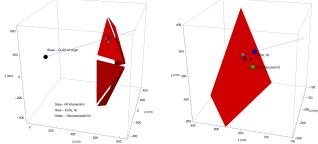
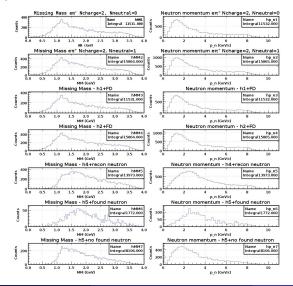

- Motivation Necessary for NDVCS, Gⁿ_M, ... measurements in Run Group B.
- Method Generate tagged neutrons with the $p(e, e'\pi^+(n))$ reaction.
 - Select $e'\pi^+$ final state with no other charged particles.
 - ② Use missing mass to separate out neutrons.



Assume the missing particle is a single neutron and calculate it's
3-momentum and it's trajectory through CLAS12 from the e'π⁺ vertex.

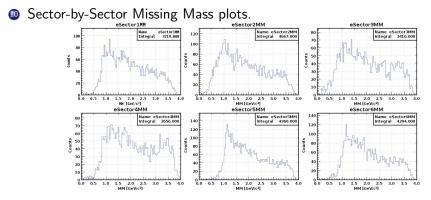
- Ooes the neutron hit the ECAL?
 - \bullet Yes \longrightarrow Keep reconstructed neutron.
 - $\bullet \ \mathsf{No} \longrightarrow \mathsf{Skip} \ \mathsf{event}.$
- Get intersection of predicted neutron trajectory and front face of ECAL. Save.
- O Loop over neutral ECAL hits.
 - Get intersection of ray from the $e'\pi^+$ vertex to the ECAL hit with the ECAL face.

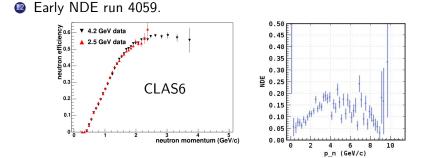


Ocontinuing loop over neutral ECAL hits.

- Calculate ΔR , the distance between the reconstructed neutron intersection and the ECAL hit intersection.
- ΔR small \rightarrow Missing Mass em⁺ Npart<4 10000 120 Integral 1772. found neutron. 8000 100 **р(е.е'п+)**Х • ΔR large \rightarrow skip. 6000 ounts Run 4059 CLAS6, 2.5 GeV 40001 2000 21 ΔR (cm) 50 100 AR (cm) NDE = _____found reconstructed

8


Test plots Run 4059.


Jerry Gilfoyle

NDE in RGB

4 / 6

- Next Steps
 - Continue studying the ΔR cut.
 - Test codes on lower energy data.
 - Test codes on simulations.

