# What's Inside the Neutron?

Jerry Gilfoyle, University of Richmond



"The Periodic Table"



# **The Periodic Chart**

### NIST Physics Laboratory Holdings by Element

| 1  |    |                 |            | Solid                                            |          |          |          |          |     |     |     |                 |     |     |       |     | 2   |
|----|----|-----------------|------------|--------------------------------------------------|----------|----------|----------|----------|-----|-----|-----|-----------------|-----|-----|-------|-----|-----|
| Н  |    |                 |            | iquid                                            |          |          |          |          |     |     |     |                 |     |     |       |     | He  |
| 3  | 4  |                 |            | Gas                                              |          |          |          |          |     |     |     | 5               | 6   | 7   | 8     | 9   | 10  |
| Li | Be |                 | 1          | Artificialy Prepared                             |          |          |          |          |     |     | В   | С               | Ν   | 0   | F     | Ne  |     |
| 11 | 12 |                 |            | Disabled - no holdings                           |          |          |          |          |     |     | 13  | 14              | 15  | 16  | 17    | 18  |     |
| Na | Mg |                 | -          | Instructions Database Information AI Si P S CI A |          |          |          |          |     |     |     |                 |     | Ar  |       |     |     |
| 19 | 20 | 21              | 22         | 23                                               | 24       | 25       | 26       | 27       | 28  | 29  | 30  | 31              | 32  | 33  | 34    | 35  | 36  |
| κ  | Са | Sc              | Ti         | v                                                | Cr       | Mn       | Fe       | C٥       | Ni  | Cu  | Zn  | Ga              | Ge  | As  | Se    | Br  | Kr  |
| 37 | 38 | 39              | 40         | 41                                               | 42       | 43       | 44       | 45       | 46  | 47  | 48  | 49              | 50  | 51  | 52    | 53  | 54  |
| Rb | Sr | Y               | Zr         | Nb                                               | Мо       | Тс       | Ru       | Rh       | Ρd  | Ag  | Cd  | In              | Sn  | Sb  | Те    | I   | Xe  |
| 55 | 56 |                 | 72         | 73                                               | 74       | 75       | 76       | 77       | 78  | 79  | 80  | 81              | 82  | 83  | 84    | 85  | 86  |
| Cs | Ba | <u>.</u>        | Hf         | Та                                               | W        | Re       | 0s       | Ir       | Pt  | Au  | Hg  | Т               | Pb  | Bi  | Ро    | At  | Rn  |
| 87 | 88 | ÷.              | 104        | 105                                              | 106      | 107      | 108      | 109      | 110 | 111 | 112 |                 | 114 |     | 116   |     |     |
| Fr | Ra |                 | Rf         | Db                                               | Sg       | Bh       | Hs       | Μt       | Uun | Uuu | Uub |                 | Uuq |     | Uuh   |     |     |
|    |    | <u>, </u> , , , |            |                                                  |          |          |          |          |     |     |     |                 |     |     |       |     |     |
|    |    |                 |            |                                                  |          |          |          |          |     |     |     |                 |     |     |       |     |     |
|    |    |                 | 57         | 59                                               | 50       | sn       | 61       | 67       | 63  | GЛ  | 65  | 66              | 67  | 68  | 60    | 70  | 71  |
|    |    |                 | 37<br>  2  | Ce                                               | зэ<br>Dr | Nd       | Dm       | Sm       | EU  | G d | Th  | DV              | He  | Fr  | Tm    | Vh  |     |
|    |    |                 | <b>5</b> 9 | an                                               | C1       | 00<br>00 | 63<br>63 | 91<br>94 | ᅜ   | 90  | 97  | <b>су</b><br>98 |     | 100 | 101   | 102 | 103 |
|    |    |                 | År         | Th                                               | Da       | 92<br>U  | Nn       | DII      | Δm  | Cm  | Bk  | Cf              | Fe  | Em  | Md    | No  | 105 |
|    |    |                 |            |                                                  | - 94     |          | a p      |          |     | ~   | T.  | <b>1</b>        |     |     | 141.0 |     |     |

### What Do We Know?

 The Universe is made of quarks and leptons and the force carriers.



