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What is the Mission of Jefferson Lab?

e Basic research into the quark nature of the atomic nucleus.
e Probe the quark-gluon structure of hadronic matter and how it
evolves within nuclei.

o Test the theory of
the color force Quan-
tum Chromodynamics
(QCD) and the nature
of quark confinement.

e Completed doubling of
beam energy and up-
graded detectors in
2016.
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e Basic research into the quark nature of the atomic nucleus.
e Probe the quark-gluon structure of hadronic matter and how it
evolves within nuclei.

o Test the theory of
the color force Quan-
tum Chromodynamics
(QCD) and the nature
of quark confinement.

e Completed doubling of
beam energy and up-
graded detectors in
2016.

Solving QCD one of the seven Millenium Prize Problems
from the Clay Mathematics Institute.
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What Do We Know?

@ The Universe is made of

FERMIONS in% 125255, .
quarks and leptons and p

Leptons spin =1/2 Quarks  spin =1/2
Approx. .
the force carriers. Flavor GM?;SZ ELed”C Flavor Mass Ef:rmec
force carriers evic charge GeV/c? 9
BOSONS sin=o 1.3 r— )
Unified Electroweak spin=1] [ Strong (color) - VL jgntest . (0-2)x10 o Juuw 0.002 23
Name € electron 0.000511 -1 | d down 0005  -1/3
9
4 0 ’ Y middle + (0.009-2)x10 o fc cham 13 213
’ neutrino’ ( )
w- | 8039 M muon 0.106 -1 S strange 0.1 -113
wt 80.39 N
szo Vi heaviest  (005-2x10° 0 |t wp 173 213
91.188
Zboson T tau 1.777 -1 b bottom 42 -1/3

@ The atomic nucleus is made of pro-
tons and neutrons bound by the
strong force.

@ The quarks are confined inside the
protons and neutrons.
@ Protons and neutrons are NOT confined.
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What Do We Know?

@ The Universe is made of A—
quarks and Ieptons and FERMIONS spin=12, 32,502, ...
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the force carriers.
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@ The atomic nucleus is made of pro{ |
tons and neutrons bound by thg |m
strong force.

@ The quarks are confined inside the
protons and neutrons. A B CCOBEFRESC M
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What is the Force?

@ Quantum chromodynamics (QCD) 2 e
looks like the right way to get the
force at high energy.

0 /{ q
-05 q

Il L L 1 1 1 1
02 04 06 08 1 12 14 16
r (fm)
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What is the Force?

@ Quantum chromodynamics (QCD) 22— —
looks like the right way to get the 5| 3tons ]
force at high energy.

V,(GeV)

Il L L 1 1
02 04 06 08 1 12 14 16
r (fm)

@ The hadronic model uses a phe-
nomenological force fitted to data
at low energy. This ‘strong’ force is
the residual force between quarks.

Potential Energy
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What is the Force?

@ Quantum chromodynamics (QCD) 2 —

looks like the right way to get the 5 O tons /ﬁf}
force at h -
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How Well Do We Know It?

@ We have a working theory of strong
interactions: quantum chromody-
namics or QCD (B.Abbott, et al.,
Phys. Rev. Lett., 86, 1707 (2001)).

® 0.0<|<05
© 05<n<10
4 10<p|<15
O 15<n[<20
v 20<|<30

5

— QCD JETRAD

d2a /(dBydn) (fb/GeV)
3>

T T IO
100150 200 250 300 350 400 450 500
Br (GeV)

® Jlab Hall A =3
0 SLAC E101

@ The coherent hadronic model (the
standard model of nuclear physics)
works too (L.C.Alexa, et al., Phys.
Rev. Lett., 82, 1374 (1999)).

RIA+MEC
Hummel & Tjon
10-7 |- RIA+MEC

Van Orden et al

RIA

108 Hummel & Tjon -
RIA - 3
10-9 Van Orden et al <]
| | | | 1
1 2 3 4 5 6

@ [(Gev/0)?]
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How Well Do We Know It7?

@ We have a working theory of strong
quantum chromody-
namics or QCD (B.Abbott, et al.,
Phys. Rev. Lett., 86, 1707 (2001)).

interactions:

effective target area

/

The coherent hadronic model (the

standard model of nuclear physics)
works too (L.C.Alexa, et al., Phys.
Rev. Lett., 82, 1374 (1999)).

4-momentum transfer squared
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What n't We Know?

e Matter comes in pairs of
quarks or triplets.

Leptons spin =1/2

matter constituents
FERMIONS spin = 1/2, 3/2, 5/2, ...

