Searching for the Mass of the Nucleon

G.P. Gilfoyle University of Richmond, Richmond, VA 23173

Outline

- **•** Jefferson Lab's Mission
- What we know.
- What we don't know.
- What we'll learn.
- How we'll do it.
- Concluding Remarks

Sep 24, 2021

Searching for the Mass of the Nucleon

G.P. Gilfoyle University of Richmond, Richmond, VA 23173

Outline

- **•** Jefferson Lab's Mission
- What we know.
- What we don't know.
- What we'll learn.
- How we'll do it.
- Concluding Remarks

What is the Mission of Jefferson Lab?

- Basic research into the nature of the nucleus and the nucleon.
- Probe the quark-gluon structure of hadronic matter and how it evolves within nuclei.
- Map the geography of the transition from proton-neutron picture of nuclei to one based on quarks and gluons.
- Test Quantum Chromodynamics (QCD) and quark confinement.
- One of the Millennium Prize Problems (Clay Mathematics Institute).

What is the Mission of Jefferson Lab?

- Basic research into the nature of the nucleus and the nucleon.
- Probe the quark-gluon structure of hadronic matter and how it evolves within nuclei.
- Map the geography of the transition from proton-neutron picture of nuclei to one based on quarks and gluons.
- Test Quantum Chromodynamics (QCD) and quark confinement.
- One of the Millennium Prize Problems (Clay Mathematics Institute).

Jefferson Lab completed the 12 GeV Upgrade in 2014 doubling the CEBAF accelerator energy.

o The Universe is made of quarks and leptons and the force carriers.

- **•** The atomic nucleus is made of protons and neutrons (nucleons) bound by the strong force.
- The quarks are confined inside the protons and neutrons.
- **Protons and neutrons are NOT confined.**

o The Universe is made of quarks and leptons and the force carriers.

- **The atomic nucleus is made of** protons and neutrons (nucleons) bound by the strong force.
- The quarks are confined inside the protons and neutrons.
- **Protons and neutrons are NOT configured**

- Matter comes in pairs of quarks or triplets.
- We are mostly triplets (protons and neutrons).
- More than 99% of our mass is in nucleons.
- Proton \rightarrow 2 ups + 1 down.
- Neutron \rightarrow 1 up $+$ 2 downs.

- Matter comes in pairs of quarks or triplets.
- We are mostly triplets (protons and neutrons).
- More than 99% of our mass is in nucleons.
- Proton \rightarrow 2 ups $+$ 1 down.
- \bullet Neutron \rightarrow 1 up \pm 2 downs.

- Matter comes in pairs of quarks or triplets.
- We are mostly triplets (protons and neutrons).
- More than 99% of our mass is in nucleons.
- Proton \rightarrow 2 ups $+$ 1 down.
- Neutron \rightarrow 1 up $+$ 2 downs.

• A quiz: How much does the proton weigh?

 $m_p = 2m_{up} + m_{down}$

- Matter comes in pairs of quarks or triplets.
- We are mostly triplets (protons and neutrons).
- More than 99% of our mass is in nucleons.
- Proton \rightarrow 2 ups $+$ 1 down.
- Neutron \rightarrow 1 up + 2 downs.
- A quiz: How much does the proton weigh?

 $m_p=2m_{up}+m_{down}=2(2\, \textit{MeV}/c^2)+5\, \textit{MeV}/c^2$

- Matter comes in pairs of quarks or triplets.
- We are mostly triplets (protons and neutrons).
- More than 99% of our mass is in nucleons.
- Proton \rightarrow 2 ups $+$ 1 down.
- Neutron \rightarrow 1 up + 2 downs.

• A quiz: How much does the proton weigh?

 $m_p=2m_{up}+m_{down}=2(2\, \textit{MeV}/c^2)+5\, \textit{MeV}/c^2$ $= 939$ MeV/c² OOOPS!!!????

- Matter comes in pairs of quarks or triplets.
- We are mostly triplets (protons and neutrons).
- More than 99% of our mass is in nucleons.
- Proton \rightarrow 2 ups $+$ 1 down.
- Neutron \rightarrow 1 up + 2 downs.

