Calculus refresher

Disclaimer: I claim no original content on this document, which is mostly a summary-rewrite of what any standard college calculus book offers. (Here I've used Calculus by Dennis Zill.) I consider this as a brief refresher of the bare-bones calculus requirements we will be using during the course. No exercises are offered: any calculus book provides an insane amount of practice problems.

1. Rules of differentiation: Basics

In what follows, let $f(x)$ be a one-variable function, and denote its derivative by $f^{\prime}(x)$. The standard differentiation rules are the following:

Theorem 1.1 (The Power Rule, 1). Let n be a positive integer. Then

$$
\begin{equation*}
\frac{d}{d x}\left[x^{n}\right]=n x^{n-1} \tag{1}
\end{equation*}
$$

Example 1.2. The derivative of $y=x^{4}$ is given by

$$
\frac{d y}{d x}=4 x^{4-1}=4 x^{3}
$$

Theorem 1.3 (Derivative of a constant function). If $f(x)=k$ and k is a constant, then $f^{\prime}(x)=0$.
Theorem 1.4 (Derivative of a constant multiple of a function). If c is any constant and f is a differentiable function, then

$$
\begin{equation*}
\frac{d}{d x}[c f(x)]=c f^{\prime}(x) \tag{2}
\end{equation*}
$$

Example 1.5. Following theorems 1.1 and 1.4 , the derivative of $y=3 x^{5}$ is given by:

$$
\frac{d y}{d x}=3 \cdot \frac{d}{d x} x^{5}=3\left(5 x^{4}\right)=15 x^{4}
$$

Theorem 1.6 (The Sum Rule). Let f and g be two differentiable functions. Then

$$
\begin{equation*}
\frac{d}{d x}[f(x)+g(x)]=f^{\prime}(x)+g^{\prime}(x) . \tag{3}
\end{equation*}
$$

Example 1.7. From theorems 1.1. and 1.6, the derivative of $y=x^{4}+x^{3}$ is:

$$
\frac{d y}{d x}=\frac{d}{d x} x^{4}+\frac{d}{d x} x^{3}=4 x^{3}+3 x^{2}
$$

Theorem 1.8 (The Product Rule). If f and g are differentiable functions, then

$$
\begin{equation*}
\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+g(x) f^{\prime}(x) \tag{4}
\end{equation*}
$$

Example 1.9. The differential of $y=\left(x^{3}-2 x^{2}+4\right)\left(8 x^{2}+5 x\right)$ is:

$$
\begin{aligned}
\frac{d y}{d x} & =\left(x^{3}-2 x^{2}+4\right) \cdot \frac{d}{d x}\left(8 x^{2}+5 x\right)+\left(8 x^{2}+5 x\right) \cdot \frac{d}{d x}\left(x^{3}-2 x^{2}+4\right) \\
& =\left(x^{3}-2 x^{2}+4\right)(16 x+5)+\left(8 x^{2}+5 x\right)\left(3 x^{2}-4 x\right)
\end{aligned}
$$

Theorem 1.10 (The Quotient Rule). If f and g are differentiable functions, then

$$
\begin{equation*}
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}} \tag{5}
\end{equation*}
$$

Example 1.11. The differential of $y=\frac{3 x^{2}-1}{2 x^{3}+5 x^{2}+7}$ is:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\left(2 x^{3}+5 x^{2}+7\right) \cdot \frac{d}{d x}\left(3 x^{2}-1\right)-\left(3 x^{2}-1\right) \cdot \frac{d}{d x}\left(2 x^{3}+5 x^{2}+7\right)}{\left(2 x^{3}+5 x^{2}+7\right)^{2}} \\
& =\frac{\left(2 x^{3}+5 x^{2}+7\right) \cdot(6 x)-\left(3 x^{2}-1\right) \cdot\left(6 x^{2}+10 x\right)}{\left(2 x^{3}+5 x^{2}+7\right)^{2}} \\
& =\frac{-6 x^{4}+6 x^{2}+52 x}{\left(2 x^{3}+5 x^{2}+7\right)^{2}} .
\end{aligned}
$$

Theorem 1.12 (The Power Rule, 2). If n is a positive integer, then

$$
\begin{equation*}
\frac{d}{d x}\left[x^{-n}\right]=-n x^{-n-1} \tag{6}
\end{equation*}
$$

Example 1.13. The derivative of $y=5 x^{3}-\frac{1}{x^{4}}$ is (after rewriting y as $5 x^{3}-x^{-4}$):

$$
\frac{d y}{d x}=5 \cdot 3 x^{2}-(-4) x^{-5}=15 x^{2}+\frac{4}{x^{5}} .
$$

2. Rules of differentiation: The Chain Rule

Theorem 2.1 (The Power Rule for Functions). If n is an integer and g is a differentiable function, then

$$
\begin{equation*}
\frac{d}{d x}[g(x)]^{n}=n[g(x)]^{n-1} g^{\prime}(x) \tag{7}
\end{equation*}
$$

