Measurement of the Neutron Magnetic Form Factor G_M^n at High Q^2 Using the Ratio Method on Deuterium

Work by L.Baashen (FIU), B.A. Raue (FIU), G. Gilfoyle (Richmond), L.C. Smith (UVA)

Motivation:

- 1- The neutron magnetic form factor is a fundamental observable related to the distribution of magnetization in the nucleon.
- 2- The form factors provide important constraints for GPDs.

Goal:

Extract G_M^n at high Q^2 using the ratio of quasi-elastic e-n and quasi-elastic e-p on

deuteron:
$$R = \frac{d(e,e'n)p}{d(e,e'p)n}$$

Requires:

Precise measurement of the neutron detection efficiency (NDE).

Using RG-A data from fall 2018 (pass 1 cooking) ~ 359 runs.

Measurement of the Neutron Magnetic Form Factor G_M^n at High Q^2 Using the Ratio Method on Deuterium

Work by L.Baashen (FIU), B.A. Raue (FIU), G. Gilfoyle (Richmond), L.C. Smith (UVA)

Analysis status for quasi-elastic e-p/e-n:

- 1. Using RG-B data from spring 2019 (pass 1 cooking) \sim 223 production runs.
- 2. For e-p events: Select two tracks, one electron in Forward Detector and one proton in PCAL/ECAL Detector.
- 3. For e-n events: Select one track, one electron in Forward Detector.

Quasi-elastic event selection:

- 1. Apply cut on $W^2 < 4.0$ to both e-p and e-n events.
- 2. Apply cut on θ_{pq} < 1 (angle between the virtual photon and scattered nucleon 3-momenta) to both to reduce inelastic background.

Progress:

Studying acceptance matching of e-p and e-n events.

