Hall B:User Software Contributions

Gerard Gilfoyle University of Richmond

> Internal Software Review Jefferson Lab November 6-7, 2014

Goals and Outline

□Committee Charge - 1.c

- Are users engaged at a sufficient level to demonstrate usability and readiness from a user's perspective?
- Has the CLAS Collaboration identified appropriate mechanisms to support utilization of the software by the entire collaboration?
- Is the level of user documentation appropriate for this point in time?

□Outline of talk

- o Example of user software development:
 - TOF reconstruction software
 - detectors, methods, results, and status.
- User experience: developers, projects, workflow.
- o Connection with committee charge.

TOF Reconstruction

- □ Forward Time-of-Flight (FTOF)
 - 6 sectors, double-sided PMT readout.
 - Paddles: Panel 1a 23, Panel 1b 62,
 Panel 2 5.
- □Central Time-of-Flight (CTOF)
 - 48 paddles, double-sided PMT readout.
 - form hermetic barrel around target.
- **□**Outputs
 - Times (T_L, T_R from TDCs)
 - \circ Positions (y_{hit} from T_L T_R)
 - \circ Hit times (T_{hit} from (T_L + T_R)/2)
 - Deposited energy (E_{dep} from ADCs)

TOF Reconstruction Methods

- □ Single TOF paddles and clusters
 - o adjacent hits grouped based on cuts on Δy_{hit} and ΔT_{hit} .

- Apply time walk corrections and calibration.
- \square Position (y_{hit})
 - Use T_L-T_R to get y_{hit} relative to paddle center.
 - o Clusters energy-weighted average.

- Apply ADC calibration and $E_{dep} = \sqrt{E_L \cdot E_R \cdot e^{y_{hit}}}$
- Clusters sum E_{dep}'s
- ☐ Hit time (T_{hit})
 - Average T_L, T_R
 - Clusters energy-weighted average vs. earliest hit.

Code Validation

- □Simulation is primary testing tool of TOF reconstruction code.
- □CLAS12 Simulation *gemc*
- ☐Simulations done on Richmond cluster and copied to JLab.
 - Accessible, well-documented, bug reporting, website.
 - JLab staff member (M. Ungaro).
- □ Event generation
 - o disgen proton DIS
 - Range of final states and momenta.
 - Local
 - QUEEG quasielastic scattering from deuterium
 - Local, under svn.
 - CLAS-NOTE 2014-008.

FTOF Standalone Reconstruction Results

- □Validated in stress tests.
- □Time difference with gemc.
- ☐Measured N_{adi} dependence.
- □Optimized clustering parameters.
- □E_{dep}
- □CLAS12-NOTE 2014-003.

TOF Status

- □CLAS12 generation 1 TOF reconstruction completed
 - Standalone versions for FTOF and CTOF.
 - Working as a service in analysis chain.
 - Validated in stress test.
 - Documentation: <u>CLAS12-NOTE 2014-003.</u>
- □Updated to new clas-io libraries, bank definitions.
- □New test version for event builder development.
- □First version of code to match drift chamber track from hit-
- based tracking with FTOF hit.
- ☐Geometry package in use.
- □Streamlined code.

People and Projects

- □ Developer categories: A environment programmers,
 - B service developers, C physics-only users
- ☐Time-of-flight reconstruction
 - Alex Colvill: Surrey master's student, gen1 TOF developer
 - o G.P.Gilfoyle: Richmond
 - E.Golovach, Moscow State
 - periodic visitor to JLab from Moscow State
 - Working on DC-FTOF track matching.
- □ Forward Tagger Reconstruction
 - Raffaella DeVita INFN (Genova)
- □ ced12 development
 - Dave Heddle (CNU)
- □ Central Neutron Detector reconstruction
 - Daria Sokhan (Glasgow)
- PCAL reconstruction
 - Mike Wood (Canisius)
- Validation suite and BST calibration
 - Justin Ruger (CNU)

All project use the CLAS12 Common tools: ClaRA, coatjava, gemc, ced12,...

User Workflow

Getting Started

Connection to Charge

- Are users engaged at a sufficient level to demonstrate usability and readiness from a user's perspective?
 - Gilfoyle (Richmond), Golovach (Moscow State) and their students have been able to make significant contributions to the time-of-flight reconstruction package.
 - More CLAS collaborators using common tools (six projects now).
 - Time spent on-site is crucial for start-up.
- Has the CLAS Collaboration identified appropriate mechanisms to support utilization of the software by the entire collaborations?
 - For TOF project the common tools are far enough along for off-site users to make contributions.
 - Simulations with gemc and analysis in the ClaRA framework are ongoing at Richmond, MSU, and spreading to other CLAS Collaboration groups.
- o Is the level of user documentation appropriate for this point in time?
 - Lots of material for FTOF, but should be localized (CLAS12 wiki?).
 - Starting to centralize documentation, tutorials, etc.
 - Bug reporting, access to JLab staff for support is crucial to get software working offsite.

Additional Slides

Track Matching with Drift Chambers

- Match drift chamber track with FTOF hit.
- Hit-based tracking results are used now.
- DC track is propagated from last DC plane to front face of FTOF panel (B=0) using geometry service tools.
- FTOF returns $(x_{hit}, y_{hit}, z_{hit})$ where x_{hit}, z_{hit} are in the center of the paddle.
- Consider only single paddle clusters.
- First results:

Energy-weighted T_{hit} vs. Earliest T_{hit}

- □Cluster hit times have been calculated as the energyweighted sum of the paddle hit times.
- ■We also considered taking the earliest T_{hit} among the paddles of each cluster.