Quarks  spin =1/2

- ass lectric Approx. Electric
o We are mostly triplets (pro- [ EEEArC L e
tons and neutrons). w20 o fuw o2 2
0 € clectron 0.000511 -1 | d down 0005  -1/3
o More than 99% of our mass |y mue  oosopo® o |cowm 15 20
iS in nUC|e0nS_ M muon 0.106 -1 S strange 0.1 -1/3
e Proton — 2 ups + 1 down. | ™ ni 0os-2x10° o ftw 3
T tau 1.777 -1 b bottom 42 -1/3

o Neutron — 1 up + 2 downs.
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What n't We Know?

e Matter comes in pairs of

matter constituents
FERMIONS spin = 1/2, 3/2, 5/2, ...

quarks or triplets. Leptons spin 172 Quarks spin =172
. ass lectric Approx. ectric

o We are mostly triplets (pro- |[SEECSEERsveEFwliER

tons and neutrons). g o-2m0” 00

0 € electron 0.000511 dé\

o More than 99% of our mass | mese . o0s-2ye10° e ole 1s

is in nucleons. H muon 0.106 Sfbrange 01
o Proton — 2 ups + 1 down. |8 o0s-2x0 to 7

T tay b bottom 42

Neutron — 1 up + 2 downs.
A quiz: How much does the pyoton weigh?

Mp = 2Myp + Maown= 2(2 MeV /c?) +5 MeV/ /c?
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What Don’t We Know?

e Matter comes in pairs of

matter constituents
FERMIONS spin = 1/2, 3/2, 5/2, ...

quarks or triplets. Leptons spin =1/2 Quarks spin =1/2
- ass lectric Approx. ectric
o We are mostly triplets (pro-  [ERECEEERSEENFwiELL e
tons and neutrons). Ve (0-2p10”°
0 ) € electron 0.000511 do\ @
o More than 99% of our mass |y mus  owsomio® ofc ot 13

is in nucleons. 1 muon 0.106 8forrgs | 04
o PrOtOn — 2 ups —'— 1 dOWn_ Vi heaviest ~05—2)"10“9 t op 173
T tay b bottom 42

o Neutron — 1 up + 2 downs.

e A quiz: How much does the pyoton weigh?
Mp = 2Myp + Maown= 2(2 MeV /c?) +5 MeV/ /c?
=939 MeV/c> OOOPS!!I??7?

@ mp — mp = 129333205(48) MeV/c2 (exp) Sz. Borsanyi et al. Science
= 1.51(16)(23) MeV/c2 (th) 347, 1452 (2015).
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What Don’'t We Know?

Q@ We can't get QCD and

the hadronic model to line S —— . .
up - D. Abett, et a/., 3;’“ N:\:sihirskﬁ/?ﬂ /ﬁﬁ%fjg::ﬁ:.
Phys. Rev Lett. 84, 5053 o pemman b
(2000). i
@ NEED TO FIGURE OUT *“jir f / ed — €d

QCD AT THE ENERGIES I S i
OF NUCLEI!! i

s _

o7(Gev/erl
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What Do We Measure?
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What Do We Measure?

The Magnetic Form Factor of the Neutron (Gf))

Jerry Gilfoyle Hunting for Quarks 8/ 66



What Do We Measure?

The Magnetic Form Factor of the Neutron (Gf))

@ Fundamental quantity related to the distribution of
magnetization /currents in the neutron.

@ Needed to extract the distribution of quarks in the neutron.

o Elastic form factors (Gy;, G2, GL;, and GE) provide key constraints
on theory and the structure of hadrons.

@ Part of a broad effort to understand how nucleons are ‘constructed
from the quarks and gluons of QCD’.*

* “The Frontiers of Nuclear Science: A Long-Range Plan’, NSF/DOE Nuclear Science
Advisory Committee, April, 2007.
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How Do We Learn What's Inside the Nucleon?

@ Nucleon elastic electromagnetic \ .
form factors (EEFFs) describe the "X it
. . . |
distribution of charge and \

o .
magnetization in the nucleon. I RN T
.. & \ lggcvél.ous)
@ They encode the deviations from & N
=
point-particle behavior. = ‘mo—v‘f’ml\}é\
8 10
. £ | i
o Reveal the internal quark-gluon B AL S
13 ML
landscape of the nucleon and g oftae | NN
nuclei. O e R T 86 o 1o o
LABORATORY ANGLE OF SCATTERING (IN DEGREES)
@ We are in the region where the e S L

k d d protonfwith the Dirac maglhqetic moment, curve (c) the theoretical
curve for a point proton having the anomalous contribution in

q uarks gEt ressed. addition to t{:c Dirac value of magnetic moment. The theoretical
curves (b) and (c) are due to Rosenbluth.® The experimental

curve falls between curves (b) and (c). This deviation from the

o Ri gOFOUSly test Q CD in the theoretical curves represents the effect of a form factor for the

proton and indicates structure within the proton, or alternatively,
a breakdown of the Coulomb law. The best fit indicates a size

non-perturbative regime. of 070X 107 cm.

McAllister and Hofstadter, PR 102, 851 (1956)
e Jargon: GE, Gy, GE, Gp.
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What is a Form Factor?

@ Start with the cross section. ’

do

d

scattered rate/solid angle
incident rate/surface area

@ For elastic scattering use the
Rutherford cross section.

do _ 22, 72,,.02(hc)?
dQ 16E2sin*(6/2)

Jerry Gilfoyle Hunting for Quarks

Beam particle
trajectory

PN

scattering
center
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What is a Form Factor?

