CLARA: A Contemporary Approach to Physics Data
Processing

V Gyurjyan', D Abbott', J Gilfoyle?, D Heddle?, G Heyes', S Paul®, C Timmer', D

Weygand', E Wolin'
Thomas Jefferson national Accelerator Facility
12000 Jefferson Ave. Newport News, VA 23606

E-mail: gurjyan@jlab.org

Abstract. In traditional physics data processing (PDP) systems, data location is static and is
accessed by analysis applications. In comparison, CLARA (CLAs12 Reconstruction and
Analysis framework) is an environment where data processing algorithms filter continuously
flowing data. In CLARA’s domain of loosely coupled services, data is not stored, but rather
flows from one service to another, mutating constantly along the way. Agents, performing
event processing, can then subscribe to particular data/events at any stage of the data
transformation, and make intricate decisions (e.g. particle ID) by correlating events from
multiple, parallel data streams and/or services. This paper presents a PDP application
development framework based on service oriented and event driven architectures. This system
allows users to design (Java, C++, and Python languages are supported) and deploy data
processing services, as well as dynamically compose PDP applications using available
services. The PDP service bus provides a layer on top of a distributed pub-sub middleware
implementation, which allows complex service composition and integration without writing
code. Examples of service creation and deployment, along with Clas12 track reconstruction

application design will be presented.

1. Introduction

Modern high energy and nuclear physics experiments require more and more computing power to
keep up with continuously increasing experimental data volumes. The relatively short amount of time
spent on experimental data acquisition requires a comparatively long time on data analysis. To
complete quality physics data production, intellectual input from far-flung groups must be brought
together. The physics data production and analysis process plays a central role in collaborations, and if

done well, can raise both the quality and quantity of scientific output.

Physics data production in collaborative environments requires a specific computing model. The
traditional computing model used in physics data analysis is based on self-contained, monolithic
software applications running in batch mode. The inefficiency of using this model in a distributed
environment, in terms of application deployment, maintenance, response to bugs, update propagation,

Jefferson Lab
University of Richmond
Christopher Newport University

2
3



etc., is obvious. Other important limitations of the traditional model are scalability, heterogeneity and
fault-tolerance.

In large, experimental physics collaborations it is impossible to enforce policies on computer
hardware, requiring every group to buy specific hardware with a specific operating system.
Collaborating groups would like to be able to use whatever computing resources they have at their
home institutions, which evolve as new hardware is added. It becomes a real issue to deploy software
applications in a heterogeneous environment. Remote collaborators must invest considerable
manpower to update and rebuild software applications over and over again merely to retain
compatibility with others.

There are two strategies that most experimental physics groups are adopting to overcome these
problems: 1) a full centralization of the computational environment or, 2) implementation of a
multitier grid computing infrastructure. Unfortunately there is a high price tag in maintaining and
operating a full-scale computational grid. In any case, users generally look for location independent
read/write access to data, as well as flexibility of the design, operation, maintenance and extension of
PDP applications.

A significant challenge is that the PDP process usually has a very long life time, and therefore it is
important to be able to upgrade its technologies. This entails that the PDP software applications be
organized in a way that permits the discarding of aged components and the inclusion of new ones
easily, without having to redesign and recode entire software packages at each change. It is a given
that PDP applications will evolve over time. Inefficient and unsatisfying software modules will be
dropped, and new ones will be added. Our experience shows that software evolution and
diversification is important, resulting in more efficient and robust applications.

New generations of young physicists doing analyses of data may or may not have programming
skills required for extending/modifying applications that were written while utilizing older
technologies. For example, Java is the main educational programming language in many universities,
but most of the data production software applications are written in C++ and some even in
FORTRAN. We will now show that the CLARA framework is capable of providing an environment to
develop agile, scalable, easily deployable, and maintainable PDP applications.

2. CLARA Framework

The CLARA framework aims to enhance the efficiency, agility, and productivity of PDP processes
by making SOA [1] services the primary means through which data analysis logic is implemented.
PDP applications, developed using the CLARA framework, consist of services, each running in a
context that is agnostic to the global application logic. Services are loosely coupled and can participate
in a multiple algorithmic compositions. Legacy processes or applications can be presented as services
and integrated into a PDP application. Simple services can be linked together and presented as a
single, complex, composite service. This framework provides federation of services, so that service-
based PDP applications can be united while maintaining their individual autonomy and self-
governance. It is important to mention that CLARA makes a clear separation between the service
programmer and the PDP application designer. The physicist can be productive by designing and
composing PDP applications using available and efficiently written services in the inventory without
knowing service programming details. Services usually are long-lived and are maintained and
operated by its owners on distributed CLARA containers. This approach provides an application
designer the ability to modify them by incorporating different services in order to find optimal
operational conditions, thus demonstrating the overall agility of the CLARA framework.

