Q)] , and

JO(Q) = −cQ+ Eα [Ed [r(αQ, (1− α)Q, d)]]

Proposition 2 below summaries the key results on the firm’s production decision(part 1 of the
Proposition), and our results of the effects of upgrading flexibility on such decisions and on the
objective value of the firm:

Proposition 2. For the production problem, we have the following results:

(1) The optimal allocation profit Edr(q, d) is concave in q, the optimal upgrading profit Π(y) is
concave in y, and the optimal firm value J(Q) is concave in Q.

(2) For any Q ≥ 0, JU (Q) ≥ JO(Q) and therefore, J∗U ≥ J∗O. Moreover, Q∗U ≤ Q∗O.

This result states that upgrading flexibility always creates value for the firm, and yields a lower
production level compared to the non-upgrading model. In other words, the upgrading flexibility
enables the firm to produce at lower production level, and by deploying that flexibility the firm is
able to achieve higher expected profit.

4.4 Sensitivity Analysis

The purpose of this section is to explore the significance of value of upgrading (V oU). We study
the impact of production and upgrading costs, as well as selling price.
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4.4.1 Impact of Purchase and Upgrading cost

Production and upgrading costs directly influence the value of upgrading. The following proposition
characterizes the impact of these cost parameters.

Proposition 3. V oU increases in production cost c and decreases in upgrading cost cu. Further-
more, optimal order quantity Q∗U decreases in c and increases in cu.

With production cost increasing, optimal expected profits of both upgrading and benchmark case
decrease. However, the decrease in profit is higher when no upgrading takes place. On the other
hand, when the cost of upgrading increases, the firm reacts by increasing production quantity and
reducing upgrading quantity, which overall decreases the total expected profit, resulting in a decline
in the value of upgrading.

4.4.2 Impact of Prices

End-market sales prices are important factors that affect optimal production, upgrading and allo-
cations decisions. The next result is about the impact of change in high end market selling price
on the value of upgrading and production decision.

Proposition 4. Optimal expected profits J∗U and J∗O increase in pH . Furthermore, increase in pH
increases order quantities in both cases.

With higher profit potential in the high-end market, the firm further increases engagement in
production and upgrading activities.

4.4.3 Impact of Demand Correlation and Cost of Upgrading

In our numerical observations, we have observed decrease in value of upgrading and increase in
optimal order quantity as demand correlation increases. As upgrading increases the inventory of
high quality product, which can be used to meet demand of both markets, it allows risk pooling of
demand risks. Therefore, it is expected that upgrading flexibility will have risk pooling features.

Our numerical results study the behavior of various optimal profit functions against demand
correlation and cost of upgrading. Demand distribution assumed in this experiment is a bivariate
normal with the following parameters µH = 15, µL = 10 and σ2

H = 9, σ2
L = 4, σHL = 6ρ. We fix

c = 3, γ = 0.7. Yield distribution is Beta(3, 1). As expected, our results show that expected profits
decrease in correlation coefficient ρ. Finally we establish that an increase in the cost of upgrading
will decrease the optimal upgrading profit as well as value of upgrading. Even with highest cost
of upgrading at cu = 4, value of upgrading on average accounts for 15% of the optimal expected
profit without upgrading.

4.4.4 Impact of Yield Uncertainty

Uncertainty in yield is a key factor in optimal upgrading decision. In general, we expect the value of
upgrading to increase when the distribution of yield favors lower rates of the high quality product
α. The following sensitivity result will help illustrate how the optimal expected profits depend on
the characteristic of yield distribution. We assume a parametric family of Beta distributions with
scalar parameter θ such that α(θ) follows Beta(t(1 − θ) + 1, tθ + 1), where t > 0 and θ ∈ [0, 1].
Figure 6 illustrates the effect of θ on the shape of distribution. We use the properties of stochastic
order for Beta distribution proved by Adell et al. (1993).(See Shaked and Shanthikumar (2007) for
more stochastic order results)

Proposition 5. Let yield rate α(θ) follow beta distribution with scale parameter θ. Optimal expected
profits J∗U and J∗O are decreasing in θ and V oU is increasing in θ.
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Note that as θ increases, average yield decreases and yield variance first increases and then
decreases. One can interpret increases in θ as a transformation of the yield distribution towards
lower yield rates α. Intuitively, with worse yield rate, the optimal expected profit in both cases
decrease. Furthermore, when there is no upgrading flexibility, profit declines faster, which results
in an increase in the value of upgrading. Therefore, upgrading is of more value to the firm when
distribution of yield is associated with higher values of θ.

