Future Measurements of the Nucleon ElasticElectromagnetic Form Factors at Jefferson Lab

G.P. GilfoyleUniversity of Richmond, Richmond, VA 23173

Outline

- 1. Scientific Motivation
- 2. Necessary Background
- 3. The Measurements
- 4. What we hope to learn.
- 5. Summary and Conclusions

Koutoubia Mosque

Scientific Motivation

- Nucleon elastic electromagnetic form factors (EEFFs) are fundamental quantities.
- At low Q^2 describe the distribution of charge and magnetization within the proton and neutron.
- At higher Q^2 reflect the quark and gluon structure of the nucleon.
- **Provide rigorous testing ground for nuclear models and QCD.**
- **Needed for nuclear structure and parity violation experiments.**

Scientific Motivation

- Nucleon elastic electromagnetic form factors (EEFFs) are fundamental quantities.
- At low Q^2 describe the distribution of charge and magnetization within the proton and neutron.
- At higher Q^2 reflect the quark and gluon structure of the nucleon.
- **Provide rigorous testing ground for nuclear models and QCD.**
- Needed for nuclear structure and parity violation experiments.

EEFFs have played an essential role in nuclear andnucleon structure for more than ^a half century.

Where We Are: the Last Decade.

- The ratio G_E^p/G_M^p ments diverged from previous Rosenbluth separations. $\frac{p}{M}$ from recoil polarization measure-
om previous Rosenbluth senarations
	- Two-photon exchange (TPE).
	- Effect of quark orbital angular momentum (OAM).
- High-precision, low- Q^2 results at Bates and JLab show clear deviations from the dipole (see Ron Gilman's talk).
- The neutron magnetic form factor G_Λ^n M $\frac{n}{M}$ still follows the dipole form.
- High- Q^2 2 $G_{\bm{\,r}}^n$ E $\frac{n}{E}$ opens the door to flavor decomposition.

 0.6

 0.4

 0.2

 0.0

 0.5

 1.0

 1.5

 $\mu_n G_E^n/G_M^n$

RCOM GPD

Our Fit

2.5

 2.0

 $--$ VMD $-$ DSE

Where We Are: the Last Decade.

- The ratio G_E^p/G_M^p ments diverged from previous Rosenbluth separations. $\frac{p}{M}$ from recoil polarization measure-
om previous Rosenbluth senarations
	- Two-photon exchange (TPE).
	- Effect of quark orbital angular momentum (OAM).
- High-precision, low- Q^2 results at Bates and JLab show clear deviations from the dipole (see Ron Gilman's talk).
- The neutron magnetic form factor G_Λ^n M $\frac{n}{M}$ still follows the dipole form.
- High- Q^2 2 $G_{\bm{\,r}}^n$ E

What We Hope to Learn.

- EEFFs are ^a major focus of the 12-GeV Upgrade at JLab.
- Reveal the internal landscape of the nucleon and nuclei.
- Test QCD and confinement in the non-perturbative regime.
- Map the transition from the hadronic picture to QCD.

What We Hope to Learn.

- EEFFs are a major focus of the 12-GeV Upgrade at JLab.
- Reveal the internal landscape of the nucleon and nuclei.
- **•** Test QCD and confinement in the non-perturbative regime.
- Map the transition from the hadronic picture to QCD.

'Recommendation I ...completion of the ¹²GeV CEBAF Upgrade at Jefferson Lab.'

NSAC Long Range Plan (2007)

Some Necessary Background

EEFFs cross section described with Dirac (F_{1}) and Pauli (F_{2}) form factors

$$
\frac{d\sigma}{d\Omega} = \sigma_{Mott} \left[\left(F_1^2 + \kappa^2 \tau F_2^2 \right) + 2\tau \left(F_1 + \kappa F_2 \right)^2 \tan^2 \left(\frac{\theta_e}{2} \right) \right]
$$

where

$$
\sigma_{Mott} = \frac{\alpha^2 E' \cos^2(\frac{\theta_e}{2})}{4E^3 \sin^4(\frac{\theta_e}{2})}
$$

and κ is the anomalous magnetic moment, $E\left(E^{\prime}\right)$ is the incoming (outgoing) electron energy, θ is the scattered electron angle and $\tau=Q^2$ $^2/4M^2$.