3. CLARA Services

This framework was designed based on a specific set of principles. The fundamental unit of
CLARA-based PDP application logic is the service. Services exist as physically independent software
programs with a common interface defined by the framework, as seen in table 1.



User applications, compliant to the required interface can be presented as CLARA services by using
the service engine integration unite (SIU), illustrated in the figure 1. The SIU allows simple
multithreading of user services.

Table 1. Service interface definition.

Type Definition
Name String Service name
Description String Short service description
Author String Service author
Version String Version of the service
Input data type Object, primitives Acceptable input data type
Output data type ~ Object, primitives Generated output data type

Each service has its own set of capabilities. Those capabilities suitable for invoking by applications
can be discovered via registration information available from the CLARA platform registry
services. One design recommendation is to keep a small and simple service code base, which will
help future service programmers to easily extend, modify, maintain and port services. Services
must be abstract and agnostic to any PDP logic. Data centricity is an important requirement.
Services must be discoverable and able to take part in complex service compositions.

Engine interface

Figure 1. User service engine integration unit.

Two coupling modes exist between services and service consumers. Contract-to-functional
coupling is used between CLARA services, making them bound to a contract according to which
they must receive and send data. Each service itself can be a consumer. The second mode is one in
which CLARA services are coupled to consumers (other services, software agents, etc.) by
consumer-to-contract coupling, which is defined as an agreement of a service to trigger particular
service engine execution after receiving an input data. Using only these two, data-in-data-out
coupling contracts, services are able to abstract and encapsulate service programming details
(programming languages, technologies, algorithmic solutions, etc.). Service function information is
obtained through meta-data available as part of the contract. Service quality information can be
obtained from the CLARA platform registration services.

3.1. CLARA service types and service inventory

Physics data analysis logic is implemented as a services or a service compositions, designed in
accordance with CLARA service design principles. CLARA specifies four types of services: entity,



utility, task and orchestrated task. Entity services are highly reusable and generic. They are
atomic enough to take part in different service compositions. Users find many self-contained
and legacy software systems very useful. These systems can be presented as utility services.
Task and orchestrated task services are both composite services, with the only difference
being that task services are self-governed, while orchestrated services are aggregated services
controlled by the agents from the orchestration layer of the framework (see figure 2).

[omstmmuya ae l

_\ 0 S

a) b)

Figure 2. Service composition types: a) task service,
and b) orchestrated task service.

A service composition is comprised of services that have been assembled to provide the functionality
required to accomplish a specific task. CLARA distinguishes between two types of service
compositions: primitive and complex. Primitive compositions use message exchange across two or
more services. Complex compositions, however, require an orchestrator. Because the framework‘s
requirement for services is to be agnostic to any PDP logic, one service may be invoked by multiple
PDP applications, each of which can involve that same service in a different composition. A collection
of entity services can form the basis of a CLARA service repository that can be independently
administered within its own physical deployment environment. So, the CLARA framework helps to
build services, service compositions, and service inventories. The service oriented approach of
CLARA changes the overall complexion of a PDP application. Because the majority of services
delivered are reusable resources agnostic to analysis, they do not belong to any one application. By
dissolving boundaries between applications, the physics data production is increasingly represented by
a growing body of services that exist within a continuously expanding service inventory.

4. CLARA Design Architecture

The CLARA architecture consists of four layers (see figure 3). The first layer is the PDP service bus.
This layer provides an abstraction of the cMsg publish subscribe messaging system [2]. Every service
or component from the event processing layer communicates via this bus which acts as a messaging
tunnel between them. Such an approach has the advantage of reducing the number of point-to-point
connections between services required to allow services to communicate in the distributed CLARA
platform. By standardizing communication between services, adapting a PDP system to changes in
one of its components becomes easier and simplifies the data transfer security implementation (for
example by deploying a specialized access control service). The service layer houses inventory of the
entity and composite/complex services used to build PDP applications. Administrative and registration
services are also part of this layer. The administrative service is responsible for SIU service creation,
deployment, recovery, cloning, and removal. The registration service stores information about every
registered service in the service layer, including address, description and operational details. The
orchestration of service-based physics data analyses applications is accomplished by the help of an
application controller agent resident in the orchestration layer of the CLARA architecture. The
application controller will continuously monitor the load of a particular service or composite service
chain, request administrative services to clone a service, or restrict access to the service or chain.
Agents from the physics complex event processing (PCEP) layer are designed to subscribe and
analyze event data in real-time in order to generate immediate insight and enable instant response to



changing conditions in the active, orchestrated service based PDP application. A PCEP agent looks at
events in the context of other events rather than in isolation, and generates new (high level) events.
Examples of PCEP agents include high level triggers, particle identification processes, and etc.

