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What is the Mission of Jefferson Lab?

e Basic research into the quark nature of the atomic nucleus.
e Probe the quark-gluon structure of hadronic matter and how it
evolves within nuclei.

o Test the theory of
the color force Quan-
tum Chromodynamics
(QCD) and the nature
of quark confinement.

e Completed doubling of
beam energy and up-
graded detectors in
2016.
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Solving QCD one of the six Millenium Prize Problems
from the Clay Mathematics Institute.

Jerry Gilfoyle Hunting for Quarks 2/35



What Do We Know?

@ The Universe is made of I
quarks and |eptOnS and FERMIONS spin = 1/2, 3/2, 5/2, ... :
! Leptons spin =1/2 Quarks  spin =1/2
the force carriers. Mass Electric Approx. Electric

Flavor > Flavor Mass
GeVic charge GeVic2 charge

BOSONS &in=0 15, ] =
Unified Electroweak spin=1] | Strong (color) s W lightest . (0-2)x10 o Juw 0.002 23
Electric Name € electron 0.000511 -1 d down 0.005  -1/3
gmgm Yy middle _ (0009-2)x10° 0 | € charm 13 23
Higgs Boson  spin = 0 H muon 0.106 -1 S strange 0.1 -1/3
Electric
wt 80.39 che X
szo — Vi heaviest  (005-2)x10™° 0 |t wp 173 213
91.188
Zbosan ’ T ta 1777 1 |bobotom 42 -3

@ The atomic nucleus is made of pro-
tons and neutrons bound by the
strong force.

@ The quarks are confined inside the
protons and neutrons.
@ Protons and neutrons are NOT confined.

‘Pmton ' 4
: \Q/electmmngneﬁc
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How Well Do We Know It?

@ We have a working theory of strong

interactions:

quantum chromody-

namics or QCD (B.Abbott, et al.,
Phys. Rev. Lett., 86, 1707 (2001)).

/

effective area

@ The coherent hadronic model (the
standard model of nuclear physics)
works too (L.C.Alexa, et al., Phys.
Rev. Lett., 82, 1374 (1999)).
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What n't We Know?

o Matter comes in pairs of mattor consfituon
. P FERMIONS 552 5235555, .

quarkS or tr|p|et5- Leptons spin =1/2 Quarks  spin =1/2
. ri Approx. Electri
o We are mostly triplets (pro- [Nl
tons and neutrons). Volghiest.  (0-2x10~° o Juw 0002 23

0 € electron 0.000511 -1 d down 0.005 -1/3

o More than 99% of our mass |y mue  oomomo® o |cowm 13 2
|s in nucleons M muon 0.106 =i S strange 0.1 -1/3

o Proton — 2 ups + 1 down. [MR# cosaxo® o fte s 2
T tau 1777 = b bottom 42 -1/3

o Neutron — 1 up + 2 downs.
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A quiz: How much does the proton weigh?
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What Don’t We Know?

o Matter comes in pairs of

matter constituents
FERMIONS spin = 1/2, 3/2, 5/2, ...

quarks or triplets' Leptons spin =1/2 Quarks spin =1/2
. i Approx. i
o We are mostly triplets (pro-  ([RCEEEERs oL
tons and neutrons). Ve, o-2x107°
0 € electron 0.000511
o More than 99% of our mass [y, mase . (a0 10
is in nucleons. - muen 0.106
e Proton — 2 ups + 1 down. |
T tau
o Neutron — 1 up + 2 downs.

A quiz: How much does the pyoton weigh?
Mp = 2Myp + Maown= 2(2 MeV /c?) +5 MeV /c?
=939 MeV/c> OOOPS!!I??7?
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What We Measure

@ High-energy electron beams are

ELE(%TRON ‘SCATTERING
scattered off protons and/or 0 \\ Frow onogen |
3
nuclear targets - analogous to a .
ginormous electron microscope. AN ot ance,
g 107%° POINT MOM:ENT_
. .. . & (ANOMALOUS'
@ The debris from the collisions is £ \\ cunve
s N
collected and analyzed to measure z [ o e \\‘
PO B B S\ N
energy, momentum, etc. 5 remben] S~
@ The pattern of the debris (angles, g RN
URVI N

counts, energies) reveal the forces o s oo
|n actlon during the C0||i5|on LABORATORY ANGLE OF SCATTERING (IN DEGREES)

F16. 5. Curve (a) shows the theoretical Mott curve for a spinless
point prutzn.hCIB'Ve (b) shows the theoretical (Cu)rvl:, f(;:' a point
H proton with the Dirac magnetic moment, curve (c) the theoretical

@ At CEBAF ene rgies the electrons curve for a point proton having e aromalous contribution in
addition to the Dirac value of magnetic moment. The theoretical