 \bullet A quiz: How much does the proton weigh?

$$
m_p = 2m_{up} + m_{down} = 2(2 \text{ MeV}/c^2) + 5 \text{ MeV}/c^2
$$

= 939 MeV/c² OOOPSIII???

•
$$
m_n - m_p = 1.29333205(48) \text{ MeV}/c^2 \text{ (exp)}
$$

= 1.51(16)(23) MeV/c² (th)

Sz. Borsanyi et al. Science 347, 1452 (2015).

• The color charge of a quark produces a strong field, e.g. a charged particle.

- The color charge of a quark produces a strong field, e.g. a charged particle.
- Between and around bound quarks the energy density is high.
- The color charge of a quark produces a strong field, e.g. a charged particle.
- Between and around bound quarks the energy density is high.

- The color charge of a quark produces a strong field, e.g. a charged particle.
- Between and around bound quarks the energy density is high.
- Most of the mass we see comes from the quark color fields \rightarrow gluon cloud!

How Do We Learn What's Inside the Nucleon?

- Nucleon elastic electromagnetic form factors (EEFFs) describe the distribution of charge and magnetization in the nucleon.
- They encode the deviations from point-particle behavior.
- Reveal the internal quark-gluon landscape of the nucleon and nuclei.
- We are in the region where the quarks get dressed.
- Rigorously test QCD in the non-perturbative regime.
- Jargon: G_F^p E_{E}^{p} , G_{M}^{p} , G_{E}^{n} , G_{M}^{n} , F_{1} , F_{2} .

FIG. 5. Curve (a) shows the theoretical Mott curve for a spinless point proton. Curve (b) shows the theoretical curve for a point proton with the Dirac magnetic moment, curve (c) the theoretical curve for a point proton having the anomalous contribution in addition to the Dirac value of magnetic moment. The theoretical curves (b) and (c) are due to Rosenbluth.⁸ The experimental curve falls between curves (b) and (c). This deviation from the theoretical curves represents the effect of a form factor for the proton and indicates structure within the proton, or alternatively, a breakdown of the Coulomb law. The best fit indicates a size of 0.70×10^{-13} cm

McAllister and Hofstadter, PR 102, 851 (1956)

How Do We Learn What's Inside the Nucleon?

- Nucleon elastic electromagnetic form factors (EEFFs) describe the distribution of charge and magnetization in the nucleon.
- They encode the deviations from point-particle behavior.
- Reveal the internal quark-gluon landscape of the nucleon and nuclei.
- We are in the region where the quarks get dressed.
- Rigorously test QCD in the non-perturbative regime.
- Jargon: G_F^p E_F^p , G_M^p , G_E^n , G_M^n , F_1 , F_2 .

Robert Hofstadter, Nobel Prize 1961

How Do We Learn What's Inside the Nucleon?

- Nucleon elastic electromagnetic form factors (EEFFs) describe the distribution of charge and magnetization in the nucleon.
- They encode the deviations from point-particle behavior.
- Reveal the internal quark-gluon landscape of the nucleon and nuclei.
- We are in the region where the quarks get dressed.
- Rigorously test QCD in the non-perturbative regime.
- Jargon: G_F^p E_F^p , G_M^p , G_E^n , G_M^n , F_1 , F_2 .

Robert Hofstadter, Nobel Prize 1961

• Start with the cross section.

 $\frac{d\sigma}{d\Omega} = \frac{\text{scattered flux/solid angle}}{\text{incident flux/surface area}}$ incident flux/surface area

For elastic scattering use the Rutherford cross section.

• Start with the cross section.

 $\frac{d\sigma}{d\Omega} = \frac{\text{scattered flux/solid angle}}{\text{incident flux/surface area}}$ incident flux/surface area

For elastic scattering use the Rutherford cross section.

G Get the cross section for elastic scattering by point particles with spin. $\frac{d\sigma}{d\Omega}=\frac{Z^2\alpha^2(\hbar c)^2}{4E^2\sin^4(\theta/2)}$ $\frac{Z^2\alpha^2(\hbar c)^2}{4E^2\sin^4(\theta/2)}\left(1-\beta^2\sin^2\frac{\theta}{2}\right)$ (Mott cross section)

• Start with the cross section.