Example 2.2. Let $y=\left(2 x^{3}+4 x+1\right)^{4}$. If $g(x)=\left(2 x^{3}+4 x+1\right)$ and $n=4$, then from Theorem 2.1 it follows that

$$
\frac{d y}{d x}=4\left(2 x^{3}+4 x+1\right)^{3} \frac{d}{d x}\left(2 x^{3}+4 x+1\right)=4\left(2 x^{3}+4 x+1\right)^{3}\left(6 x^{2}+4\right)
$$

Theorem 2.3 (The Chain Rule). If $y=f(u)$ is a differentiable function of u and $u=g(x)$ is a differentiable function of x, then

$$
\begin{equation*}
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}=f^{\prime}(g(x)) \cdot g^{\prime}(x) \tag{8}
\end{equation*}
$$

Example 2.4. From the rules of differentiation of trigonometric functions, it is true that:

$$
\frac{d}{d x}[\sin u]=\cos u \frac{d u}{d x}
$$

Let $y=\left(9 x^{3}+1\right)^{2} \sin 5 x$. Then, the derivative of y can be obtained first by applying Theorem 1.8:

$$
\frac{d y}{d x}=\left(9 x^{3}+1\right)^{2} \frac{d}{d x} \sin 5 x+\sin 5 x \frac{d}{d x}\left(9 x^{3}+1\right)^{2}
$$

followed by applications of theorems 2.1 and 2.2:

$$
\begin{aligned}
\frac{d y}{d x} & =\left(9 x^{3}+1\right)^{2} \cdot 5 \cos 5 x+\sin 5 x \cdot 2\left(9 x^{3}+1\right) \cdot\left(27 x^{2}\right) \\
& =\left(9 x^{3}+1\right)\left(45 x^{3} \cos 5 x+54 x^{2} \sin 5 x+5 \cos 5 x\right)
\end{aligned}
$$

3. Higher-order derivatives

Definition 3.1 (The Second Derivative). The derivative $f^{\prime}(x)$ is a function derived from a function $y=f(x)$. By differentiating the first derivative $f^{\prime}(x)$, we obtain yet another function called the second derivative, denoted by $f^{\prime \prime}(x)$. In terms of the operation symbol $\frac{d}{d x}$:

$$
\frac{d}{d x}\left(\frac{d y}{d x}\right)
$$

Alternative notation for the second derivative is given by: $f^{\prime \prime}(x), y^{\prime \prime}, \frac{d^{2} y}{d x^{2}}$, and $D_{x}^{2} y$.
Example 3.2. To calculate the second derivative of $y=x^{3}-2 x^{2}$, first we obtain $\frac{d y}{d x}$:

$$
\frac{d y}{d x}=3 x^{2}-4 x
$$

Then, the second derivative is:

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(3 x^{2}-4 x\right)=6 x-4
$$

Remark 3.3. Higher-order derivatives are obtained analogously: the third derivative is the derivative of the second derivative; the fourth derivative is the derivative of the third derivative, and so on. A standard notation for the first n derivatives is (among others) $f^{\prime}(x), f^{\prime \prime}(x), f^{\prime \prime \prime}(x), f^{(4)}(x), \ldots, f^{(n)}(x)$.
Example 3.4. The first five derivatives of the polynomial $f(x)=2 x^{4}-6 x^{3}+7 x^{2}+5 x-10$ are given by:

$$
\begin{aligned}
f^{\prime}(x) & =8 x^{3}-18 x^{2}+14 x+5 \\
f^{\prime \prime}(x) & =24 x^{2}-36 x+14 \\
f^{\prime \prime \prime}(x) & =48 x-36 \\
f^{(4)}(x) & =48 \\
f^{(5)}(x) & =0
\end{aligned}
$$

4. Extremals of functions

Definition 4.1 (Absolute extremals). Let f be a real-valued function. The absolute extremals of f are defined as follows:
(a) A number $f(\bar{c})$ is an absolute maximum if $f(x) \leq f(\bar{c})$ for every x in the domain of f.
(b) A number $f(\bar{c})$ is an absolute minimum if $f(x) \geq f(\bar{c})$ for every x in the domain of f.

Theorem 4.2 (The Extreme Value Theorem). A continuous function f defined on a closed interval $[a, b]$ always has an absolute maximum and an absolute minimum on the interval.
Definition 4.3 (Critical point). A critical point of a function f is a number c in its domain for which $f^{\prime}(c)=0$.
Example 4.4. To find the critical points of $f(x)=x^{3}-15 x+6$, we obtain the first derivative $f^{\prime}(x)$:

$$
f^{\prime}(x)=3 x^{2}-15=3(x+\sqrt{5})(x-\sqrt{5})
$$

Hence, the critical points are those numbers for which $f^{\prime}(x)=0$, namely, $-\sqrt{5}$ and $\sqrt{5}$.
Theorem 4.5. If f is continuous on a closed interval $[a, b]$, then an absolute extremum occurs either at an endpoint of the interval or at a critical point in the open interval (a, b).
Remark 4.6. The previous theorem says that any absolute extremum must occur in an endpoint or in a critical point. This is not the same as assuming that because we have a critical point, it must be an extremum! Second-order conditions should be checked to verify that we have a minimum or maximum.