In our numeric analysis we used a bivariate normal distribution with µH = 15, µL = 10 and
σ2
H = 9, σ2

L = 4, σHL = 0. Yield rate α(θ) follows the parametric beta distribution as previously
introduced. First observation is the dramatic decrease in the optimal expected profit in case of
no-upgrading, for both price values, as yield distribution shifts toward lower mean and positive
skewness. Even though optimal upgrading profit is also decreasing, the overall effect leads to in-
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crease in the value of upgrading. That is, upgrading is more valuable when yield distribution results
in lower yield rates for the high quality product. The value of upgrading accounts for 7% (θ = 0)to
almost 100% (θ = 1).

5. Formulation of a General Model

In a general model there can be n markets and m products. Yield rate is denoted by the random
vector α = (α1, ...αn), where

∑
i αi = 1. In the beginning of the second stage, each product i has

yi = αiQ available inventory, with specified quality grade gi ∈ [0, 1]. Without loss of generality,
we assume 0 ≤ gn < ... < g1 ≤ 1. The firm can transfer uij units of product from lower quality
gi to higher quality grade gj at unit cost cij , to arrive at post-upgrade inventory q = (q1, ..., qn).
In the beginning of the selling season and after realization of demand, firm satisfies demand of m
classes from on-hand inventory q. Demand is a random vector d = (d1, ..., dm) with joint probability
density function f(d). We denote the set of products as P and set of markets as C.

Before preceding with the model formulation, we discuss appropriate foundations of quality
constraints in each end-market as encountered in various applications.

5.1 Formulation of Quality Constraints

The end-markets have heterogeneous requirement on product qualities. As noted before, the quality
level of product j as gj . The end-markets quality requirements can be of two forms: 1) the average
quality of supplied products to market k must meet a certain threshold γk; 2) the fraction of supply
to market k which meet a quality level γk has to be higher than a percentile ρk. Mathematically
the two forms can be expressed as:
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(1): Average quality requirement(γk) ∑
j gjxjk∑
j xjk

≥ γk (5a)

(2): Fractional quality requirement(γk, ρk)∑
j 1{gj ≥ γk}xjk∑

j xjk
≥ ρk (5b)

The fractional quality requirement encompass a wider range of situations than the average
quality requirement, and therefore our model will be focusing on this class.

We would like to point out that both of the above quality requirement constraints can be captured
in the following transformed constraint:∑

j∈P
(1− ajk)xjk ≤ 0 (6)

where ajk is appropriately defined depending on the end-market quality requirement used, when
using the ”average quality requirement” definition as in (5a),

ajk =
gj
γk

(6a)

and when using the ”Fractional quality requirement” definition as in (5b),

ajk =
I{gj≥γk}

ρk
(6b)

5.2 Stochastic Program Formulation

As for the simpler two product, two market problem, we proceed to formulate the firm’s decisions
as a three stage stochastic optimization problem.

Allocation Decision. In this stage, firm maximizes the sales revenue from allocation of available
inventory q to demand classes d, according to quality requirement of each demand class. The
allocation decision(AP) can be formulated as a linear program:

(AP) r(q, d) := max
xjk

j∈P, k∈C

∑
j∈P

∑
k∈C

pkxjk (7)

subject to:
∑
j∈P

xjk ≤ dk, ∀k ∈ C, (7a)