@ Start with the cross section. ’
Beam particle

trajectory

d scattered rate/solid angle <
g / i} N

d incident rate/surface area

scattering
center

@ For elastic scattering use the
Rutherford cross section.
do Z,_?th2 a?(fic)?

ao beam
dQ T 16E2sin*(0/2)
@ Cross section for elastic scattering by point particles with spin.

Z2,72,,,.0%(hc)? . .
g0 = %ﬁ‘(@(/ﬂ) (1—B2sin?4)  (Mott cross section)

Jerry Gilfoyle Hunting for Quarks 10 / 66



What is a Form Factor?

@ Start with the cross section. ’
Beam particle

trajectory

d scattered rate/solid angle <
g / i} N

d incident rate/surface area

scattering
center

@ For elastic scattering use the
Rutherford cross section.
do __ Zl?gfzgeama2(hc)2

dQ T 16E2sin*(6/2)

@ Cross section for elastic scattering by point particles with spin.

Z2 22 2 I 2 . )
&= %ﬁ(@(/g (1—B2sin?4)  (Mott cross section)
@ What happens when the beam is electrons and the target is not a

point?

do _ Zio?(he) .20
99 = T6£7sin(6/2) (1 - B2sin® 3) [F(Q%)*

where Q2 is the 4-momentum transfer.
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What is a Form Factor?

@ Start with the cross section. ’
Beam particle

trajectory

do scattered rate/solid angle

d incident rate/surface area

scattering
center

@ For elastic scattering use the
Rutherford cross section.
do __ Zl?gfzgeama2(hc)2

dQ T 16E2sin*(6/2)

@ Cross section for elastic scattering by point particles with spin.

Z2 22 2 I 2 . )
&= %n?(;/;)) (1—B2sin?4)  (Mott cross section)
@ What happens when the beam is electrons and the target is not a

point?

do _ Zio?(he) .20
99 = T6£7sin(6/2) (1—B2sin® 3) [F(QD)I®

where Q2 is the 4-momentum transfer.
THE FORM FACTORI!
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Some Necessary Background

@ EEFFs cross section described with Dirac (F1) and Pauli (F;) form factors
d fe

99 _ O Mott (F12 + H2TF22) +27(F + HF2)2 tan? [ =

dQ 2

where ) -

a’E' cos*(%)

4E3sin*(%)

and k is the anomalous magnetic moment, E (E’) is the incoming

(outgoing) electron energy, 6 is the scattered electron angle and
= Q?/4M?.

@ For convenience use the Sachs form factors.

O Mott =

ﬂ _ OMott
dQ  e(1+7)

(eGE +7Gy)
where

9.1 1
Ge=F—7F and Gy=FfR+F and e= 1—|—2(1—|-T)tan25e
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Why Should You Care?

e The chain of reason.

g% - ‘F(Qz)F ~ F(Q2) A p(F) — ¢(F) FS;:nlz’séituent quarks

Experiment Comparison Theory

The form factors are the meeting ground between
theory and experiment.

e The Fourier transform of the form factors are related
to the charge and current distributions within the
neutron.
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Why Should You Care Even More?

e The old picture of the
neutron (and proton). | Chorge distibuion

4Tr2pe

o What we know now -
analysis of form factor
data by G. Miller(Phys.
Rev. Lett. 99, 112001

(2007)).
0'2; 2.5\c\1
0.1 28\
o(b) [fm2] _0.2 o[fm?] 1.5
-03 neutron 1
-0.4 0.5
0 05 1 15 2 O 05 1 1.5 2
b[fm] [£fm]
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Why Should You Care Even More?

e The old picture of the
neutron (and proton). Chorge distibuion

4Tr2pe

o What we know now -
analysis of form factor
data by G. Miller(Phys.
Rev. Lett. 99, 112001
(2007)).

o(b) [fm2] _g!

neutron

oooo o
PBWON=O=
(e}

b[fm] ) DI
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Some Kinematics Formulae

k
P,M w

v = E — E’ where E and E’ are the initial and final lepton energies in the
nucleon rest frame.

Q=—-q?=2(EE' —k-K) — m? — m? ~ 4EE’sin? (6/2) where 0 is the

lepton’s scattering angle with respect to the lepton beam

dlrectlon

where x is the fraction of the nucleon momentum carried by the
struck quark.

y = £ is the fraction of the lepton’s eneregy lost in the nucleon rest
frame.

W2 = (P + q)? = M? + 2Mv — @2 is the square of the mass recoiling

against the scattered lepton.
Jerry Gilfoyle Hunting for Quarks 14 / 66
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What We'll Learn - Flavor Decomposition

@ With all four EEFFs we can unravel the g u quark 1
contributions of the v and d quarks. v L E
@ Assume charge symmetry, no s quarks N S quarkr 075 ]
and use (Miller et al. Phys. Rep. 194, : ! :
1 (1990)) T e . ©
u n d n o | i
Fiy = 2FiptFley Ao =2F+Fe §. .
@ Evidence of di-quarks? d-quark scat- Eoet ) Sk 25
tering probes the diquark. O TR TR

' 502 [fQEUeVQ] *
Cates et al. PRL 106, 252003 (2011).
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What We'll Learn - Flavor Decomposition

@ With all four EEFFs we can unravel the
contributions of the u and d quarks.