 $\frac{d\sigma}{d\Omega} = \frac{\text{scattered flux/solid angle}}{\text{incident flux/surface area}}$ incident flux/surface area

For elastic scattering use the Rutherford cross section.

- **G** Get the cross section for elastic scattering by point particles with spin. $\frac{d\sigma}{d\Omega}=\frac{Z^2\alpha^2(\hbar c)^2}{4E^2\sin^4(\theta/2)}$ $\frac{Z^2\alpha^2(\hbar c)^2}{4E^2\sin^4(\theta/2)}\left(1-\beta^2\sin^2\frac{\theta}{2}\right)$ (Mott cross section)
- What happens when the beam is electrons and the target is not a point?

$$
\frac{d\sigma}{d\Omega} = \frac{Z^2 \alpha^2 (\hbar c)^2}{4E^2 \sin^4(\theta/2)} \left(1 - \beta^2 \sin^2 \frac{\theta}{2}\right) |F(Q^2)|^2
$$

where Q^2 is the 4-momentum transfer.

• Start with the cross section.

 $\frac{d\sigma}{d\Omega} = \frac{\text{scattered flux/solid angle}}{\text{incident flux/surface area}}$ incident flux/surface area

θ. scattering

For elastic scattering use the Rutherford cross section.

- **G** Get the cross section for elastic scattering by point particles with spin. $\frac{d\sigma}{d\Omega}=\frac{Z^2\alpha^2(\hbar c)^2}{4E^2\sin^4(\theta/2)}$ $\frac{Z^2\alpha^2(\hbar c)^2}{4E^2\sin^4(\theta/2)}\left(1-\beta^2\sin^2\frac{\theta}{2}\right)$ (Mott cross section)
- What happens when the beam is electrons and the target is not a point?

$$
\frac{d\sigma}{d\Omega} = \frac{Z^2 \alpha^2 (\hbar c)^2}{4E^2 \sin^4(\theta/2)} \left(1 - \beta^2 \sin^2 \frac{\theta}{2}\right) |F(Q^2)|^2
$$

2 is the 4-momentum transfer

where Q^2 is the 4-momentum transfer.

THE FORM FACTOR!

❇

The chain of reason.

$$
\frac{d\sigma}{d\Omega}\rightarrow |\mathcal{F}(Q^2)|^2 \Leftrightarrow \mathcal{F}(Q^2) \leftarrow \rho(\vec{r}) \leftarrow \psi(\vec{r}) \leftarrow^{\text{QCD}}_{\text{Constituent quarks}}
$$

Experiment Comparison **Theory**

The form factors are the meeting ground between theory and experiment.

The Fourier transform of the form factors are related to the charge and current distributions within the neutron.

What We'll Learn - The Campaign

The JLab Lineup

[∗] Data collection is complete.

PAC approval for 229 days of running in the first five years.

What We'll Learn - Flavor Decomposition

- With all four EEFFs we can unravel the contributions of the u and d quarks.
- Assume charge symmetry, no s quarks and use (Miller et al. Phys. Rep. 194, 1 (1990))

$$
F_{1(2)}^{\mu} = 2F_{1(2)}^{\rho} + F_{1(2)}^{n}
$$

$$
F_{1(2)}^{d} = 2F_{1(2)}^{n} + F_{1(2)}^{\rho}
$$

- Evidence of di-quarks?
	- the missing resonances mystery.
	- \bullet d-quark scattering probes the diquark.
	- \bullet correlated d-quark can lead to high momentum and interaction cross section.

What We'll Learn - Dyson-Schwinger Eqs

Equations of motion of quantum field theory.

- Infinite set of coupled integral equations.
- Inherently relativistic, non-perturbative, connected to QCD.
- Deep connection to confinement, dynamical chiral symmetry breaking.
- Infinitely many equations, gauge dependent \rightarrow Choose well!
- Results (Cloët et al).
	- Model the nucleon dressed quark propagator as a quark-diquark.
	- Damp the shape of the mass function $M(p)$.

What We'll Learn - Dyson-Schwinger Eqs

Equations of motion of quantum field theory.

