Hunting for Quarks and Gluons

Jerry Gilfoyle University of Richmond

- What we know and don't know about the sub-atomic world and its forces.
- What we'll learn with Jefferson Lab (JLab).
- How we measure things CLAS12.
- What we do.

• The structure of matter.

 \rightarrow Table of Elements (TOE)

H	ĺ.			PER	IODI	ст/	BLE	OF	THE	ELE	MEN	ITS					He
Li	Be										a 🤇	B	Ċ	N	0		Ne
Na	Mg											AI	Si	P	S 13	"CI	Ar
K	Ca	Sc	" Ti		Cr	Mn	Fe	Co	Ni	* Cu	Zn La	Ga	Ge	* As	Se	* Br	" Kr
Rb	Sr	Y	Zr	Nb	Mo	"Tc	Ru	Rh	Pd	Âg	Cd		sn Sn	Sb Sb	Te	* - *	Xe
Cs	Ba	D-71 La-Lu	Hf	Ta	w	Re	Os Inn	" Ir	Pt	Âu	Hg	"TI	Pb	Bi	Po	At	"Rn
Fr	Ra	Ac · Lr	Rf	Db	Sg	" Bh ≚⊒ar	Hs J	Mt	Uun	Uuu	Uub	Uut	Uuq	Üup	Uuh	Uus	Üuo
Lanthon	vide series	La	Ce	Pr	Nd	₽m 	Sm	Eu Eu	Gd	"Tb	Dy	Ho	"Er	Tm	°¥b ∵∵	Lu	
Actin	ide series	Ac	Th	Pa	U	Np	Pu	Âm	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

• The structure of matter. \rightarrow Table of Elements (TOE)

• The current TOE!

 \rightarrow quarks and leptons.

	FERMIONS matter constituents spin = 1/2, 3/2, 5/2,									
Lep	otons spin =1/2	:	Quar	Quarks spin =1/2						
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge					
V _L lightest neutrino* e electron	(0−2)×10 ^{−9} 0.000511	0 -1	u _{up} d _{down}	0.002 0.005	2/3 1/3					
$\mathcal{V}_{\mathbf{M}} \stackrel{\mathrm{middle}}{}_{\mathrm{neutrino}^*}$ μ muon	(0.009–2)×10 ^{–9} 0.106	0 -1	C charm S strange	1.3 0.1	2/3 1/3					
$rac{\mathcal{V}_{H}}{neutrino^{*}}$	(0.05–2)×10 ^{–9} 1.777	0 -1	t _{top} b _{bottom}	173 4.2	2/3 1/3					

- The structure of matter.
 - \rightarrow Table of Elements (TOE)
- The current TOE!
 - \rightarrow quarks and leptons.
- We are made mostly of triplets of quarks.
 - ightarrow protons and neutrons
 - ightarrow the nucleons

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,									
Lep	otons spin =1/2	Quar	Quarks spin = 1/2						
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge				
V _L lightest neutrino* e electron	(0−2)×10 ^{−9} 0.000511	0 -1	u _{up} d _{down}	0.002 0.005	2/3 1/3				
$\mathcal{V}_{\mathbf{M}} \stackrel{\mathrm{middle}}{}_{\mathrm{neutrino}^*}$ μ muon	(0.009–2)×10 ^{–9} 0.106	0 -1	C charm S strange	1.3 0.1	2/3 1/3				
$rac{\mathcal{V}_{H}}{neutrino^{*}}$ heaviest $ au$ tau	(0.05–2)×10 ^{–9} 1.777	0 -1	t _{top} b _{bottom}	173 4.2	2/3 -1/3				

- The structure of matter.
 - \rightarrow Table of Elements (TOE)
- The current TOE!
 - \rightarrow quarks and leptons.
- We are made mostly of triplets of quarks.
 - \rightarrow protons and neutrons
 - ightarrow the nucleons
- The bosons are the force carriers. —

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,									
Lep	otons spin =1/2	:	Quarks spin =1/2						
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge				
\mathcal{V}_{L} lightest neutrino*	(0-2)×10 ⁻⁹	0	u _{up}	0.002	2/3				
e electron	0.000511	-1	d down	0.005	-1/3				
$\mathcal{V}_{\mathbf{M}}$ middle neutrino*	(0.009-2)×10 ⁻⁹	0	C charm	1.3	2/3				
μ muon	0.106	-1	S strange	0.1	-1/3				
$\mathcal{V}_{\mathbf{H}}$ heaviest neutrino*	(0.05-2)×10 ⁻⁹	0	t top	173	2/3				
au tau	1.777	-1	b bottom	4.2	-1/3				

