Alignment of the Silicon Vertex Tracker (SVT)

- Track-based alignment of SVT requires fitting many parameters: $N_{\text{sectors}} \times N_{\text{layers}} \times N_{\text{trans}} \times N_{\text{rot}} = 66 \times 2 \times 3 \times 2 = 792$
- Program millepede does linear least squares with many parameters.
 - Uses matrix form of least squares method and divide the elements into two classes.
 - Global parameters the geometry misalignments. Same in all events.
 - Local individual track fit parameters. Change event-to-event.
 - Calculate first partial derivatives of the fit residuals with respect to the local (i.e. fit) parameters and global parameters (geometry misalignments).
 - Manipulate the linear least squares matrix to isolate the global parameters (geometry) and invert the results to obtain the solution.

- Use gemc cosmics for testing and validation.
- Shift layers 1-2 (Region 1) by 2-500 microns in x.
- o millepede reproduces all shifts.
- Apply to Type-1 cosmic ray sample from SVT.
 - 5.9M events collected May 11-18.
 - Fixed layer 4 in millipede fit to SVT residual.
 - Good agreement between millipede misalignment and residuals.
 - Fit residual and resolution improve. -
- Analysis chain for full set of events complete.
 - First millipede fits obtained.
 - Testing on Type 1 events now.

horizontal.

Geometry of the Silicon Vertex Tracker (SVT)

- Ideal Geometry Validation and Testing
 - Calculate ideal fiducial location on each module.
 - Observed significant difference with engineering drawings up to 100 $\mu m.$ Now reduced to < $3\mu m$
 - Ideal geometry defined by engineering drawings.
 - Used by simulation and reconstruction codes.
- Geometry package
 - Common Java utility for gemc and reconstruction.
 - Detailed reproduction from engineering drawings.
 - Full inventory of material in SVT for gemc.
 - CLAS-NOTE nearly done.
 - Charles Platt new Surrey masters student.
 - Sereres Johnston ANL postdoc.