For convenience use the Sachs form factors.

$$
\frac{d\sigma}{d\Omega} = \sigma_{Mott} \left(\frac{(G_E^n)^2 + \tau (G_M^n)^2}{1+\tau} + 2\tau \tan^2 \frac{\theta_e}{2} (G_M^n)^2 \right)
$$

where

$$
G_E = F_1 - \tau F_2
$$

$$
G_M = F_1 + F_2
$$

Some Necessary Background

EEFFs cross section described with Dirac (F_{1}) and Pauli (F_{2}) form factors

$$
\frac{d\sigma}{d\Omega} = \sigma_{Mott} \left[\left(F_1^2 + \kappa^2 \tau F_2^2 \right) + 2\tau \left(F_1 + \kappa F_2 \right)^2 \tan^2 \left(\frac{\theta_e}{2} \right) \right]
$$

where

$$
\sigma_{Mott} = \frac{\alpha^2 E' \cos^2(\frac{\theta_e}{2})}{4E^3 \sin^4(\frac{\theta_e}{2})}
$$

and κ is the anomalous magnetic moment, $E\left(E^{\prime}\right)$ is the incoming (outgoing) electron energy, θ is the scattered electron angle and $\tau=Q^2$ $^2/4M^2$.

Some More Background - Interpreting the EEFFs

At low momentum transfer (Q^2 transforms of the densities of charge and magnetization. $^2\ll M_\Lambda^2$ $_{N}^{2})\ G_{E}$ $_E$ and G_M $_M$ are the Fourier

$$
G_E(Q^2) = \int \rho(r) e^{-i\vec{q}\cdot\vec{r}} d^3r
$$

where \vec{q} is the 3-momentum transferred by the electron.

At high Q^2 relativistic effects make the interpretation more interesting!

NSAC Long Range Plan

Arrington et al., J.Phys.Conf.Ser. 299 (2011) 0120

Some More Background - Interpreting the EEFFs

At low momentum transfer (Q^2 transforms of the densities of charge and magnetization. $^2\ll M_\Lambda^2$ $_{N}^{2})\ G_{E}$ $_E$ and G_M $_M$ are the Fourier

$$
G_E(Q^2) = \int \rho(r) e^{-i\vec{q}\cdot\vec{r}} d^3r
$$

where \vec{q} is the 3-momentum transferred by the electron.

At high Q^2 relativistic effects make the interpretation more interesting!

NSAC Long Range Plan

Arrington et al., J.Phys.Conf.Ser. 299 (2011) 0120

Where We Are Going: New Experiments.

The JLab Lineup

PAC approval for 224 days of running in the first five years.

How We Will Get There: Jefferson Lab.

How We Will Get There: Jefferson Lab.

The Experiment - New Detectors

Hall A - High Resolution Spectrometer (HRS)pair, BigBite, neutron detector, and specializedinstallation experiments.

Hall C - New Super High Momentum Spectrometerto be used withthe existing High Momentum Spectrometer.

Hall B - CLAS12 large acceptancespectrometer operating at high luminosity with toroid (forward detector)and solenoid (central detector).

large acceptance

detector based on

construction.

GlueX Detector

Proton Magnetic Form Factor -Gp M

- E12-07-108 in Hall A (Gilad, Moffitt, Wojtsekhowski, Arrington).
- Precise measurement of ep elastic cross section and extract $G^p_{M}.$
- Both HRSs in electron mode.
- Beamtime: 24 days.

$$
Q^2 = 7.0 - 15.5 \,\text{GeV}^2 \,(1.0, 1.5 \,\text{GeV}^2 \,\text{steps}).
$$

Significant reduction in uncertainties:

- Two-Photon Exchange is ^a major sourceof uncertainty \rightarrow vary ϵ to constrain.
	- Sets the scale of other EEFFs.