- Infinite set of coupled integral equations.
- Inherently relativistic, non-perturbative, connected to QCD.
- Deep connection to confinement, dynamical chiral symmetry breaking.
- Infinitely many equations, gauge dependent \rightarrow Choose well!
- Results (Cloët et al).
	- Model the nucleon dressed quark propagator as a quark-diquark.
	- Damp the shape of the mass function $M(p)$.

What We'll Learn - Dyson-Schwinger Eqs

Equations of motion of quantum field theory.

- Infinite set of coupled integral equations.
- Inherently relativistic, non-perturbative, connected to QCD.
- Deep connection to confinement, dynamical chiral symmetry breaking.
- Infinitely many equations, gauge dependent \rightarrow Choose well!
- Results (Cloët et al).
	- Model the nucleon dressed quark propagator as a quark-diquark.
	- Damp the shape of the mass function $M(p)$.

What We'll Learn - Light Front Holographic QCD

- **1** Based on connections between light-front dynamics, it's holographic mapping to anti-de Sitter space, and conformal quantum mechanics.
- 2 Paper by Sufian et al. (Phys. Rev. D95, 01411 (2017)) included calculations of the electromagnetic form factors that include higher order Fock components $|qqqq\overline{q}\rangle$.
- **3** Obtain good agreement with all the form factor data with only three parameters, e.g. $\mu_n G_E^n/G_M^n$.

What We'll Learn - Light Front Holographic QCD

- **1** Based on connections between light-front dynamics, it's holographic mapping to anti-de Sitter space, and conformal quantum mechanics.
- ² Paper by Sufian et al. (Phys. Rev. D95, 01411 (2017)) included calculations of the electromagnetic form factors that include higher order Fock components $|qqqq\overline{q}\rangle$.
- **3** Obtain good agreement with all the form factor data with only three parameters, e.g. $\mu_n G_E^n/G_M^n$.

- Start at your local mile-long, high-precision, 12-GeV electron accelerator.
- **o** The Continuous Electron Beam Accelerator Facility (CEBAF) produces beams of unrivaled quality.
- Electrons do up to five laps, are extracted, and sent to one of four experimental halls.
- All four halls can run simultaneously.

- Start at your local mile-long, high-precision, 12-GeV electron accelerator.
- **o** The Continuous Electron Beam Accelerator Facility (CEBAF) produces beams of unrivaled quality.

- Electrons do up to five laps, are extracted, and sent to one of four experimental halls.
- All four halls can run simultaneously.

- Start at your local mile-long, high-precision, 12-GeV electron accelerator.
- **o** The Continuous Electron Beam Accelerator Facility (CEBAF) produces beams of unrivaled quality.
- Electrons do up to five laps, are extracted, and sent to one of four experimental halls.
- All four halls can run simultaneously.

- Start at your local mile-long, high-precision, 12-GeV electron accelerator.
- **o** The Continuous Electron Beam Accelerator Facility (CEBAF) produces beams of unrivaled quality.
- Electrons do up to five laps, are extracted, and sent to one of four experimental halls.
- All four halls can run simultaneously.

How Do We Measure The Form Factors

- Add one 45-ton, \$80 million radiation detector: the CEBAF Large Acceptance Spectrometer (CLAS12).
- CLAS12 covers a large fraction of the total solid angle out to large angles.
- Has about 100,000 readouts in about 40 layers.

How Do We Measure The Form Factors

Add one 45-ton, \$80 million radiation detector: the CEBAF Large Acceptance Spectrometer (CLAS12).

Forward Detector

How Do We Measure The Form Factors

Beam Beam

**Central Central Detector Forward Detector
Central
Detector**

TOF + CND

A CLAS12 Event - Summary

A CLAS12 Event - Summary

How Do We Extract the Form Factors? - G_N^n M

- E12-07-104 in Hall B (Gilfoyle, Hafidi, Brooks).
- Ratio Method on Deuterium:

$$
R = \frac{\frac{dG}{d\Omega}[{}^{2}\text{H}(e,e'n)_{QE}]}{\frac{dG}{d\Omega}[{}^{2}\text{H}(e,e'n)_{QE}]} \n= a \times \frac{\sigma_{Mott}\left(\frac{(G_{E}^{n})^{2}+\tau(G_{M}^{n})^{2}}{1+\tau}+2\tau\tan^{2}\frac{\theta_{e}}{2}(G_{M}^{n})^{2}\right)}{\frac{dG}{d\Omega}[{}^{1}\text{H}(e,e'/p)]} \nwhere a is nuclear correction.
$$

