Hunting for Quarks and Gluons

Jerry Gilfoyle University of Richmond

- What we know about the sub-atomic world and its forces - background.
- We're about to learn more at the upgraded Jefferson Lab (JLab) - physics motivation.
- How we measure things technical details.
- Summary and Conclusions.

• The structure of matter.

 \rightarrow Table of Elements (TOE)

• The structure of matter. \rightarrow Table of Elements (TOE)

The current TOE!

 \rightarrow quarks and leptons.

- The structure of matter.
	- \rightarrow Table of Elements (TOE)
- The current TOE!
	- \rightarrow quarks and leptons.
- We are made mostly of triplets of quarks.
	- \rightarrow protons and neutrons
	- \rightarrow the nucleons

- The structure of matter.
	- \rightarrow Table of Elements (TOE)
- The current TOE!
	- \rightarrow quarks and leptons.
- We are made mostly of triplets of quarks.
	- \rightarrow protons and neutrons
	- \rightarrow the nucleons
- The bosons are the force carriers. -

- **The structure of matter.**
	- \rightarrow Table of Elements (TOE)
- The current TOE!
	- \rightarrow quarks and leptons.
- We are made mostly of triplets of quarks.
	- \rightarrow protons and neutrons
	- \rightarrow the nucleons
- The bosons are the force carriers.

More than 99% of our mass is in quark triplets.

- The color force binds quarks together via gluon exchange.
- The quarks are never alone.
	- \rightarrow confinement
- At high energy the force is weak.
	- \rightarrow asymptotic freedom

- The color force binds quarks together via gluon exchange.
- The quarks are never alone.
	- \rightarrow confinement
- At high energy the force is weak.
	- \rightarrow asymptotic freedom
- Quantum Chromodynamics QCD nails it.
	- \rightarrow 2005 Nobel to Gross, Wilczek, and Politzer.
	- \rightarrow QCD applies only at high energy where the color force is weak.

- The color force binds quarks together via gluon exchange.
- The quarks are never alone.
	- \rightarrow confinement
- At high energy the force is weak.
	- \rightarrow asymptotic freedom
- Quantum Chromodynamics QCD nails it.
	- \rightarrow 2005 Nobel to Gross, Wilczek, and Politzer.
	- \rightarrow QCD applies only at high energy where the color force is weak.

QCD can't be solved at nucleon energies where we live.

- The color force binds quarks together via gluon exchange.
- The quarks are never alone.
	- \rightarrow confinement
- At high energy the force is weak.
	- \rightarrow asymptotic freedom
- Quantum Chromodynamics QCD nails it.
	- \rightarrow 2005 Nobel to Gross, Wilczek, and Politzer.
	- \rightarrow QCD applies only at high energy where the color force is weak.

QCD can't be solved at nucleon energies where we live. Yet!

• The proton is 2 ups $+1$ down; the neutron is 1 up $+ 2$ downs.

- The proton is 2 ups $+1$ down; the neutron is 1 up $+ 2$ downs.
- A quiz: How much does the proton weigh?

- The proton is 2 ups $+1$ down; the neutron is 1 up $+ 2$ downs.
- A quiz: How much does the proton weigh?

$$
m_p = 2m_{up} + m_{down}
$$

- The proton is 2 ups $+1$ down; the neutron is 1 up $+ 2$ downs.
- A quiz: How much does the proton weigh?

 $m_p=2m_{up}+m_{down}=2(0.002\,~GeV/c^2)+0.005\,~GeV/c^2$ $= 0.009$ GeV/ c^2

Where does mass come from? - UH-OH!

- The proton is 2 ups $+1$ down; the neutron is 1 up $+ 2$ downs.
- A quiz: How much does the proton weigh?

 $m_p=2m_{up}+m_{down}=2(0.002\,~GeV/c^2)+0.005\,~GeV/c^2$

 $= 0.009$ GeV/ c^2

 $= 0.939 \text{ GeV}/c^2$ OOOPS!!!????

• The color charge of a quark produces a strong field, e.g. a charged particle.

- The color charge of a quark produces a strong field, e.g. a charged particle.
- Between and around bound quarks the energy density is high.

- The color charge of a quark produces a strong field, e.g. a charged particle.
- Between and around bound quarks the energy density is high.

- The color charge of a quark produces a strong field, e.g. a charged particle.
- Between and around bound quarks the energy density is high.
- Most of the mass we see comes from the quark color fields \rightarrow gluon cloud!

- The color charge of a quark produces a strong field, e.g. a charged particle.
- Between and around bound quarks the energy density is high.
- Most of the mass we see comes from the quark color fields \rightarrow gluon cloud!

- The color charge of a quark produces a strong field, e.g. a charged particle.
- Between and around bound quarks the energy density is high.
- Most of the mass we see comes from the quark color fields \rightarrow gluon cloud!
- At JLab we probe the nucleon interior with high-momentum electrons.
- The momentum/wavelength (λ) of the electrons sample different sizes.

- The color charge of a quark produces a strong field, e.g. a charged particle.
- Between and around bound quarks the energy density is high.
- Most of the mass we see comes from the quark color fields \rightarrow gluon cloud!
- At JLab we probe the nucleon interior with high-momentum electrons.
- The momentum/wavelength (λ) of the electrons sample different sizes.
- At high momentum you probe close to the quarks \rightarrow bare quark mass.

- The color charge of a quark produces a strong field, e.g. a charged particle.
- Between and around bound quarks the energy density is high.
- Most of the mass we see comes from the quark color fields \rightarrow gluon cloud!
- At JLab we probe the nucleon interior with high-momentum electrons.
- The momentum/wavelength (λ) of the electrons sample different sizes.
- At high momentum you probe close to the quarks \rightarrow bare quark mass.
- At low momentum you probe the whole cloud.