Proton <code> Form Factor Ratio G^p_F </code> ${p \over E}/G^{p}_{M}$

- E12-07-109 (GEp(5)) in Hall A (Brash, Jones, Perdrisat, Pentchev, Cisbani, Punjabi, Khandaker, Wojtsekhowski).
- Polarization transfer using ${\bf \rm H}(\vec{e},e'\vec{p})$:

$$
\frac{G_E^p}{G_M^p} = -\frac{P_t}{P_l} \frac{E + E'}{2M} \tan\left(\frac{\theta_e}{2}\right)
$$

Electron arm: EM calorimeter (BigCal).

- Proton arm: new, large-acceptance magnetic spectrometer (SBS) with double polarimeter, and hadron calorimeter.
- Beamtime: 45 days.
- Kinematics and Uncertainties:

Combined with GEp(4).

Proton <code> Form Factor Ratio G^p_F </code> ${p \over E}/G^{p}_{M}$

- E12-07-109 (GEp(5)) in Hall A (Brash, Jones, Perdrisat, Pentchev, Cisbani, Punjabi, Khandaker, Wojtsekhowski).
- Polarization transfer using ${\bf \rm H}(\vec{e},e'\vec{p})$:

$$
\frac{G_E^p}{G_M^p} = -\frac{P_t}{P_l} \frac{E + E'}{2M} \tan\left(\frac{\theta_e}{2}\right)
$$

Electron arm: EM calorimeter (BigCal).

- Proton arm: new, large-acceptance magnetic spectrometer (SBS) with double polarimeter, and hadron calorimeter.
- Beamtime: 45 days.
- Kinematics and Uncertainties:

Combined with GEp(4).

Proton <code> Form Factor Ratio G^p_F </code> ${p \over E}/G^{p}_{M}$

- E12-07-109 (GEp(5)) in Hall A (Brash, Jones, Perdrisat, Pentchev, Cisbani, Punjabi, Khandaker, Wojtsekhowski).
- Polarization transfer using ${\bf \rm H}(\vec{e},e'\vec{p})$:

$$
\frac{G_E^p}{G_M^p} = -\frac{P_t}{P_l} \frac{E + E'}{2M} \tan\left(\frac{\theta_e}{2}\right)
$$

Electron arm: EM calorimeter (BigCal).

- Proton arm: new, large-acceptance magnetic spectrometer (SBS) with double polarimeter, and hadron calorimeter.
- Beamtime: 45 days.
- Kinematics and Uncertainties:

Combined with GEp(4).

G.P.Gilfoyle Future Form Factor Measurements – p. 11

\mathbf{N} eutron Magnetic Form Factor G_Λ^n $M \,$ $\frac{n}{M}$ – **1**

- E12-07-104 in Hall B (Gilfoyle, Hafidi, Brooks).
- Ratio Method on Deuterium (2 H $(e,e^{\prime}p)n$ and $^{2}{\rm H}(e,e^\prime n)p)$:

$$
R = \frac{\frac{d\sigma}{d\Omega}[{}^{2}\text{H}(e,e'n)_{QE}]}{\frac{d\sigma}{d\Omega}[{}^{2}\text{H}(e,e'p)_{QE}]}
$$

$$
= a \times \frac{\sigma_{Mott}\left(\frac{(G_{E}^{n})^{2} + \tau (G_{M}^{n})^{2}}{1+\tau} + 2\tau \tan^{2}\frac{\theta_{e}}{2}(G_{M}^{n})^{2}\right)}{\frac{d\sigma}{d\Omega}[{}^{1}\text{H}(e,e')p]}
$$

where \emph{a} is nuclear correction.