∑
k∈C

xjk ≤ qj , ∀j ∈ P, (7b)∑
j∈P

(1− ajk)xjk ≤ 0, ∀k ∈ C, (7c)

xjk ≥ 0, ∀j ∈ P, ∀k ∈ C. (7d)

where (7a) and (7b) are demand and capacity constraints, respectively. The quality constraint (7c)
is discussed as above.
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Upgrading Decision. At the second stage, the firm decides on the optimal target inventory
level q after using quality upgrading processes. In other words, with y = (y1, ..., yn) on hand
inventories of the various products, and exogenous upgrading costs cij in upgrading product of
quality i to product of quality j, the firm seeks a strategy of product upgrading that maximizes
the expected value of sales minus upgrading costs. The ”Upgrading” problem(UP) in this stage
can be formulated as follows:

(UP) Π(y) = max
uij

i,j∈P, i>j

Ed [r(q, d)]−
n−1∑
j=1

∑
i>j

cijuij (8)

subject to: qi = yi +
∑
j>i

uji −
∑
j<i

uij , ∀i ∈ P, (8a)

∑
j<i

uij ≤ yi, ∀i = {1, ..., n}, (8b)

uij ≥ 0, ∀i, j ∈ P. (8c)

Though we don’t put any constraint on possibly downgrading, i.e., uij 6= 0 for i ≥ j, it will be
trivial to see that such decisions would never occur if cij ≥ 0 for i ≥ j. Under this condition, any
downgrading decision would be dominated by a leave-alone decision.

Production Decision. While facing yield uncertainty, the firm decides the total quantity of
the single input Q in the co-production system at unit production cost c. The ”Production” prob-
lem(PP) at this stage is as follows:

(PP) max
Q≥0

J(Q) := Eα[Π(αQ)]− cQ (9)

With this general formulation of the three stage optimization problem, the following result can
be stated:

Proposition 6. The optimal allocation profit r(q, d) is concave in q, the optimal upgrading profit
Π(y) is concave in y and the optimal firm value J(Q) is concave in Q.

One important implication of Proposition 6 is that an optimal production quantity Q∗ exists.
However, solving the general formulation of the problem for multi-product, multi-market appli-
cation may be computationally challenging. We suggest exploiting the concavity of the objective
functions in the stochastic variables as follows.

By considering a deterministic demand equal to expected value of d, we obtain an upper-bound
on the solution of the expected profit. Also, since Π(.) is concave, replacing α by the deterministic
yield rate at equal expected value, yields an upper-bound on the optimal expected profit. In other
words, the solution of a large deterministic linear program would provide reasonable bound on
expected profits and suggested values on input quantities to the co-production system that can be
further evaluated on their actual profit performance.

6. Concluding Remarks and Future Directions

In this paper we studied the operational decisions of a co-production system of a single input and
multiple output products under both yield and demand uncertainty. Products are differentiated
by quality levels and the yield rate of the co-production process for each quality level product is
random. After the yield uncertainty is realized, the firm has an intermediate opportunity to engage
in a costly upgrading process to adjust the inventories of products of different quality levels. End-
market demand is segmented into classes with heterogeneous quality requirements. Blending of
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products of different quality levels may be used to meet quality requirements of different segments.
We formulated the problem of deciding the quantity of the early input to the co-production process,
the quality upgrading decision after yield realization, and the optimal blending decision for meeting
the multi-segment end-market demand as a three-stage stochastic model, and characterized optimal
decisions at each stage.

Our most insightful results are presented for a highly stylized model of a two products, two
demand segments case, with the high-quality product serving as a sole source for meeting high-end
market demand and a blend of high and low quality products as a source for meeting low-end
market demand. We show that if prices favor the high quality product, the blending scheme follows
a greedy pattern that prioritizes high-end market demand. Furthermore, the quality upgrading
policy is of a simple single threshold type; i.e., if the realized high quality yield is lower than a
threshold, the firm needs to upgrade and otherwise no upgrading is needed.

Although upgrading is costly, we show that the total expected profit is always higher with
upgrading. Moreover, the total input quantity to the co-production process is lower when upgrading
is available than it’s not. Multiple factors of the decision environment can affect the magnitude of
the value of the upgrading flexibility. We show that increases in co-production costs leads to higher
value of upgrading. On the other hand, higher costs of upgrading decreases the flexibility value.
Furthermore, higher demand correlation leads to lower total expected profits, and also decreases
the value of upgrading flexibility.