	BO	SONS	force carrier spin = 0, 1,	s 2,		
Unified Electroweak spin = 1			Strong (color) spin = 1			
Name	Mass GeV/c ²	Electric charge	Name	Mass GeV/c ²	Electric charge	
		0	g gluon	0	0	
w-		-1	Higgs Bo	son s	pin = 0	
W ⁺		+1	Name	Mass GeV/c ²	Electric charge	
Z ⁰ Z boson		0	H Higgs			

- The structure of matter.
 - \rightarrow Table of Elements (TOE)
- The current TOE!
 - \rightarrow quarks and leptons.
- We are made mostly of triplets of quarks.
 - \rightarrow protons and neutrons
 - ightarrow the nucleons
- The bosons are the force carriers.

More than 99% of our mass is in quark triplets.

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,									
Lep	otons spin =1/2	:	Quarks spin =1/2						
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge				
\mathcal{V}_{L} lightest neutrino* \mathbf{e} electron	(0−2)×10 ^{−9} 0.000511	0 -1	u _{up} d down	0.002 0.005	2/3 -1/3				
$\mathcal{V}_{\mathbf{M}}$ middle neutrino* μ muon	(0.009–2)×10 ^{–9} 0.106	0 -1	C charm S strange	1.3 0.1	2/3 -1/3				
\mathcal{V}_{H} heaviest neutrino* au _{tau}	(0.05–2)×10 ^{–9} 1.777	0 -1	t _{top} b _{bottom}	173 4.2	2/3 -1/3				

	BOSONS force carriers spin = 0, 1, 2,									
Unified Electroweak spin = 1				Strong (color) spin = 1						
Name	Mass GeV/c ²	Electric charge		Name	Mass GeV/c ²	Electric charge				
γ photon		0		g gluon	0	0				
w-		-1		Higgs Bo	son s	oin = 0				
W ⁺		+1		Name	Mass GeV/c ²	Electric charge				
Z ⁰ Z boson		0		H Higgs						

- Quarks are bound by the 'color' force.
- There are three kinds of 'color' charge.
- The quarks are never alone. \rightarrow confinement
- At high energy the force is weak.
 - \rightarrow asymptotic freedom

- Quarks are bound by the 'color' force.
- There are three kinds of 'color' charge.
- The quarks are never alone.
 → confinement
- At high energy the force is weak. \rightarrow asymptotic freedom
- Quantum Chromodynamics
 - \rightarrow 2005 Nobel to Gross, Wilczek, and Politzer.
 - \rightarrow QCD applies only at high energy where the color force is weak.

- Quarks are bound by the 'color' force.
- There are three kinds of 'color' charge.
- The quarks are never alone. \rightarrow confinement
- At high energy the force is weak. \rightarrow asymptotic freedom
- Quantum Chromodynamics
 - \rightarrow 2005 Nobel to Gross, Wilczek, and Politzer.
 - \rightarrow QCD applies only at high energy where the color force is weak.

QCD can't be solved at nucleon energies where we live.

- Quarks are bound by the 'color' force.
- There are three kinds of 'color' charge.
- The quarks are never alone. \rightarrow confinement
- At high energy the force is weak. \rightarrow asymptotic freedom
- Quantum Chromodynamics
 - \rightarrow 2005 Nobel to Gross, Wilczek, and Politzer.
 - \rightarrow QCD applies only at high energy where the color force is weak.

QCD can't be solved at nucleon energies where we live. Yet!

• The proton is 2 ups + 1 down; the neutron is 1 up + 2 downs.

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,									
Lep	otons spin =1/2	:	Quarks spin =1/2						
Flavor Mass Electric GeV/c ² charge			Flavor	Approx. Mass GeV/c ²	Electric charge				
\mathcal{V}_{L} lightest neutrino*	(0-2)×10 ⁻⁹	0	u _{up}	0.002	2/3				
e electron	0.000511	-1	d down	0.005	-1/3				
$\mathcal{V}_{\mathbf{M}}$ middle neutrino*	(0.009-2)×10 ⁻⁹	0	C charm	1.3	2/3				
μ muon	0.106	-1	S strange	0.1	-1/3				
$\mathcal{V}_{H} _{\text{heaviest}}$	(0.05-2)×10 ⁻⁹	0	t top	173	2/3				
τ _{tau}	1.777	-1	b bottom	4.2	-1/3				

- The proton is 2 ups + 1 down; the neutron is 1 up + 2 downs.
- A quiz: How much does the proton weigh?