- The cross section reflects the effective size of the target in a scattering experiment.
- The form factors G_F and G_M are two components of the cross sections we measure.

- The cross section reflects the effective size of the target in a scattering experiment.
- The form factors G_F and G_M are two components of the cross sections we measure.
- The ratio of the form factors G_E/G_M for the proton is sensitive to the shape of the mass function.

- The cross section reflects the effective size of the target in a scattering experiment.
- The form factors G_F and G_M are two components of the cross sections we measure.
- The ratio of the form factors G_F/G_M for the proton is sensitive to the shape of the mass function.

We are probing how mass emerges from QCD color fields.

A Connection With Ted

A Connection With Ted

- Build the newest US national lab Jefferson Lab (JLab) in Newport News, VA
- The accelerator CEBAF is a mile-long, racetrack-shaped, superconducting linear accelerator.
- Rapidly varying electric fields push electrons to 12 GeV.
- **Electron beam distributed to four halls.**
- Just completing a \$330M Upgrade.

- Build the newest US national lab Jefferson Lab (JLab) in Newport News, VA
- The accelerator CEBAF is a mile-long, racetrack-shaped, superconducting linear accelerator.
- Rapidly varying electric fields push electrons to 12 GeV.
- **Electron beam distributed to four halls.**
- Just completing a \$330M Upgrade.

| It's a QCD laboratory! |

- Build a large (3-story, 45-ton) particle detector called CLAS12 in Hall B.
- Many layers measure the debris from electron-target collisions.
- 62,000 detecting elements in \approx 40 layers.
- Large magnet bends charged particles to measure momentum.
- Get the 4-momenta of the debris out.
- Will write 5-10 TByte to disk each day.

- Build a large (3-story, 45-ton) particle detector called CLAS12 in Hall B.
- Many layers measure the debris from electron-target collisions.
- 62,000 detecting elements in \approx 40 layers.
- Large magnet bends charged particles to measure momentum.
- Get the 4-momenta of the debris out.
- Will write 5-10 TByte to disk each day.

Some of the Nuclear Physics at the University of Richmond

- The usual suspects: Keegan Sherman, Omair Alam, Alexander Balsamo, David Brakman, Peter Davies, old gray-haired guy.
- Software is important! We are writing code for:
	- methods to align the 33,792 elements of the silicon vertex tracker to within $40 - 50 \ \mu m$.
	- extracting the magnetic form factor G_{M}^{n} from the $eD \to e'p(n)$ and $eD \to e'n(p)$ reactions.
	- **•** measuring the neutron detection efficiency needed for $eD \to e^\prime n(\rho)$ with $e p \to e^\prime \pi^+ n$.
	- monitoring and operating a cryogenic $LD_2 LH₂$ target.
- Rely now on simulation of CLAS12 and cosmic ray data until 2017.
- **•** Four student posters in Vancouver in October.

- JLab is at the frontier of our understanding of the basic properties of matter including most of the known mass.
- First measurement of the nucleon mass curve?
- CLAS12 is a large, complex particle detector about to see first beam.
- Our group is preparing feverishly to understand the deluge of data that is coming - first beams in April!

- The color force binds quarks together via gluon exchange.
- The quarks are never alone.
	- \rightarrow confinement
- At high energy the force is weak.
	- \rightarrow asymptotic freedom

- The color force binds quarks together via gluon exchange.
- The quarks are never alone.
	- \rightarrow confinement
- At high energy the force is weak.
	- \rightarrow asymptotic freedom
- Quantum Chromodynamics QCD nails it.
	- \rightarrow 2005 Nobel to Gross, Wilczek, and Politzer.
	-

- The color force binds quarks together via gluon exchange.
- The quarks are never alone.
	- \rightarrow confinement
- At high energy the force is weak.
	- \rightarrow asymptotic freedom
- Quantum Chromodynamics QCD nails it.
	- \rightarrow 2005 Nobel to Gross, Wilczek, and Politzer.
	- \rightarrow Only at high energy where the color force is weak.

- The color force binds quarks together via gluon exchange.
- The quarks are never alone.
	- \rightarrow confinement
- At high energy the force is weak.
	- \rightarrow asymptotic freedom
- Quantum Chromodynamics QCD nails it.
	- \rightarrow 2005 Nobel to Gross, Wilczek, and Politzer.
	- \rightarrow Only at high energy where the color force is weak.

• The cross section reflects the effective size of the target in a scattering experiment.

- **O** The cross section reflects the effective size of the target in a scattering experiment.
- This cross section can be expressed here in electric and magnetic form factors G_F and G_M .

$$
\tfrac{d\sigma}{d\Omega} = \tfrac{\sigma_{Mott}}{\epsilon(1+\tau)} \left(\epsilon G_E^2 + \tau G_M^2 \right)
$$

- **O** The cross section reflects the effective size of the target in a scattering experiment.
- This cross section can be expressed here in electric and magnetic form factors G_F and G_M .
- The ratio G_E/G_M for the proton has a zero crossing sensitive to the shape of the mass function.

 $l_p G_{Ep}/G_{Mp}$

- **O** The cross section reflects the effective size of the target in a scattering experiment.
- This cross section can be expressed here in electric and magnetic form factors G_F and G_M .
- The ratio G_E/G_M for the proton has a zero crossing sensitive to the shape of the mass function.
- So does G_E/G_M for the neutron.

 $\iota_p \, G_{Ep}/G_{Mp}$

 Q^2 (GeV²) Momentum kick