- Precise neutron detection efficiencyneeded to keep systematics low.
	- tagged neutrons from $p(e, e^\prime \pi^+ n).$
	- Dual LD_2-LH_2 target for *in situ* calibrations.
- Kinematics: $Q^2 = 3.5 13.0~(\mathrm{GeV/c})^2$.
- Beamtime: 30 days.

Systematic uncertainties less than 2.5% across full Q^2 range.

\mathbf{N} eutron Magnetic Form Factor G_Λ^n $M \,$ $\frac{n}{M}$ – 2

- E12-09-019 in Hall A (Quinn, Wojtsekhowski, Gilman).
- Ratio Method on Deuterium as in Hall B:

 $R=\,$ $d\,\sigma$ d : Ω[$[^2H(e,e$ $\rq{}^{\prime}n)_{QE}]$ $d\sigma$ $\frac{d\sigma}{d\Omega}[{}^2\mathrm{H}(e,e'p)_{QE}]$ [

- Electron arm: BigBite spectrometer.
- Hadron arm: hadron calorimeter (HCal).
- Neutron detection efficiency:
	- Use $p(\gamma, \pi^+)n$ for tagged neutrons. \vec{e}
	- End-point method.
- Kinematics: $Q^2 = 3.5 13.5~(\mathrm{GeV/c})^2$.
- Beamtime: 25 days.
- Systematic uncertainties $< 2.1\%$.
- Two G^n control for the systematic error' (PAC34). 2011-09-25 19:09:58 **Qarage Control for the systematic error'** (PAC34). M $\frac{n}{M}$ measurements 'allow a better
for the systematic error' (PAC34)

\mathbf{N} eutron Magnetic Form Factor G_Λ^n $M \,$ $\frac{n}{M}$ – 2

- E12-09-019 in Hall A (Quinn, Wojtsekhowski, Gilman).
- Ratio Method on Deuterium as in Hall B:

 $R=\,$ $d\,\sigma$ d : Ω[$[^2H(e,e$ $\rq{}^{\prime}n)_{QE}]$ $d\sigma$ $\frac{d\sigma}{d\Omega}[{}^2\mathrm{H}(e,e'p)_{QE}]$ [

- Electron arm: BigBite spectrometer.
- Hadron arm: hadron calorimeter (HCal).
- Neutron detection efficiency:
	- Use $p(\gamma, \pi^+)n$ for tagged neutrons. $\vec{\epsilon}$ ັ
	- End-point method.
- Kinematics: $Q^2 = 3.5 13.5~(\mathrm{GeV/c})^2$.
- Beamtime: 25 days.
- Systematic uncertainties $< 2.1\%$.
- Two G^n control for the systematic error' (PAC34). 2011-09-25 19:11:15 **Q²(GeV²)** M $\frac{n}{M}$ measurements 'allow a better
for the systematic error' (PAC34)

- E12-09-016 in Hall A (Cates, Wojtsekhowski, Riordan).
- Double Polarization Asymmetry: Get A^V_{∞} $e n$ \bar{f}_n from $^3\vec{\text{He}}(\vec{e}, e'n)pp.$
- Longitudinally polarized electron beam.
- $^3{\rm He}$ target polarized perpendicular to the momentum transfer.
- Electron arm: BigBite spectrometer.
- Neutron arm: hadron calorimeter HCal (overlap with GEp(5) and Hall A G_{Λ}^{n} $\frac{n}{M}$).
- Beamtime: 50 days.
- Kinematics and Uncertainties:

$$
A_{en}^V = \frac{-2\sqrt{\tau(\tau+1)}\tan(\theta_e/2)\cos\phi^* \sin\theta^* G_E^n/G_M^n}{(G_E^n/G_M^n)^2 + \tau/\epsilon}
$$

$$
+ \frac{-2\tau\sqrt{1+\tau+(\tau+1)^2}\tan^2(\theta_e/2)\tan(\theta_e/2)\cos\theta^*}{(G_E^n/G_M^n)^2 + \tau/\epsilon}
$$

$$
\text{ where } \epsilon \; = \; 1/\left(1+2(1+\tau)\tan^2(\tfrac{\theta_e}{2})\right)
$$