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,									
Lep	otons spin =1/2	:	Quarks spin =1/2						
Flavor Mass Electric GeV/c ² charge			Flavor	Approx. Mass GeV/c ²	Electric charge				
V _L lightest neutrino* e electron	(0−2)×10 ^{−9} 0.000511	0 -1	u _{up} d _{down}	0.002 0.005	2/3 1/3				
\mathcal{V}_{M} middle neutrino* μ muon	(0.009-2)×10 ⁻⁹ 0.106	0 -1	C charm S strange	1.3 0.1	2/3 1/3				
\mathcal{V}_{H} heaviest neutrino* au tau	(0.05–2)×10 ^{–9} 1.777	0 -1	t _{top} b _{bottom}	173 4.2	2/3 1/3				

- The proton is 2 ups + 1 down; the neutron is 1 up + 2 downs.
- A quiz: How much does the proton weigh?

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,									
Lep	otons spin =1/2	:	Quarks spin =1/2						
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge				
\mathcal{V}_{L} lightest neutrino*	(0-2)×10 ⁻⁹	0	u up	0.002	2/3				
e electron	0.000511	-1	d down	0.005	-1/3				
$\mathcal{V}_{\mathbf{M}}$ middle neutrino*	$(0.009-2) \times 10^{-9}$	0	C charm	1.3	2/3				
μ muon	0.106	-1	S strange	0.1	-1/3				
$\mathcal{V}_{\mathbf{H}} \underset{\text{neutrino*}}{\text{heaviest}}$	(0.05-2)×10 ⁻⁹	0	t top	173	2/3				
au tau	1.777	-1	b bottom	4.2	-1/3				

$$m_p = 2m_{up} + m_{down}$$

- The proton is 2 ups + 1 down; the neutron is 1 up + 2 downs.
- A quiz: How much does the proton weigh?

 $m_p = 2m_{up} + m_{down} = 2(0.002 \ GeV/c^2) + 0.005 \ GeV/c^2$ = 0.009 GeV/c^2

Where does mass come from? - UH-OH!

- The proton is 2 ups + 1 down; the neutron is 1 up + 2 downs.
- A quiz: How much does the proton weigh?

 $m_p = 2m_{up} + m_{down} = 2(0.002 \ GeV/c^2) + 0.005 \ GeV/c^2$ = 0.009 GeV/c^2

 $= 0.939 \ GeV/c^2 \quad OOOPS!!!????$

• The color charge of a quark produces a strong field, *e.g.* a charged particle.

- The color charge of a quark produces a strong field, *e.g.* a charged particle.
- Between and around bound quarks the energy density is high.

- The color charge of a quark produces a strong field, *e.g.* a charged particle.
- Between and around bound quarks the energy density is high.

- The color charge of a quark produces a strong field, *e.g.* a charged particle.
- Between and around bound quarks the energy density is high.
- Most of the mass we see comes from the quark color fields → gluon cloud!

- The color charge of a quark produces a strong field, *e.g.* a charged particle.
- Between and around bound quarks the energy density is high.
- Most of the mass we see comes from the quark color fields → gluon cloud!

- The color charge of a quark produces a strong field, *e.g.* a charged particle.
- Between and around bound quarks the energy density is high.
- Most of the mass we see comes from the quark color fields → gluon cloud!
- At JLab we probe the nucleon interior with high-momentum electrons.
- The momentum/wavelength (λ) of the electrons sample different sizes.

- The color charge of a quark produces a strong field, *e.g.* a charged particle.
- Between and around bound quarks the energy density is high.
- Most of the mass we see comes from the quark color fields → gluon cloud!
- At JLab we probe the nucleon interior with high-momentum electrons.
- The momentum/wavelength (λ) of the electrons sample different sizes.
- At high momentum you probe close to the quarks → bare quark mass.

- The color charge of a quark produces a strong field, *e.g.* a charged particle.
- Between and around bound quarks the energy density is high.
- Most of the mass we see comes from the quark color fields → gluon cloud!
- At JLab we probe the nucleon interior with high-momentum electrons.
- The momentum/wavelength (λ) of the electrons sample different sizes.
- At high momentum you probe close to the quarks \rightarrow bare quark mass.
- At low momentum you probe the whole cloud.

But is it real?

- The cross section reflects the effective size of the target in a scattering experiment.
- The form factors *G_E* and *G_M* are two components of the cross sections we measure.

But is it real?

- The cross section reflects the effective size of the target in a scattering experiment.
- The form factors *G_E* and *G_M* are two components of the cross sections we measure.
- The ratio of the form factors G_E/G_M for the proton is sensitive to the shape of the mass function.