@ Assume charge symmetry, no s quarks
and use (Miller et al. Phys. Rep. 194,

1 (1990))
Fitoy = 2Fig)tFley  File) = 2R +Fl

@ Evidence of di-quarks? d-quark scat-
tering probes the diquark.

KJQ'F;

a
1

Q'F;

03

02

01

L R

u quark

LI
0
o
.
o

@ d quark x 0.75

o
T

u quark

HS : : ¢
. H

e d quark x 2.5

05 10 15 20 25 35 40
Q@*[GeV?

Cates et al. PRL 106, 252003 (2011).

03 4
s = @ Agreement with Nambu-Jona-Lasinio
0.2 4 .
2 4 model encouraging - no parameter
S Q' Fy/r fits to the EEFFs.
0.1 ®  eeee- Q* Fg/ka 1
° u-sector
A d-sector
0 - -
0 1 2 3 4 5 6
Cloet et al. Q% (GeV?)

PRC, 90 045202 (2014)
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What We'll Learn - Flavor Decomposition

@ With all four EEFFs we can unravel the E :

contributions of the v and d quarks. v e E
@ Assume charge symmetry, no s quarks Tk e S quark 075 E

and use (Miller et al. Phys. Rep. 194, -

1 (1990)) T e 7
Filoy = 2F{5) T Filz) Filo) = 2F{y+Fy  E L ]
@ Evidence of di-quarks? d-quark scat- _..-" - d;uarkxz‘s ' ]

tering probes the diquark. e T

Cates et al. PRL 106, 252003 (2011).

03 F
% ‘/,/’/ @ Agreement with Nambu-Jona-Lasinio
g” 4 4 ] model encouraging - no parameter
S S Q' Fy/r fits to the EEFFs.

& 01 S Q' fra ]
< o usector The JLab program will double our
, P v reach in Q? to ~ 8 GeV?.
0 1 2 3 4 5 6
Cloet et al. Q% (GeV?)

PRC, 90 045202 (2014)
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What We’'ll Learn - Dyson-Schwinger Eqs

£l

e Equations of motion of quantum fiel

o Infinite set of coupled integral 0t

equations. o

o Inherently relativistic, }

non-perturbative, connected to

QCD. 01

o Deep connection to confinement, ,

dynamical chiral symmetry breaking.

o Infinitely many equations, gauge
dependent — Choose well!

@ Recent results (Cloét et al).
e Model the nucleon dressed quark | . o
propagator as a quark-diquark.

e Damp the shape of the mass
function M(p). 0

\ Cloét et al
\. PRL 111, 101803 (2013)

1ty GEp/ Gy
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What We’'ll Learn - Dyson-Schwinger Eqs

e Equations of motion of quantum fiel

o Infinite set of coupled integral 0t
equations.

o Inherently relativistic,
non-perturbative, connected to
QCD. 01 i

e Deep connection to confinement, S :
dynamical chiral symmetry breaking.

o Infinitely many equations, gauge
dependent — Choose well!

Cloét et al
\. PRL 111, 101803 (2013)

o Recent results (ClOét et aI). " CRoberts, arXiv:1509.02025
0.8 ™ Black arrow - neutron

o Model the nucleon dressed quark | | %3 Red arrow - proton
propagator as a quark-diquark.

e Damp the shape of the mass
function M(p).
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What We’'ll Learn - Dyson-Schwinger Eqs

e Equations of motion of quantum fiel

o Infinite set of coupled integral 0t
equations.

o Inherently relativistic,
non-perturbative, connected to
QCD. 01 i

e Deep connection to confinement, S :
dynamical chiral symmetry breaking.

o Infinitely many equations, gauge
dependent — Choose well!

Cloét et al
\. PRL 111, 101803 (2013)

o Recent results (ClOét et aI). " CRoberts, arXiv:1509.02025
0.8 ™ Black arrow - neutron

o Model the nucleon dressed quark | | %3 Red arrow - proton

propagator as a quark-diquark.

e Damp the shape of the mass
function M(p).

Position of zero in u,GE/Gp, and

unGE/Gpy sensitive to shape of M(p)!
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What We’'ll Learn - Light Front Holographic QCD

© Based on connections between light-front dynamics, it's holographic

2]

mapping to anti-de Sitter space, and conformal quantum mechanics.
Recent paper by Sufian et al. (Phys. Rev. D95, 01411 (2017)) included
calculations of the electromagnetic form factors that include higher order
Fock components |gqqqq).

Obtain good agreement with all the form factor data with only three
parameters, e.g. u,GE/Gpy.

1.0

0.6
0.4

0.2

— LFHQCD, r=2.08

1n GE (Q?)/GYy (Q*)

0.0 LFHQCD, r=1.0 -
B World data
~0.2 L !
10" 10° 10'

Q* (GeV?)
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@ Recent paper by Sufian et al. (Phys. Rev. D95, 01411 (2017)) included
calculations of the electromagnetic form factors that include higher order
Fock components |gqqqq).