- The atomic nucleus is made of protons and neutrons bound by the strong force.
- The quarks are confined inside the protons and neutrons.
- Protons and neutrons are NOT confined.

| F                                          | ERMI                       | ONS                | matter constituents<br>spin = 1/2, 3/2, 5/2, |                                       |                    |  |  |  |  |
|--------------------------------------------|----------------------------|--------------------|----------------------------------------------|---------------------------------------|--------------------|--|--|--|--|
| Leptor                                     | 15 spin                    | = 1/2              | Qua                                          | Quarks spin = 1/2                     |                    |  |  |  |  |
| Flavor                                     | Mass<br>GeV/c <sup>2</sup> | Electric<br>charge | Flavor                                       | Approx.<br>Mass<br>GeV/c <sup>2</sup> | Electric<br>charge |  |  |  |  |
| $\nu_{e}$ electron neutrino                | <1×10 <sup>-8</sup>        | 0                  | U up                                         | 0.003                                 | 2/3                |  |  |  |  |
| e electron                                 | 0.000511                   | -1                 | d down                                       | 0.006                                 | -1/3               |  |  |  |  |
| $\nu_{\mu}$ muon<br>neutrino               | <0.0002                    | 0                  | C charm                                      | 1.3                                   | 2/3                |  |  |  |  |
| $\mu$ muon                                 | 0.106                      | -1                 | S strange                                    | 0.1                                   | -1/3               |  |  |  |  |
| $ u_{\tau}^{\text{tau}}_{\text{neutrino}}$ | <0.02                      | 0                  | t top                                        | 175                                   | 2/3                |  |  |  |  |
| au tau                                     | 1.7771                     | -1                 | <b>b</b> bottom                              | 4.3                                   | -1/3               |  |  |  |  |



### What is the Force?

 Quantum chromodynamics (QCD) looks like the right way to get the force at high energy.

 The hadronic model uses a phenomenological force fitted to data at low energy. This 'strong' force is the residual force between quarks.



### What is the Force?

 Quantum chromodynamics (QCD) looks like the right way to get the force at high energy.

 The hadronic model uses a phenomenological force fitted to data at low energy. This 'strong' force is the residual force between quarks.



#### How Well Do We Know It?

- We have a working theory of strong interactions: quantum chromodynamics or QCD (B.Abbott, *et al.*, Phys. Rev. Lett., 86, 1707 (2001)).
- The coherent hadronic model (the standard model of nuclear physics) works too (L.C.Alexa, *et al.*, Phys. Rev. Lett., **82**, 1374 (1999)).



### How Well Do We Know It?

We have a working theory of strong interactions: quantum chromodynamics or QCD (B.Abbott, *et al.*, Phys. Rev. Lett., 86, 1707 (2001)).

#### effective target area

 The coherent hadronic model (the standard model of nuclear physics) works too (L.C.Alexa, *et al.*, Phys. Rev. Lett., **82**, 1374 (1999)).



4-momentum transfer squared

### What Don't We Know?

- We can't get QCD and the hadronic model to line up.
   D. Abbott, *et al.*, Phys. Rev Lett. **84**, 5053 (2000).
- 2. NEED TO FIGURE OUT QCD AT THE ENERGIES OF NUCLEI!!



### What We Knew and Now Know About the Neutron.

• Comparison with previous results. Note that *b* and *r* are conceptually different.



### **Results - Comparison with Existing Data and Theory**



### **Results - Comparison with Existing Data and Theory**



### **Results - Comparison with Existing Data and Theory**



#### More To Come



Lomon, Phys.Rev.C 66 045501 (2002); G. MIller, Phys. Rev. C 66, 032201(R) (2002); M.Guidal, M.K. Polyakov, A.Radyushkin, and M. Vanderhaeghen,

Phys. Rev. D 72, 054013 (2005).

### **Experiments at Jefferson Lab**







## The CEBAF Large Acceptance Spectrometer (CLAS)



# More on The CEBAF Large Acceptance Spectrometer (CLAS)

- Drift chambers map the trajectory of the collision. A toroidal magnetic field bends the trajectory to measure momentum.
- Other layers measure energy, time-of-flight, and particle identification.
- Each collision is reconstructed and the intensity pattern reveals the forces and structure of the colliding particles.



### Life on the Frontiers of Knowledge