But is it real?

- The cross section reflects the effective size of the target in a scattering experiment.
- The form factors *G_E* and *G_M* are two components of the cross sections we measure.
- The ratio of the form factors G_E/G_M for the proton is sensitive to the shape of the mass function.

We are probing how mass emerges from QCD color fields.

- Build the newest US national lab Jefferson Lab (JLab) in Newport News, VA
- The accelerator CEBAF is a mile-long, racetrack-shaped, superconducting linear accelerator.
- Rapidly varying electric fields push electrons close to 12 GeV.
- Electron beam distributed to four halls.

- Build the newest US national lab Jefferson Lab (JLab) in Newport News, VA
- The accelerator CEBAF is a mile-long, racetrack-shaped, superconducting linear accelerator.
- Rapidly varying electric fields push electrons close to 12 GeV.
- Electron beam distributed to four halls.

It's a QCD laboratory!

- Build a large (3-story, 45-ton) particle detector called CLAS12 in Hall B.
- Many layers measure debris from electron-target collisions.
- Over 100,000 readouts in \approx 40 layers.
- Large magnets bend charged particles to measure 4-momenta.
- Will collect 10-30 TByte each day.

- Build a large (3-story, 45-ton) particle detector called CLAS12 in Hall B.
- Many layers measure debris from electron-target collisions.
- Over 100,000 readouts in \approx 40 layers.
- Large magnets bend charged particles to measure 4-momenta.

• Will collect 10-30 TByte each day.

- Build a large (3-story, 45-ton) particle detector called CLAS12 in Hall B.
- Many layers measure debris from electron-target collisions.
- Over 100,000 readouts in \approx 40 layers.
- Large magnets bend charged particles to measure 4-momenta.

• Will collect 10-30 TByte each day.

Some of the Nuclear Physics at the University of Richmond

- The usual suspects: Sarah Hu, Jessie Hess, Matthew Hayrich, Ryan Sanford, Alexander Balsamo, Chris Childs, Ben Weinstein, Michael Armstrong, Adrian Saina, Lamya Baashen, old gray-haired guy.
- Software is important! We are writing code for:
 - analyzing CLAS12 data and simulations.
 - extracting the neutron magnetic form factor G^n_M from the $eD \rightarrow e'p(n)$ and $eD \rightarrow e'n(p)$ reactions.
 - measuring the neutron detection efficiency (NDE) needed for $eD \rightarrow e'n(p)$ with $ep \rightarrow e'\pi^+n$.
 - determine the CLAS12 NDE in situ.
 - establish benchmarks for the CLAS12 event reconstruction resolution.
 - install reconstruction unit tests.
 - build CLAS12 subsystem geometry.
- Ten students over last three years.
- Seven presentations at national meetings.

- JLab is at the frontier of our understanding of the basic properties of matter including most of the known mass.
- Putting QCD on a precise quantitative basis in the nuclear energy regime.
- CLAS12 is a large, complex particle detector. Software is the key element to bring it all together.
- Our group is feverishly working to understand the deluge of data that has arrived!
- Students are using and developing essential tools for handling complex systems with large data sets.

- The color force binds quarks together via gluon exchange.
- The quarks are never alone.
 - $\rightarrow \text{ confinement}$
- At high energy the force is weak.
 - \rightarrow asymptotic freedom

- The color force binds quarks together via gluon exchange.
- The quarks are never alone.
 - $\rightarrow \text{ confinement}$
- At high energy the force is weak.
 - ightarrow asymptotic freedom
- Quantum Chromodynamics QCD nails it.
 - \rightarrow 2005 Nobel to Gross, Wilczek, and Politzer.
 - \rightarrow Only at high energy where the color force is weak.

- The color force binds quarks together via gluon exchange.
- The quarks are never alone.
 - $\rightarrow \text{ confinement}$
- At high energy the force is weak.
 - \rightarrow asymptotic freedom
- Quantum Chromodynamics QCD nails it.
 - \rightarrow 2005 Nobel to Gross, Wilczek, and Politzer.
 - \rightarrow Only at high energy where the color force is weak.

- The color force binds quarks together via gluon exchange.
- The quarks are never alone.
 - $\rightarrow \text{ confinement}$
- At high energy the force is weak.
 - \rightarrow asymptotic freedom
- Quantum Chromodynamics QCD nails it.
 - \rightarrow 2005 Nobel to Gross, Wilczek, and Politzer.
 - \rightarrow Only at high energy where the color force is weak.