- **•** Precise neutron detection efficiency needed to keep systematics low.
	- tagged neutrons from 2 H $(e, e'$ pn $).$
	- LH_2 target.
- Kinematics: $\mathrm{Q}^2 = 3.5 13.0~(\mathrm{GeV/c})^2$.
- **Beamtime: 40 days.**
- \bullet Systematic uncertainties $< 2.5\%$ across full Q^2 range.
- **Run Group B started January, 2019.**

How Do We Extract the Form Factors? - G_N^n M

- E12-07-104 in Hall B (Gilfoyle, Hafidi, Brooks).
- Ratio Method on Deuterium:

$$
R = \frac{\frac{dG}{d\Omega}[{}^{2}\text{H}(e,e'n)_{QE}]}{\frac{dG}{d\Omega}[{}^{2}\text{H}(e,e'n)_{QE}]} \n= a \times \frac{\sigma_{Mott}\left(\frac{(G_{E}^{n})^{2}+\tau(G_{M}^{n})^{2}}{1+\tau}+2\tau\tan^{2}\frac{\theta_{e}}{2}(G_{M}^{n})^{2}\right)}{\frac{dG}{d\Omega}[{}^{1}\text{H}(e,e')p]} \nwhere a is nuclear correction.
$$

- **•** Precise neutron detection efficiency needed to keep systematics low.
	- tagged neutrons from 2 H $(e, e'$ pn $).$
	- LH_2 target.
- Kinematics: $\mathrm{Q}^2 = 3.5 13.0~(\mathrm{GeV/c})^2$.
- **Beamtime: 40 days.**
- \bullet Systematic uncertainties $< 2.5\%$ across full Q^2 range.
- **Run Group B started January, 2019.**

Concluding Remarks

- JLab is a laboratory to test and expand our understanding of quarks, gluons, nuclear matter and QCD.
- We continue to unravel the nature of matter at greater and greater depths.
- Lots of new and exciting results are coming out.
- A bright future lies ahead in the 12 GeV Era.

THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY

Some Facts of Life On The Frontier

- Work at Jefferson Lab in Newport News.
	- 700 physicists, engineers, technicians, and staff.
	- Vibrant intellectual environment talks, visitors, educational programs...
	- Lots going on.
- **•** Richmond group part of CLAS Collaboration.
	- o operates CLAS12.
	- $\bullet \sim 190$ physicists, 40 institutions, 13 countries.
	- Part of Software Group emphasis on software development.
	- Past Surrey masters students (and Richmond undergrads) have presented posters at meetings, appeared on JLab publications,....
- Run-Group B consists of seven experiments (including G_M^n) and is expected to run in spring 2019.

Additional Slides

Some Necessary Background

• EEFFs cross section described with Dirac (F_1) and Pauli (F_2) form factors

$$
\frac{d\sigma}{d\Omega} = \sigma_{Mott} \left[\left(F_1^2 + \kappa^2 \tau F_2^2 \right) + 2\tau \left(F_1 + \kappa F_2 \right)^2 \tan^2 \left(\frac{\theta_e}{2} \right) \right]
$$

where

$$
\sigma_{Mott} = \frac{\alpha^2 E' \cos^2(\frac{\theta_e}{2})}{4E^3 \sin^4(\frac{\theta_e}{2})}
$$

and κ is the anomalous magnetic moment, $E\ (E^\prime)$ is the incoming (outgoing) electron energy, θ is the scattered electron angle and $\tau=Q^2/4M^2$.

• For convenience use the Sachs form factors.

$$
\frac{d\sigma}{d\Omega} = \frac{\sigma_{Mott}}{\epsilon (1+\tau)} \left(\epsilon G_E^2 + \tau G_M^2 \right)
$$

where

$$
G_E = F_1 - \tau F_2 \quad \text{and} \quad G_M = F_1 + F_2 \quad \text{and} \quad \epsilon = \left[1 + 2(1 + \tau)\tan^2\frac{\theta_e}{2}\right]^{-1}
$$

Where We Are Now.