- E12-09-016 in Hall A (Cates, Wojtsekhowski, Riordan).
- Double Polarization Asymmetry: Get A^V_∞ $e\hspace*{0.8pt} n$ \bar{f}_n from $^3\vec{\text{He}}(\vec{e}, e'n)pp.$
- Longitudinally polarized electron beam.
- $^3{\rm He}$ target polarized perpendicular to the momentum transfer.
- Electron arm: BigBite spectrometer.
- Neutron arm: hadron calorimeter HCal (overlap with GEp(5) and Hall A G_{M}^{n}).
- Beamtime: 50 days.
- Kinematics and Uncertainties:

- E12-09-016 in Hall A (Cates, Wojtsekhowski, Riordan).
- Double Polarization Asymmetry: Get A^V_∞ $e\hspace*{0.8pt} n$ \bar{f}_n from $^3\vec{\text{He}}(\vec{e}, e'n)pp.$
- Longitudinally polarized electron beam.
- $^3{\rm He}$ target polarized perpendicular to the momentum transfer.
- Electron arm: BigBite spectrometer.
- Neutron arm: hadron calorimeter HCal (overlap with GEp(5) and Hall A G_{Λ}^{n} $\frac{n}{M}$).
- Beamtime: 50 days.
- Kinematics and Uncertainties:

- E12-11-009 in Hall C (Anderson, Arrington, Kowalski, Madey, Plaster, Semenov).
- Polarization transfer using $^2\mathrm{H}(\vec{e},e'\vec{n})p$:

$$
\frac{G_E^n}{G_M^n} = -\frac{P_t}{P_l} \frac{E + E'}{2M} \tan\left(\frac{\theta_e}{2}\right)
$$

- Electron arm: Super High MomentumSpectrometer (SHMS).
- Neutron arm: neutron polarimeter withtapered-gap neutron-spin-precessionmagnet and proton recoil detection.
- Kinematics: $\mathrm{Q}^2=3.95, 6.88\;(\mathrm{GeV/c})^2$.
- Beamtime: 50 days.
- Systematic uncertainties about 2-3%.
- Statistical uncertainties about 10-16%.
- Complementary to the $^3{\rm He}$ experiment.

Theory Progress

The EEFFs emerge from Quantum Chromodynamics (QCD), but calculationshere require non-perturbative methods.

Vector Meson Dominance (VMD)and dispersion analyses fit all fourEEFFs, but use many parameters.

Theory Progress

The EEFFs emerge from Quantum Chromodynamics (QCD), but calculationshere require non-perturbative methods.

- Vector Meson Dominance (VMD)and dispersion analyses fit all fourEEFFs, but use many parameters.
- Constituent Quark Models (CQMs)highlight relativity, but don't captureall properties of QCD.
- Dyson-Schwinger calculations are built on QCD, manifestly relativistic, and useconstituent quarks (including the di-

Theory Progress

The EEFFs emerge from Quantum Chromodynamics (QCD), but calculationshere require non-perturbative methods.

- Vector Meson Dominance (VMD)and dispersion analyses fit all fourEEFFs, but use many parameters.
- Constituent Quark Models (CQMs)highlight relativity, but don't captureall properties of QCD.
- Dyson-Schwinger calculations are built on QCD, manifestly relativistic, and useconstituent quarks (including the di-
- pQCD-inspired calculations predict logarithmic scaling at high \mathbf{Q}^2 above the range of existing data, but it is observedin the ratio F_2^p/F_1^p .