The specific characteristics of the yield ratio distribution play an important role in affecting
the value of upgrading as well. We offer insights on the effects of changes in the distribution of
high quality yield ratio. We show that the value of upgrading flexibility is increasing in the scale
parameter of a Beta distribution which represents the yield ratio of the high quality output.

Future research can focus on providing more effective heuristic policies for the general model
when the number of products and market segments limits the applicability of a stochastic pro-
gramming approach. In the general model of the problem, we show that optimal decisions of the
three stage problem exist but it is hard to characterize the exact policy. A good heuristic policy
may provide great value for practical purposes.
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Appendix A. Proofs

Proof of Proposition 1 Let π(q, y) = ED[r(q, d)] − cu(qH − yH). We know from proposition 6
that π(., y) is concave, and by lemma 1 differentiable in everywhere. Fix Q and define A(Q) =
{q|qH + qL = Q} . A(Q) is closed and compact. Therefore, there exists a unique maximizer qt(Q)
of π(q, y) over A(Q) such that q∗H = qt and Q∗L = Q−qt. For the constrained problem with one way
transfer possibility, the optimal values are adjusted so that q∗H(y) = max{qt, yH}. To characterize
qt(Q), we use the directional derivative of π(q, y) in the direction d(qH , qL) = (+1,−1)dε, where
dε > 0. Using the result of lemma 1 and shadow vectors in table 1, we have:

√
2dπ = Eλ(q, d).(+1,−1)dε− cudε

√
2
dπ

dε
=
pL
γ
P2 + pHP3 − cu

where Pi is shorthand for Pr (Ωi(q)). Let F(qH , Q) = pL
γ P2+pHP3−cu. We have F(0, 0) = pH−cu >

0. Consider partial derivative of F(qH , Q) w.r.t. qH :

∂F
∂qH

=−
(
pH −

pL
γ

)∫ ∞
0

f(qH , l)dl −
pL

1− γ

∫ ∞
Q−qH
1−γ

f(
(qH − γQ)+

1− γ
, l)dl

− pL
γ2

∫ qH(
qH−γQ

1−γ

)+
f(h,

qH − h
γ

)dh < 0 (A1)

Fix qL = 0. By F decreasing in qH , there exists qH > 0 such that F(qH , qH) = 0. Hence, Q = qH .

Fix any Q < Q. Since F is decreasing in qH and F(Q,Q) > 0, we have qt(Q) = Q. Fix any Q > Q.

F = pH − cu > 0 at qH = 0 and negative when qH = Q, hence, there exist a unique qt(Q) such that
F(qt(Q), Q) = 0. Next we show that qt(Q) is non-decreasing in Q. For Q < Q, we have qt(Q) = Q.
For Q > Q, we use the implicit function theorem:

∂qt(Q)

∂Q
= −

∂F(qH ,Q)
∂Q

∂F(qH ,Q)
∂qH

(A2)

where

∂F(qH , Q)

∂Q
=

pL
1− γ

∫ ∞
Q−qH
1−γ

f(
(qH − γQ)+

1− γ
, l)dl ≥ 0. (A3)

By (A1)-(A3), we conclude that qt(Q) is non-decreasing in Q. Finally, note that when qH ≤ γQ in

(A3), we get ∂qt(Q)
∂Q = 0. Let Q satisfy qt(Q) = γQ. Q exists and is unique by qt(Q) non-decreasing.

Therefore, for any Q ≥ Q, qt(Q) is constant.