© Obtain good agreement with all the form factor data with only three
parameters, e.g. u,GE/Gpy.
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-~ 0.8} B _- @ E1211-009, Hall C
o M E12:09-016,Hall ASBS |
9 @ __Present Proposal 4
oS 0.6 i,: Fuure Datapionts____]
2 cuw 05 —roou wier2oos) |
= 04 (L] VN - Lomn (2005)
% c % - Cloet (2012)
e By 1 2014
am 02
O — LFHQCD, r=2.08
£ 0.0 LFHQCD, r=1.0 ool
B World data .
-0.2 Il Il
-1 0 1 1 Il 5l
10 10 5 10 T 278 s 5 6 7 8 9 10 M1
Q° (GeV?)
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What We’'ll Learn - The Campaign

The JLab Lineup

Quantity Exp Method Target QZ(GeV?) Hall Status
Ghy E12-07-108 | Elastic scattering LH, 2.0 —15.7 A PRL*
GE/Gyy E12-07-109 | Polarization transfer LH, 6.4 — 10.5 A fall, '23
Gy E12-07-104 | E — p/e — n ratio LDy, LH, 4.5 - 10.0 B Complete’
Gl’\k E12-09-019 E — p/e — n ratio LDy, LHy 1.9 -9.9 A Complete'r
GE /Gy E12-09-016 Double polarization polarized 2.1 —8.4 A Completef
asymmetry 3He
G%/G,’C/I E12-17-004 Polarization transfer LDy 4.3 A Summer, '23
GE /Gy E12-11-009 Polarization transfer LDy up to 6.9 A To be scheduled

* Phys. Rev. Lett., 128, 102002 (2022).
t Data collection complete.
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How Do We Measure Gf, on a Neutron? (Step 1)

o Start at your local mile-long, Arcs (bending magnets)
high-precision, 12-GeV electron
accelerator.

@ The Continuous Electron Beam Source
Accelerator Facility (CEBAF)
produces beams of unrivaled
quality.

Superconducting
Linacs

Beam switchyard

©J Experimental Halls

@ Electrons do up to five laps, are
extracted, and sent to one of
three experimental halls.

@ All four halls can run simultane-
ously.
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How Does CEBAF Do That?

Accelerate your electrons to high energy.

0.4-GeV Linac
(20 Cryomodales)

0.4-GeV Linac

45-MeV Injector (20 Cryomodules)

(2114 Cryomodules) Y 5" Kef 7

Extraction™~_
Elements

End ]

Stations Z/
What happens inside the cavity? Feed it with oscillating, radio-frequency
power at 1.5 GHz! In each hall beam buckets are about 2 picoseconds long

and arrive every 2 nanoseconds.

B.

Hunting for Quarks 20 / 66
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How Do We Measure Gf, on a Neutron? (Step 2)

@ Add one 45-ton, $80-million
radiation detector: the
CEBAF Large Acceptance
Spectrometer (CLAS12).

Beamline

@ CLAS covers a large fraction
of the total solid angle at for-
ward angles.

@ Has about 62,000 detecting 1
elements in about 40 layers.

Jerry Gilfoyle Hunting for Quarks
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How Do We Measure Gf, on a Neutron? (Step 2a)

o Drift chambers map the tra-
jectories. A toroidal magnetic
field bends the particles to
measure momentum.

e Other layers measure energy,
time-of-flight, and particle
identification.

e Each collision is reconstructed
and the intensity pattern re-
veals the forces and structure
of the colliding particles.

e Scatter electrons off pro-
tons and deuterons (pro-
ton-+neutron).

Solenoid

Jerry Gilfoyle Hunting for Quarks
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A CLAS12 Event

Time—-of—flight=

/

Drift chambers

R .
) \\ A
Cherenkov \ ¢ Electron ‘\‘ A\
\\ “\
\\\ \\ ) \ f AN
W \\ W

A

Cherenkov
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A Simulated CLAS12 Event - Drift Chamber close-up
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A Simulated CLAS12 Event - Drift Chamber close-up
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A Simulated CLAS12 Event - Drift Chamber close-up
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A Real CLAS12 Event - Building the Drift Chambers
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A Real CLAS12 Event - Building the Drift Chambers
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A Real CLAS12 Event - Building the Drift Chambers
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A Simulated CLAS12 Event - Calorimeter close-up
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A Simulated CLAS12 Event - Calorimeter close-up

Scintillator bars

U - plane p

Lead sheets

V - plane p

W - plane p

Fiber Light Guides
(front)

Fiber Light Guides

(rear)

ok CLASIK 2197 PMT's
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A Simulated CLAS12 Event - Calorimeter close-up

Scintillator bars

=

- plane p»

Lead sheets

<

- plane p»

W - plane p

(front)

Fiber Light Guides
(rear)

v
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A Simulated CLAS12 Event - Calorimeter close-up

Scintillator bars

U - plane p
V - plane p»
W - plane p
.........
(front)
Fiber Light Guides
(rear)
RO— PMT's
'/
s
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A Simulated CLAS12 Event - Time-of-Flight close-up
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A Simulated CLAS12 Event - Time-of-Flight close-up

55 cm -
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A Simulated CLAS12 Event - Time-of-Flight close-up

