Tension in Low- $Q^2 G_M^n$ measurements

Author	Reference	NDE Method	Author	Reference	NDE Method
Lachniet	PRL 102, 192001 (2009)	1 H(e, e' π^{+} n)	Anderson ¹	PRC 75, 034003 (2007)	NA
Xu ¹	PRC 67, 012201 (2003)	NA	Bartel	NP B58, 429 (1973)	$^{1}\mathrm{H}(\gamma,\pi^{+}\mathrm{n})$
Kubon	PLB 524, 26 (2002)	1 H(n, p)n	Anklin	PLB 336, 313 (1998)	1 H(n, p)n
Arnold ²	PRL 61, 806 (1988)	NA	Anklin	PLB 426, 248 (1998)	1 H(n, p)n
Bruins	PRL 75, 21 (1995)	$^{1}\mathrm{H}(\gamma,\pi^{+})\mathrm{n}$	Markowitz ³	PRC 48, R5, (1993)	$^{2}H(\gamma, np)$

 $1 - {}^{3}\vec{He}(\vec{e}, e') = 2 - {}^{2}H(e, e') = 3 - {}^{2}H(e, e'n)$

Jerry Gilfoyle

Neutron Detection Efficiency Method

- Ouse the ep → e'π⁺n reaction from the hydrogen target as a source of tagged photons in the FTOF and the ECAL.
- **②** For electrons use CLAS12 tracking. For π^+ , use positive tracks, cut on the difference between β measured from tracking and from the time-of-flight to reduce photon background.
- For neutrons, use $ep \rightarrow e'\pi^+ X$ for $0.9 < m_X < 0.95 \ GeV/c^2$.
- Use the predicted neutron momentum \vec{p}_n to determine the location of a hit in the fiducial region and search for that neutron.
- The CLAS6 Gⁿ_M results.
- GSIM12 simulation results for CLAS12 are shown in the inset. Proposed measurement will extend to higher momentum where the efficiency is stable.

Conceptual Target Design

- Modeled after E5 target used in CLAS6 Gⁿ_M measurement.
- Oual target cell with two, 2-cm cells containing liquid hydrogen and deuterium.
- The hydrogen cell is downstream and separated from the deuterium target by 1.0-cm gap.
- Enables us to perform in situ calibrations during data collection.

CLAS6 G_M^n E5 results for the EC

CLAS6 EC Energy Stability (Nathan Baltzell)

Run-Dependent EC Sampling Fraction

CLAS6 EC Energy Stability (Nathan Baltzell)

CLAS Energy Run-Dependence

Jerry Gilfoyle

Systematic Uncertainties - Summary

Quantity	$\delta G_M^n/G_M^n\times 100$	Quantity	$\delta G_M^n/G_M^n\times 100$
Neutron efficiency	< 0.7(1.5)	$ heta_{pq}$ cut	< 1.0(1.7)
parameterization			
proton σ	< 1.5(1.5)	G_E^n	< 0.7(<mark>0.5</mark>)
neutron accidentals	< 0.3	Neutron MM cut	< 0.5
neutron proximity cut	< 0.2	proton efficiency	< 0.4
Fermi loss correction	< 0.9	Radiative corrections	< 0.06
Nuclear Corrections	< 0.2		

Summary of expected systematic uncertainties for CLAS12 G_M^n measurement ($\Delta G_M^n/G_M^n = 2.4\%$ (2.7)). Red numbers represent the previous upper limits from the CLAS measurement.