5. CLARA topology
A CLARA cloud contains multiple distributed platforms. Each CLARA platform itself contains

PCEP Layer Orchestration Layer

* Rule invocation + Data flow control
* Identification A" | + Load balancing

= Filtration * Error recovery

* Subscription

Administration Registration
Service Service

Service layer

PDP Service Bus

Figure 3. CLARA design architecture.

multiple CLARA containers. A container in reality is a Java Virtual Machine (JVM), providing a
complete run time environment for CLARA SIUs executions, and allows several SIUs to concurrently
execute in the same container. Each platform can be split among several hosts, and contains one front-
end container and multiple distributed containers. The front-end container is the container where the
platform main pub-sub server, administrative and registry services are running. Every non front-end
container also contains a local pub-sun server, administration services for administering CLARA
SIUs, and has monitoring services to monitor local CPU performance. CLARA C++ services run as
standalone processes in their own run time environment.

Figure 4. CLARA based SOT application diagram.

6. Implementation and performance



One example of an application that utilizes the CLARA framework is SOT (Service Oriented
Tracking). SOT is tracking software for the Clas12 detector consisting of 11 services connected
together in the CLARA framework (see figure 4). The input of SOT is an event encoded in EVIO
format, which contains information about the hits in each of the Clas12 detectors.

The first of the services (Evio2Hits) takes this EVIO-encoded information and converts it into lists of
hit objects. Hit objects are sent along to three different chains of task services within SOT - one chain
for each of three detectors in Clas12 for which SOT does tracking. In the chain of services for the
drift chamber tracking, for example, one service groups the hits into clusters, another links these
clusters into region segments, and a third links the region-segments into track candidates.

The data transferred between services are in the form of lists of objects representing clusters, region
segments, track candidates, etc. At the end of each of these three task services is a service called the
Data Summary Service (DSS) whose purpose is to take these lists of internally used objects (such as
tracks and clusters) and append them to the EVIO event that was initially sent to the Evio2Hits
service. The output of DSS is an EVIO event containing all of the same information as the input
event plus the reconstruction data.

CLARA SOT performance in an Intel Xeon 2x6 CLARA SOT performance in a cluster
Westmere processor based node 13
0.1 15
003 V/L L4 ’
008 " A
- L =085+ 0.09%
5 ¥ J=0.0076x+0.0035 g . j}/’/v R2=0993
& 006 =099 E /‘Hf
.E. 005 DE' 08
E 0.04 y 4 T 05 -
™00
o0 & 04 */{
001 0.2
0 ) ¢
6o 1 2 3 4 5 6 7 8 9 10 11 12 13 ¢ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Number of Cores Number of Nodes
Figure 5. Composite service multithreading. Figure 6. Distributed processing.

6.1. Performance

SOT was deployed in the CLARA platform running on an 18 node Xeon 2x6 Westmere CPU
cluster. The row data set was selected to contain events having at least one charged track in the Clas12
detector. The measurements were conducted reconstructing one event at a time through 12 events at a
time in the single CLARA container, utilizing all 12 cores of a node. The result of this measurement is
illustrated in the Figure 5, showing a linear dependence between the average processing time and the
number of cores. Figure 6 shows the performance of the SOT application distributed over 17 CLARA
containers. Here we also obtained a linear scaling of the tracking performance.

7. Conclusion

An SOA-based physics data production application development framework was written in pure
Java. This framework provides a clear separation between the PDP application designer and service
programmer. It is a service development environment and standardized data exchange for increased
interoperability of services. It also provides multithreading and multiprocessing totally transparent to
users. The only requirement of the user is that the deployed service engines must be thread enabled
and thread safe. The ease of service-based application development and deployment promotes
application diversification and overall agility. We designed and deployed a CLARA service-based



Clas12 track reconstruction application, showing ~650usec per event relative processing time on the
CLARA platform running 18 node Xeon 2x6 Westmere cluster.

8. References

[1] Thomas Erl 2007 SOA: Principles of Service Design (Prentice Hall, ISBN: 0-13-
234482-3)

[2] C Timmer, et al. ctMsg - A G Purpose, Publish-Subscribe, Interprocess
Communication Implementation and Framework., Proceedings of the International
Conference on Computing in High Energy and Nuclear Physics, Victoria BC, Canada 2007.