Proof of proposition 2
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(1) Proposition 6 proves a general case and the results can be directly borrowed.
(2) Let Q = 0. Then JU (Q) = JO(Q) = 0. Fix Q > 0. The difference between JU (Q) and JO(Q)

can be written as follows:

JU (Q)− JO(Q) =E
α< qt(Q)

Q

[
Ed
[
r(qt(Q), Q− qt(Q), d)

]
− Ed [r(αQ, (1− αQ), d)]− cu(qt(Q)− αQ)

]
=E

α< qt(Q)

Q

[
Ed
[
r(qt(Q), Q− qt(Q), d)

]
− cu(qt(Q)− αQ)− Ed [r(αQ, (1− αQ), d)]

qt(Q)− αQ

]

The argument inside the expectation is the directional derivative of π(., d) in the direction
−→v = (+1,−1)′(qt(Q)−αQ). Recall from the discussion of optimal upgrading policy, that the
directional derivative is non-negative when yH = αQ < qt(Q). Therefore, the difference is non-
negative. Next, we show that optimal production decision is always smaller with upgrading.
Let Q∗U be a maximizer of JU (Q). Therefore, Q∗U satisfies the first order condition:

∂JU (Q)

∂Q
=− c+

∫ qt(Q)

Q

0

[
∂Edr
∂qH

× ∂qt(Q)

∂Q
+
∂Edr
∂qL

× (1− ∂qt(Q)

∂Q
)− cu

(
∂qt(Q)

∂Q
− α

)]
g(α)dα

+

∫ 1

qt(Q)

Q

(
∂

∂Q
Ed [r(αQ, (1− α)Q, d)]

)
g(α)dα

=− c+

∫ qt(Q)

Q

0

(
∂qt(Q)

∂Q
× F(qt(Q), Q) + pLP1 + αcu

)
g(α)dα

+

∫ 1

qt(Q)

Q

(
∂

∂Q
Ed [r(αQ, (1− α)Q, d)]

)
g(α)dα

=− c+

∫ qt(Q)

Q

0

(
pLP1 +

αpL
γ

P2 + αpHP3

)
g(α)dα+

∫ 1

qt(Q)

Q

(
∂

∂Q
Ed [r(αQ, (1− α)Q, d)]

)
g(α)dα

Now, we evaluate the derivative of JO(Q) at Q∗U . We have:

∂JO(Q)

∂Q
=− c+

∫ 1

0

(
∂

∂Q
Ed [r(αQ, (1− α)Q, d)]

)
g(α)dα

=− c+

∫ 1

0

(
pLP1 +

αpL
γ

P2 + αpHP3

)
g(α)dα

We ignore the common components in both derivatives and only analyze the difference. Note
that Pi is a function of (qH , Q). We need to compare the value of ∂Er∂Q = pLP1+ αpL

γ P2+αpHP3

at (αQ∗U , Q
∗
U ) versus (qt(Q∗U ), Q∗U ). It is easy to show that ∂2Er

∂Q∂qH
< 0. Since within the bounds

of the integral; i.e. α ∈
(

0, q
t(Q)
Q

)
we have αQ∗U ≤ qt(Q∗U ), therefore, ∂JO(Q)

∂Q |Q=Q∗
U
> 0.

Therefore, JO(Q) is non-decreasing at Q = Q∗U . By concavity of JO(.), we conclude Q∗O > Q∗U .

Proof of proposition 3 We begin by analyzing the effect of production cost c. Observe that
∂J(Q)
∂c = −Q. Hence, ∂V oU

∂c = −Q∗U +Q∗O and by proposition 2 we conclude that V oU increases in
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c. Next, we use the implicit function theorem to find the impact of c on Q∗U .

∂Q∗U
∂c

= −
∂2J(Q,c)
∂Q∂c

∂2J(Q,c)
∂Q2

= − −1
∂2J(Q,c)
∂Q2

< 0

The inequality holds by concavity of J in Q. Hence, Q∗U and Q∗O both decrease in c. Now,
consider the effect of upgrading cost cu. Clearly the benchmark problem and it’s optimal solu-

tion is not affected by a change in cu. For the upgrading problem, we have ∂JU (Q,cu)
∂cu

|Q=Q∗
U

=

E
α< qt(Q)

Q

[
−qt(Q∗U ) + αQ

]
< 0. Hence, J∗U and therefore V oU are decreasing in cu. To show that

Q∗U is increasing in cu, we use implicit function theorem:

∂Q∗U
∂cu

= −
∂2J(Q,cu)
∂Q∂cu

∂2J(Q,cu)
∂Q2

= −
E[α|α < qt(Q)

Q ]

∂2J(Q,c)
∂Q2

> 0

Proof of proposition 5 We begin by showing that Π(y(α,Q)) is concave increasing in α. First,
note that Π(y) is increasing in y, therefore, Π is increasing in α. Concavity of Π in α is shown
below:

Π(αβQ, (1− αβ)Q) =Π(βα1Q+ βα2Q, β(1− α1)Q, β(1− α2)Q),

≥ βΠ(α1Q, (1− α1)Q) + (1− β)Π(α2Q, (1− α2)Q). (A4)

Next, we use the following result by Adell et al. (1993); If X(θ) follows Beta(t(1− θ) + 1, tθ + 1),
and for t > 0 and θ ∈ (0, 1), then {α(θ), θ ∈ (0, 1)} ∈ SDCX; i.e. if θ2 > θ1, then α(θ2) ≥dcx α(θ1).
As a result, E[f(α(θ2))] ≥ E[f(α(θ1))] for any convex decreasing f . The result follows by letting
f = −Π.

Proof of Proposition 6 Concavity of r(q, d) in q follows from basic principles of linear pro-
gramming. We include the proof here for convenience. Let X = {xjk|j ∈ P, k ∈ C}. Let X1 and
X2 be optimal solutions of the maximization problem (7) for arbitrary q1, q2 ∈ Rn+, respectively.

Let qβ = βq1 + βq2, where β = 1 − β and β ∈ [0, 1]. By linearity of constraints (7b)-(7d),
Xβ = βX1 + βX2 is a feasible solution for qβ. Therefore,

r(qβ, d) ≥
∑
j∈P

∑
k∈C

pkx
β
jk,

= β
∑
j∈P

∑
k∈C

pkx
1
jk + β

∑
j∈P

∑
k∈C

pkx
2
jk,

= βr(q1, d) + βr(q2, d).

Next, we show concavity of Π(y). By linearity of q in (u, y) in (8a), concavity of r(., d) and
preservation of concavity under expectation, we have Ed[r(q(u, y), d)] is jointly concave in (u, y).
Concavity of π(q(u, y)) follows directly from linearity of second term in objective function.
Now, let C = {(u, y)|u ≥ 0, u ∈ U(y)} be the feasible space of the upgrading problem, where

U(y) =
{
u|
∑

j<i uij ≤ yi,∀i = 2, ..., n
}

. It is straightforward to show that U(y) is non-empty

and C is convex. Let y1, y2 ∈ Rn+ be arbitrary. Let δ > 0. There exists ut ∈ U(yt) such that
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π(q(ut, yt)) ≥ Π(yt)− δ for t = 1, 2. Let θ ∈ [0, 1] and θ = 1− θ. We have:

θΠ(y1) + θΠ(y2) ≤ θπ(q(u1, y1)) + θπ(q(u2, y2)) + δ,

≤ π(θq(u1, y1) + θq(u2, y2)) + δ,

= π
(
q(θu1 + θu2, θy1 + θy2)

)
+ δ,

≤ Π(θy1 + θy2) + δ

where the first inequality follows by assumption, second inequality is by concavity of π(.), third
inequality follows form linearity of q(u, y) and last inequality holds by definition of Π(.). Since δ
is arbitrary, the inequality must hold for δ = 0. Otherwise, a contradiction can be reached. Hence,
Π(y) is concave in y. Finally, we need to show that J(.) is concave. Fix α, let Q1, Q2 ∈ R+ be
arbitrary and θ, θ ∈ [0, 1] as defined above. We have:

Π
(
α(θQ1 + θQ2)

)
− c(θQ1 + θQ2) ≥ θΠ(αQ1) + θΠ(αQ2)− c(θQ1 + θQ2),

= θ
(
Π(αQ1)− cQ1

)
+ θ

(
Π(αQ2)− cQ2

)
.

Taking expectation over α from both sides will give the result; that is, J(Q) is concave in Q.
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