- G_M^p well known over large \mathbf{Q}^2 range.
- The ratio G_E^p/G_M^p from polarization transfer measurements diverged from previous Rosenbluth separations.
	- Two-photon exchange (TPE).
	- Effect of radiative corrections.
- Neutron magnetic FF G_{M}^{n} still follows dipole.
- High- Q^2 $\mathsf{G}_{\mathsf{E}}^n$ opens up flavor decomposition.

1.25 $---$ RCOM $-$ GPD 1.00 $---VMD$ ء
ء $- -$ DSF $G_{\rm Mn}^{\mu}$ ^{0.75} $A = 300$ MeV 0.50 0.0 0.5 10 15 20 25 30^o 3.5 Scholarpedia, 5(8):10204 Q^2 $IGeV^2$ 0.25 10^{-1} PRL 105, 262302 (2010) (CeV^2)

 0.6

 02

 $\mu_n G_{\rm E}^n/G_M^n$

The Experiments **WINEW Detectors** Super High High High Den

Momentum Spectrometer to paired with the existing High Momentum Spectrometer.

based^{all} B_{on} CLAS12 large acceptance soleiBigtrometer operating at high lunet minosity with toroid (forward detecbeatନ୍ତ) କ୍ଷୀର୍ପ_ାନ୍ନଧି_{ଞ୍}poid (central detector). tance detector construction.

large accep-

Hall A - High Resolution Spectrometer (HRS) pair, SuperBigBite (SBS), neutron detector, and specialized installation experiments.

Extracting G_{N}^{n} M

Use ratio method on deuterium:

$$
R = \frac{\frac{d\sigma}{d\Omega}[{}^{2}\text{H}(e,e'n)_{QE}]}{\frac{d\sigma}{d\Omega}[{}^{2}\text{H}(e,e'n)_{QE}]} = a \times \frac{\sigma_{Mott}\left(\frac{(G_{E}^{n})^{2} + \tau(G_{M}^{n})^{2}}{1+\tau} + 2\tau \tan^{2} \frac{\theta_{e}}{2}(G_{M}^{n})^{2}\right)}{\frac{d\sigma}{d\Omega}[{}^{1}\text{H}(e,e')p]}
$$
\nwhere *a* is a nuclear correction.

- Acceptance matching on $e p$ and $e n$ measurements. For each event swim both nucleons through CLAS12 and require both to strike the CLAS12 fiducial volume it to be accepted.
- Select quasi-elastic events by requiring the nucleon scattering angle to be within a narrow angular cone around the direction predicted by elastic scattering (no Fermi motion).
- Require no other particles in the final state to reduce inelastic contributions.
- Apply neutron/proton detection efficiency, Fermi motion, nuclear corrections and others to R.

Neutron Magnetic Form Factor G_M^n - 2

- E12-09-019 in Hall A (Quinn, Wojtsekhowski, Gilman).
- Ratio Method on Deuterium as in Hall B:

 $R=\frac{d\sigma}{d\Omega}[{}^2\mathrm{H}(e,e^\prime n)_{QE}] / \frac{d\sigma}{d\Omega}[{}^2\mathrm{H}(e,e^\prime p)_{QE}]$

- **Electron arm: SuperBigBite spectrometer.**
- Hadron arm: hadron calorimeter (HCal).
- **O** Neutron detection efficiency:
	- Use $p(\gamma,\pi^+)$ n for tagged neutrons.
	- End-point method.
- Kinematics: $Q^2=3.5-13.5~({\rm GeV/c})^2$.
- Beamtime: 25 days.
- Systematic uncertainties $< 2.1\%$.
- Two G^n_M measurements 'allow a better control for the systematic error' (PAC34).
- **•** Expected in next 2-3 years.

- E12-07-108 in Hall A (Gilad, Moffitt, Wojtsekhowski, Arrington).
- **•** Precise measurement of ep elastic cross section and extract G_M^p .
- Both HRSs in electron mode.
- Beamtime: 24 days.
- $\rm Q^2\,=\,7.0\,-\,15.5\,\,GeV^2$ (1.0, 1.5 $\rm GeV^2$ steps).
- **•** Significant reduction in uncertainties:

Jerry Gilfoyle