Example 4.7. Let $f(x)=x^{3}-3 x^{2}-24 x+2$ be defined on the intervals $[-3,1]$ and $[-3,8]$. To find the absolute extremals, first we obtain $f^{\prime}(x)$:

$$
f^{\prime}(x)=3 x^{2}-6 x-24=3(x+2)(x-4),
$$

and it follows that the critical points of the function are -2 and 4 . Simple calculations show that for the interval $[-3,1]$, the absolute maximum is $f(-2)=30$, and the absolute minimum is the endpoint extremum $f(1)=-24$. For the interval $[-3,8]$, the absolute minimum is $f(4)=-78$, while the absolute maximum is reached at the endpoint extremum $f(8)=130$.

5. The natural logarithmic function

Definition 5.1 (The Natural Logarithmic Function). The natural logarithmic function, denoted by $\ln x,{ }^{1}$ is defined by:

$$
\begin{equation*}
\ln x=\int_{1}^{x} \frac{d t}{t} \tag{9}
\end{equation*}
$$

for all $x>0$.
Theorem 5.2 (The Derivative of the Natural Logarithm). The derivative of $\ln x$ is given by:

$$
\begin{equation*}
\frac{d}{d x}[\ln x]=\frac{1}{x}, \tag{10}
\end{equation*}
$$

for all $x>0$.
Theorem 5.3 (Laws of the Natural Logarithm). Let a and b be positive real numbers and let t be a rational number. Then:
(a) $\ln a b=\ln a+\ln b$.
(b) $\ln \frac{a}{b}=\ln a-\ln b$.
(c) $\ln a^{t}=t \ln a$.

Example 5.4. To obtain the derivative of $y=\ln (2 x-3)$, note that for $2 x-3>0$, we have from Theorem 7.2:

$$
\frac{d y}{d x}=\frac{1}{2 x-3} \frac{d}{d x}(2 x-3)=\frac{2}{2 x-3} .
$$

6. The exponential function

Definition 6.1 (The Natural Exponential Function). The natural exponential function is defined by:

$$
\begin{equation*}
y=\exp x \quad \text { if and only if } \quad x=\ln y \tag{11}
\end{equation*}
$$

For any real number $x, e^{x}=\exp x$.
Theorem 6.2 (Laws of Exponents). Let r and s be any real numbers and let t be a rational number. Then:
(a) $e^{0}=1$.
(b) $e^{1}=e$.
(c) $e^{r} e^{s}=e^{r+s}$.
(d) $\frac{e^{r}}{e^{s}}=e^{r-s}$.
(e) $\left(e^{r}\right)^{t}=e^{r t}$.
(f) $e^{-r}=\frac{1}{e^{r}}$.

[^0]Theorem 6.3 (The derivative of the exponential function). The derivative of $y=\exp x$ is given by:

$$
\begin{equation*}
\frac{d}{d x}\left[e^{x}\right]=e^{x} \tag{12}
\end{equation*}
$$

Using the Chain Rule, we can generalize the above to

$$
\begin{equation*}
\frac{d}{d x}\left[e^{u}\right]=e^{u} \frac{d u}{d x} \tag{13}
\end{equation*}
$$

where $u=g(x)$ is a differentiable function.
Example 6.4. The derivative of $y=e^{4 x}$ is given by:

$$
\begin{aligned}
\frac{d y}{d x} & =e^{4 x} \cdot \frac{d}{d x}(4 x) \\
& =e^{4 x}(4) \\
& =4 e^{4 x}
\end{aligned}
$$

7. Partial differentiation

Remark 7.1 (Partial differentiation). Let $z=f(x, y)$. To compute $\partial z / \partial x$, use the laws of ordinary differentiation while treating y as a constant. To compute $\partial z / \partial y$, use the laws of ordinary differentiation while treating x as a constant.
Remark 7.2. If $z=f(x, y)$, alternative notation for partial derivatives is $\partial z / \partial x=\partial f / \partial x=z_{x}=f_{x}$, and similarly, $\partial z / \partial y=\partial f / \partial y=z_{y}=f_{y}$.
Example 7.3. Let $z=4 x^{3} y^{2}-4 x^{2}+y^{6}+1$. The partial derivatives of z with respect to x and y are given by:

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=12 x^{2} y^{2}-8 x \\
& \frac{\partial z}{\partial y}=8 x^{3} y+6 y^{5}
\end{aligned}
$$

Theorem 7.4 (Equality of Mixed Partials). Let f be a function of two variables. If $f_{x}, f_{y}, f_{x y}$, and $f_{y x}$ are continuous on an open region R, then $f_{x y}=f_{y x}$ at each point of R.
Example 7.5. Consider the partial derivatives obtained in Example 7.3. The continuity conditions of Theorem 7.4 are satisfied in this case, so it should be that $f_{x y}=f_{y x}$; this is so since

$$
\begin{aligned}
\frac{\partial^{2} z}{\partial x \partial y} & =24 x^{2} y \\
\frac{\partial^{2} z}{\partial y \partial x} & =24 x^{2} y
\end{aligned}
$$

[^0]: ${ }^{1}$ Usually the symbol $\ln x$ is pronounced "ell-en of x "