G.P.Gilfoyle Future Form Factor Measurements

Nuclear Structure - GPDs

- Generalized Parton Distributions (GPDs)connect the valence quark distributionsin transverse space and longitudinal momentum.
- EEFFs are the first moments of the GPDsand provide an important constraint.

$$
\int dx \sum H^q(x,\zeta,t) = F_1(t) \quad \text{Dirac FF}
$$

$$
\int dx \sum E^q(x,\zeta,t) = F_2(t) \quad \text{Pauli FF}
$$

- Unravel the mass $M(t),$ angular momentum $J(t)$, and force and pressure $d_1(t).$
- Nucleon form factor measurements complement the Semi-Inclusive Deep Inelastic Scattering program.

Transverse spatial distributions.

Longitudinalmomentumdistributions.

Correlated spatial and momentum distributions.

Nuclear Structure - GPDs

EEFFs are the first moments of the GPDsand provide an important constraint.

> \sim \sim \sim See Michel Garcon's talk on Wednesday.

 $\int dx \sum E^q(x,\zeta,t) = F_2(t)$ Pauli FF

- Unravel the mass $M(t),$ angular momentum $J(t)$, and force and pressure $d_1(t).$
- Nucleon form factor measurements complement the Semi-Inclusive Deep Inelastic Scattering program.

tum distributions.

 \int

Nuclear Structure - Flavor Decomposition

- By measuring all four EEFFs we have an opportunity to unravel the contributions of the u and d quarks.
- Assume charge symmetry, no s quarks and use (Miller et al. Phys. Rep. **¹⁹⁴**, ¹ (1990))

$$
F_{1(2)}^u = 2F_{1(2)}^p + F_{1(2)}^n \qquad F_{1(2)}^d = 2F_{1(2)}^n + F_{1(2)}^p
$$

Nuclear Structure - Flavor Decomposition

- By measuring all four EEFFs we have an opportunity to unravel the contributions of the u and d quarks.
- Assume charge symmetry, no s quarks and use (Miller et al. Phys. Rep. **¹⁹⁴**, ¹ (1990))

$$
F_{1(2)}^u = 2F_{1(2)}^p + F_{1(2)}^n \qquad F_{1(2)}^d = 2F_{1(2)}^n + F_{1(2)}^p
$$

- AND different from the proton and neutron form factors.
- Evidence of di-quarks, s quark influence, ...?

Lattice QCD

- Lattice gauge theory is the only means of *ab initio* QCD calculations in the non-perturbative regime.
- Computationally challenging.
- EEFFs are an early test of lQCD.
	- The isovector form of the EEFFs is

$$
F_{1,2}^V=\frac{F_{1,2}^p-F_{1,2}^n}{2}
$$

where

$$
F_1 = \frac{\tau G_M + G_E}{1 + \tau} \qquad F_2 = \frac{G_M - G_E}{1 + \tau}
$$

where $\tau=Q^2/4M^2$.

- This form of the EEFFs does not have disconnected diagrams whichare computationally intensive.
- Expect EEFF calculation in the next decade. PoS **LAAT2006**, ¹²¹ (2006).

Additional form factor studies after the ¹² GeV Upgrade.

Summary and Conclusions

- **Large gains over the last decade in physics** understanding of the EEFFs built on new technologiesand capabilities.
- **Major changes in our understanding of nucleon** structure.
- Jefferson Lab will mount ^a broad assault on the EEFFsand will significantly expand the physics reach of ourunderstanding.
- Discovery potential in mapping out nucleon structure and understanding QCD.

Additional Slides

G.P.Gilfoyle Future Form Factor Measurements - p. 23/3

Jefferson Lab ¹² GeV Upgrade Schedule

Current World Data on EEFFs

Proton form factors have small uncertainties and reach higher Q^2 .

- Neutron form factors are sparse and have large uncertainties.
- Significant deviations from the dipole form factor.

$\mathbf{CLAS12}\ \mathbf{Detector}\ \mathbf{and}\ G^n_{\Lambda}$ $M \,$ $\frac{n}{M}$ Target

$$
- \text{Jefferson} \text{Lab} =
$$

$\mathbf{CLAS12}\ \mathbf{Detector}\ \mathbf{and}\ G^n_{\Lambda}$ $M \,$ $\frac{n}{M}$ Target

$$
- \mathcal{G}_{e\text{-}f\text{-}lenson} \mathcal{L}_{ab} -
$$

Hermiticity Cut

Challenge: Separate QE events from high- Q^2 , inelastic background.