P
P
TS /

Jerry Gilfoyle Hunting for Quarks

e o
o ©

Time Difference (ns)
o
=

0.0
0

[ 40=032ns

At (p,7)
At (p.K)
At (K,)

o
N

Momentum (GeV/c)
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A CLAS12 Event

Time—of—flight. > Cu]m;inmcl\

/

Drift chambers

4 *
\ \
R
N AR
= y Electron )
Cherenkov N )
AN :
N )
A\ b
N N
\$

Cherenkov
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A CLAS12 Event - Cherenkov close-up
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A CLAS12 Event - Cherenkov close-up

Calof*@meters l\'

Cherenkov ~ ! ' .
Light Mirrors
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Cherenkov close-up

A CLAS12 Event -

Cherenkov
Light
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A CLAS12 Event - Cherenkov close-up

Calc\ = - /

Hyperbolical
Mirrors

e w Mirrors
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Simulated CLAS12 Events

Forward Detector Central Detector
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Simulated CLAS12 Events

Forward Detector Central Detector
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Simulated CLAS12 Events - Silicon Vertex Tracker (SVT)

Solenoid
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Simulated CLAS12 Events - Silicon Vertex Tracker (SVT)

Solenoid

”~ Solenoid
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Simulated CLAS12 Events - Silicon Vertex Tracker (SVT)

Solenoid
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Putting It All Together - 1

Overview

Beamline

n

\ <7
|
L 4

Click on
boxes for info
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Putting It All Together - 2
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Putting It All Together - 2
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Putting It All Together - 3
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Putting It All Together - 3
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Where We Are Now.

Jerry Gilfoyle

JLab E012-07-108, e-p elastic cross section

Hunting for Quarks

1. T T T T
@ Gp, well known over large Q? range. Eoe, o e
@ The ratio GE/Gy}, from polarization trans- f?”’?i hffﬂ - e ]
fer measurements diverged from previous % .| %\;1 E. Christy Hall A
. g . ummer Meeting
Rosenbluth separations. 5 | T or ]
g 06— weres sep b 1
o Two-photon exchange (TPE). [t siseeaieatl” ] bl + %Z
o Effect of radiative corrections. oaly o 2 %
Q@ [(GeV/eY]
@ Neutron magnetic FF Gy still follows dipole. 150F ; : 4
) H|gh-(Q2 Gg opens up flavar decamnancitinn ;
125 r 1.00 g Q o ]
08 . - as :
L o \
[ j §i : i NS \ 1
"t i i%é?’"ag‘ 1" ]
[ 1 SN
L ] 3: B Gayou =
04|~ 1 Lom | w b 000 @ Jones, Punjabi ™
s - =
b s i © S * Fabon
02— . / - pQCD, A = 150 MeV - O Markowitz A Lachniet J
i Aty T B Ty
v, '"‘" s o Bruins 00 20 40 60 80 100 120
00 05 10 15 20 25 30 35 Scholarpedia, 5(8):10204 Q7(GeV~)
2 [GeV? 025 m‘" uIJ" u‘)‘ PRL 104, 242301 (2010)
PRL 105, 262302 (2010) Q* (Gev?)
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How Do We Measure Gy, on a Neutron? (Step 3)

E12-07-104 in Hall B (Gilfoyle, Hafidi, Brooks).
@ Ratio Method on Deuterium:

92 [*H(e,e'n) gel
9& [2H(e,e’p) el
(6p2+r(cp)? )
T Mott <EH7TM+2T tan? f(G,"’/,)2
& H(ee)r]
where a is nuclear correction.
@ Precise neutron detection efficiency
needed to keep systematics low.

R:

=axX

o tagged neutrons from F1ET 3
2 ’ = E *IQCDIim\( Anticipated 3
H(e7 (S Pn) %§ 1.1 - Statistical uncertainties only —
o LH, target. e g
: fe )2 — 2 0.9 e E
@ Kinematics:Q* = 3.5 — 13.0 (GeV /c)*. g ol witer ;3
. 0.8 e =
@ Beamtime: 40 days. ol — o] Gugaletal,
@ Systematic uncertainties < 2.5% 0.6F Red - J.Lachniet etal E
2 E Green - Previous World Data R
across full Q range. 0.5 Black - CLAS12 anticipated Cloet et al.
E Blue ; Hall A a‘ntlc\pale‘d (with s‘yslemali‘c uncenz‘ilnlies) )

@ Half of Run Group B done January, 2020. 04 2 4 5 8 10 12 14
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How Do We Measure Gy, on a Neutron? (Step 3)

E12-07-104 in Hall B (Gilfoyle, Hafidi, Brooks).

Ratio Method on Deuterium:

92 [2H(e,e’ n) ]

9& [2H(e,e’p) el
(GR)*+7(6p)?
(R TGy

R

O Mott +27 tan? %5(6&)2)

=axX

_ [ H(e.e)pl
where a is nuclear correction.
Precise neutron detection efficiency

O t=09fm

O t=11fm

B t=13fm
Summation,
O Gel09,13m

Twostate,
b4

=109,13] fm

C. Alexandrou et al. PRD
96, 034503 (2017)

— Kelly parameterization

X 0.0 0.2 0.4 0.6 0.8 1.0
needed to keep systematics low. Q*1Gev?]
o tagged neutrons from FrE T T 3
2 ’ =5 E ‘ 1QCD limit Anticipated 3
H(e7 (S Pn) %§ 1.1 - Statistical uncertainties only —
T e B § 1 E
o LH, target. o e, ¥ E
. . =i N L I T =
Kinematics:Q? = 3.5 — 13.0 (GeV/c)?. %% S LSRR E
0.8~ e oo ¢ 3
Beamtime: 40 days. ol — b Caotal,
Systematic uncertainties < 2.5% 0.6F Red - J.Lachniet etal — E
2 E Green - Previous World Data T B
across full Q range. 0.5 Black - CLAS12 anticipated Cloetetal. 3§
£ Blue - Hall A an(lc\paled (with systematic uncertainties) E
Half of Run Group B done January, 2020. 045 bbbt
Q*(Gev?)
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o Quasi-elastic event selec- —

tion:  Apply a maximum oo 6 GeV res
fpq cut to eliminate inelas- om0
tic events plus a cut on W2 000
(J.Lachniet thesis). ::::::
o

e Use the ep — e'm™ n reaction
from the hydrogen target as a
source of tagged neutrons in
the TOF and calorimeter.

Jerry Gilfoyle

all ep events

8,4 < 3 degrees

15

2
w2 (GeV?)

ﬁmu +

[ A42Gevdaa

o qoatd

V 25GeV data

i
it 3
a0

T gty
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- [
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506
© [ A 25GeVdata
Eos[ xxﬁx
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e o
Y 2
Foar I
o r J B
c r * £
03— + £
£ * H
E x gomE-
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. * o002
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Eox
ol | |
0 1 2
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How Do We Measure Gy, on a Ne

Analyzing the data - CLAS12 computing requirements.

Cores | Disk(TBytes) | Tape (TByte/year)

DAQ 1,270
Calibration 173

Reconstruction 1,387 508 5,080
Simulation 8,139 318 1,558
Reconstruction Studies 1,214 508

Physics Analysis 607 889

Sum 11,520 2,223 7,938

We'll collect 5-10 TByte/day!

Intel Many-Integrated
CoProcessor computer l
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Anticipated Results

o = | T T I~
2_: 1'25 Anticipated E
es 1.1 - Statistical uncertainties only —J
b eLl] ] ]
0.9 T {2%\ JLab @fii L * =
- e e M T Miller ]
0.8F 3R 2 - B
F ———— e e
0.7+ R Guidal et al. -
- | _ ]
0.6F Red-J.Lachniet et al. Tl 3
""E Green - Previous World Data Tl =
0.5F Black - CLAS12 anticipated Cloet et al. 7
C Blue-Hall A a‘nticipate‘d (with s‘ystemati‘c uncert‘ainties) 3

0.4 2 4 6 8 10 12 14
Q*(GeV?)
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Nuclear Structure - Flavor Decomposition

@ By measuring all four EEFFs we os
have an opportunity to unravel A —kelfteoo ]
the contributions of the v and d s T foan - lr(eoos 7
quarks. =T

@ Assume charge symmetry, no s
quarks and use (Miller et al. s
Phys. Rep. 194, 1 (1990)) W

Fley = 2F1) + Fila)

T T

Fitz) = 2Fi) + Fllz)
@ u and d are different.

o AND different from the proton r |
and neutron form factors. 00 05 10 15 20 25 30 35 40

Q7 [GeV?]
(] EVidence Of di—quarks, S quark in— Gordon Cates, Sean Riordan et al., PRL

106, 252003 (2011).
fluence, ...7
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Concluding Remarks

o JLab is a laboratory to test and expand our
understanding of quark and nuclear matter, QCD, and
the Standard Model.

o We continue the quest to unravel the nature of matter
at greater and greater depths.

o Lots of new and exciting results are coming out.

o A bright future lies ahead in the 12 GeV Era.

U. S. Department of Energy's

(YN

= %@”‘W Fal

THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY
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Concluding Remarks

Additional Slides
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What's going on now?

Alignment and commissioning of the silicon vertex tracker (SVT).
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Check alignment with Typel cosmic ray tracks

Type 1 tracks

4 e
s . 8 =
/20 \ 2 =
- I\\\ . 8
i / TN N\ E1 j—
/A [T z
i \ So
VA g 2 —
\ \ — / / s !
NN S @ —
\ T/ ?
~_i— 3 —
4 —
Type 1 tracks. Z1000 500 0 500 1000
Residual (um)
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Check alignment with Typel cosmic ray tracks

Type 1 tracks Simulated Type 1 tracks
4 P Py 4 e el
3 == 3 e B
L2 =1 L2 2=
73 73
Q Q
/ E1 —_ E =
I =z z
50 80
(=] (=]
\ [} [}
\ T ———) T ==
2 — 2 =g
3 e 3 ==y
4 Jlmrs 4 =
Type 1 traCkS. -1000 -500 0 500 1000 -1000 -500 0 500 1000
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Life on the Frontiers of Knowledge
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Life on the Frontiers of Knowledge
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Some Facts of Life On The Frontier

@ Work at Jefferson Lab in Newport News.
@ 700 physicists, engineers, technicians,
and staff.
@ Vibrant intellectual environment - talks,
visitors, educational programs...
@ Lots going on.
@ Richmond group part of CLAS Collaboration.

o operates CLAS12.