1. θ_{pq} cut: QE neutrons/protons emitted in a narrow cone along \vec{q} . 2. **Hermiticity cut:** No additional particles in the event.

Calibrations - Neutron Detection Efficiency

- 1. Use the $ep\rightarrow e^\prime \pi^+ n$ reaction from the hydrogen target as a source of tagged neutrons in the TOF and calorimeter.
- 2. $\,$ For electrons, use CLAS12 tracking. For π^+ , use positive tracks, cut on the difference between β measured from tracking and from time-of-flight to reduce photon background.
- 3. For neutrons, ep $\;\rightarrow$ $\;e'\pi^{+}X$ for $0.9 < m_X < 0.95 \ {\rm GeV/c^2}.$
- 4. Use the predicted neutron momentum \vec{p}_n to determine the location of ^a hit in the fiducial regionand search for that neutron.
- 5. The CLAS6 G_Λ^n M $\frac{n}{M}$ results.
- 6. GSIM12 simulation results forCLAS12 are shown in the inset. Proposed measurement will extend to higher momentum wherethe efficiency is stable.

Simultaneous, *in situ* calibrations with dual hydrogendeuterium target.

Calorimeter efficiency

The Ratio Method - Systematic Errors

 G_\cdot^n M $\frac{n}{M}$ is related to the $e-n/e-p$ by the following (neutron (n) and proton (p)).

$$
G_M^n = \pm \sqrt{\left[R \left(\frac{\sigma_{mott}^p}{\sigma_{mott}^n} \right) \left(\frac{1 + \tau_n}{1 + \tau_p} \right) \left(G_E^p \right)^2 + \frac{\tau_p}{\varepsilon_p} G_M^p \right) - G_E^{n-2} \right] \frac{\varepsilon_n}{\tau_n}}
$$

Upper limits on systematic error from the CLAS6 measurement (ΔG_{h}^{n} $\binom{n}{M}/G_{N}^{n}$ M $\frac{n}{M} = 2.7\%).$

≤**3% systematic uncertainty**

CLAS12 Goal:

Statistical Uncertainties

- **Statistical Uncertainty: less** than 3% for Q^2 much better at lower Q^2 $^{2} \approx 11.5~\textrm{GeV}^{2}$;
; .
- Systematic Uncertainty: less 2010-05-18 10:39:38 than 3% across the full Q^2 range.

Statistical Uncertainties

- Q^2 = 3.5 but statistical uncertainty− -15.0 GeV^2 ,exceeds systematic uncertainty at highest Q^2 .
- **Statistical Uncertainty: less** than 3% for Q^2 much better at lower Q^2 $^{2} \approx 11.5~\textrm{GeV}^{2}$;
; .
- Systematic Uncertainty: less 2010-05-18 10:39:38 than 3% across the full Q^2 range.

Approved for 30 days of running, A $^−$ rating.

 World's Data Uncertainty

 $\,M$

 $G_{\,s\,\boldsymbol{\ell}}^{n}$ with higher r

 10^{2}

 $10^{\text{-}1}$

0 2 4 6 8 10 12 14

CLAS12 Anticipated Statistical Uncertainty

Will extend the Q^2 range of

 $\frac{n}{M}$ with higher precision.

)2 (GeV2 Q

CLAS12 AnticipatedSystematic Uncertainty

More on the CLAS12 Detector

Update for E12-07-104: Comparison of CLAS12 and E12-09-019methods

1. To reduce inelastic background further, reduce the maximum $\theta_{pq}.$

3. At higher Q^2 of the inelastic component will continue to in- 2 (*i.e.* in PR10-005), the width crease.