@ ~190 physicists, 40 institutions, 13
countries.

o Part of Software Group - emphasis on
software development.

o Past Surrey masters students (and
Richmond undergrads) have presented
posters at meetings, appeared on JLab
publications,....

@ Run-Group B consists of seven experiments (in-
cluding Gjy) and ran in spring 2019.
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How Do We Measure G, on

o Add one 45-ton, $50-
million radiation detec-
tor: the CEBAF Large
Acceptance Spectrome-

ter (CLAS).

o CLAS covers a large frac-
tion of the total solid an-

gle.
e Has about 35,000 de-

tecting elements in
about 40 layers.

a Neutron? (Step 2)

Jerry Gilfoyle Hunting for Quarks



How Do We Measure Gf, on a Neutron? (Step 2a)

o Drift chambers map the tra-
jectories. A toroidal magnetic
field bends the particles to
measure momentum.

e Other layers measure energy,
time-of-flight, and particle
identification.

e Each collision is reconstructed
and the intensity pattern re-
veals the forces and structure
of the colliding particles.

Jerry Gilfoyle Hunting for Quarks

500+ channels, 145 ps resolution

The CEBAF
Large Acceptance Spectrometer
at Jefferson Lab

Superconducting
oroidal Magriet

Electromagnetic Shower
Calorimeters

1700+ channels
OfE = 10%/E"S
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A CLAS Event

Gilfoyle

Electromagnetic
Calorimeters
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How Do We Measure Gy, on a Neutron? (Step 3)

e Where's my target?

e5 Primary Target

Use a dual target cell with lig-
uid hydrogen and deuterium.

e How bad do the protons mess
things up? They help!

o G"2+TG"2 n
R = &(D(e, €'n)) = a(@?) I + 276y tan’(5)
~ do - 2 _cp?
36 (D(e, e'p) £ Ao 1++TG5’ + 217G tan2(%)

@ The ratio is less vulnerable to corrections like acceptance,
efficiencies, etc.
o Use the dual target to perform in situ detector calibrations.
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Results - Overlaps and Final Average

Overlapping measurements of Gy, scaled by the dipole are consistent.

1.6
1.4:—G:-|

:HIIGD
1.2

: eted ]
1:—&,' +**””H HHA;UHH
0.8_—‘

C V¥ 2.5 GeV, SC neutrons
0.6—

C ¥ 4.2 GeV, SC neutrons
0.4

C A 2.5 GeV, EC neutrons
0.2

o A 4.2 GeV, EC neutrons
T T TR T R FTEE NS P P R
553 1 15 2 25

35 L4 45,
Q° (GeVlic)

Jerry Gilfoyle Hunting for Quarks 52 / 66



Results - Comparison with Existing Data
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Results - Comparison with Existing Data

m CLAS O Kubon A Anklin Green band - Diehl
e Lung O Bartel ¢ Arnold Solid - Miller
1.2 A Xu Y Anderson Dashed - Guidal
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JLab 12 GeV Upgrade - Better Accelerator

@ The electron beam energy at JLab (CEBAF) has been doubled from 6
GeV to 12 GeV.

@ Halls A, B and C will be upgraded to accommodate the new physics
opportunities.

@ A new hall (Hall D) will house a large-acceptance detector built
around a solenoidal magnet for photon beam experiments.

x=1.0

Add new hall
CEBAF at 12 GeV e g

0 2 4 6 85 10
Enhance equipment in My = (E-E))M [GeV]
l) exisinghalls
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JLab 12 GeV Upgrade - New Detectors

The CEBAF
~ Large Acceptance Spectrometer
(/LAS at Jefferson Lab

Superconducting
B Toroidal Magnet
35,000 wires )
oR= 350 pm

Electromagnetic
Time of Flight Counters Calorimeters

500+ channels, 145 ps resolution 1700+ channels
OfE = 10%/E"
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Rutherford Trajectories

Rutherford trajectories for different
impact parameters

ylb

Jerry Gilfoyle

X
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What is an Angle?
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What is an Angle?

Y

ds ds

1%
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Solid Angle

1.0

\
‘\
05
z T
00
| /-05
“‘ ‘J“0.0
-0.5| w
/ /0.5
05—
%0 o5 o
, . 1.0°

Jerry Gilfoyle Hunting for Quarks

58 / 66



/0.0

) /05
00 ‘

Jerry Gilfoyle Hunting for Quarks 59 / 66



/0.0

) /05
00 ‘

Jerry Gilfoyle Hunting for Quarks 60 / 66



Solid Angle
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Solid Angle
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d Scattering Results From Rutherf
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Recent Rutherford Scattering Results

104 Ecm = 23.65 MeV, “He + "7Au (Blue) 104
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Standard Model
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