. curves (b) and (c) are due to Rosenbluth.® The experimental

are quantum m echanical waves curve falls between curves (b) and (c). This deviation from the

theoretical curves represents the effect of a form factor for the

. . . . proton and indicates structure within the proton, or alternatively,
probl ng deep inside the nuclei. a breakdown of the Coulomb law. The best it indicates a size
of 0.70X 101 cm.
o Rigorously test QCD in the McAllister and Hofstadter, PR 102, 851 (1956)

non-perturbative regime.
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What We'll Learn

@ A wee bit of quantum mechanics.

o Matter with momentum magnitude p can act like a wave with a
wavelength A defined by the deBroglie equation.

h h
== S0 A=—
P=1 )
e Lower momentum implies a larger wavelength. High momentum

particles probe smaller regions of space.
@ Dyson-Schwinger Equations (DSE)

e Equations of motion of quantum 04|
field theory.

e Deep connection to confinement,
dynamical chiral symmetry breaking.

e Infinitely many equations, gauge el
dependent — Choose well! Nl

o DSE are a potential solution to 0 . > 3 y
QCD. p (GeV)

(GeV)

Cloét et al
PRL 111, 101803 (2013)

M(p)
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What We'll Learn

© Anti-de Sitter space (AdS) describes spacetime with a negative curvature in

Einstein’s theory of General Relativity and can be formed from string theory.

@ Conformal field theory (CFT) is a quantum field theory (like QCD) invariant

under conformal transformations. A conformal map is a function that locally
preserves angles, but not necessarily lengths.

© The CFT fields are strongly interacting - hard to solve.

@ The gravitational fields (AdS) are weakly interacting - more tractable.

© AdS/CFT approach gives good agreement with existing form factor data.

electric/magnetic

effective areas

1.0 :
| AdS/CFT-Calculation = /-« «=sees = o ooo o]
Sufian et al., PRD 01411 (2017)

0.8

0.6
0.4

0.2
—— LFHQCD, r=2.08

1n GE (Q%)/GY (Q)

0.0 LFHQCD, r=1.0
#  World data
_02 1 L
10! 10° 10!

Q* (GeV?*)
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Coupling Constants of Fundamental Forces

@ Coupling constants tell us the strength of
a force compared with other forces.

@ For example, The electromagnetic

Couplings constant is 2mkee?/(E,\).
Strong | as 1 . @ The strong coupling constant as between
Weak | aw | 10~ quarks varies with distance - gets stronger
EM o | 1/137 with separation — confinement.
: -39
Gravity | ag | 10 @ At high energies QCD can be solved

analytically using perturbation theory
(Nobel Prize 2004).

@ At moderate energies (=~ 1 GeV) that
method fails - as goes to infinity.

@ The AdS-CFT and DSE approaches have
been brought into agreement.

Jerry Gilfoyle Hunting for Quarks 10 / 35



What We’'ll Learn - Measured Couplings

High-Energy Calculations (red line)
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What We’'ll Learn - Measured Couplings

Jefferson Lab Data (blue dots)
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What We’'ll Learn - Measured Couplings

Holography Calculations (orange line)
i
c T 5 "
i 3 o Seemne s y
é '.t“.n °
& s
@ .n'-. °
e
L2 9 f.
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3 4
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1 K, High-energy calculations
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What We’'ll Learn - Measured Couplings

QCD Equations of Motion Calculations (purple line)
Ca Holography calculations
= o
b= 34
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How Do We Do All This? (Step 1)

Start at your local mile-long,
high-precision, 12-GeV electron
accelerator.

The Continuous Electron Beam
Accelerator Facility (CEBAF)
produces beams of unrivaled
quality.

Electrons do up to five laps, are
extracted, and sent to one of

four experimental halls.

Four halls can run simultane-
ously.

Jerry Gilfoyle

Hunting for Quarks

Source Superconducting
Linacs

Beam switchyard

©J Experimental Halls
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How Does CEBAF Do That?

Accelerate your electrons to high energy.

0.4-GeV Linac
(20 Cryomodales)

0.4-GeV Linac
(20 Cryomodules)

45-MeV Injector

(2114 Cryomodules) Y 5" Kef 7
— Extraction™~_
Elements
End J
Statons

What happens inside the cavity? Feed it with oscillating, radio-frequency
power at 1.5 GHz! In each hall beam buckets are about 200 picoseconds

long and arrive every 2 nanoseconds.

B.
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How Do We Measure the Nucleus? (Step 2)

@ Add one 45-ton, $80-million
radiation detector: the
CEBAF Large Acceptance
Spectrometer (CLAS12).

Beamline

@ CLAS covers a large fraction
of the total solid angle at for-
ward angles.

@ Has over 100,000 detecting 1
elements in about 40 layers.
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Particles leave ‘bread crumbs’ behind (Step 3)

o Drift chambers map the tra-
jectories. A toroidal magnetic
field bends the particles to
measure momentum.

e Other layers measure energy,
time-of-flight, and particle
identification.

e Each collision is reconstructed
and the intensity pattern re-
veals the forces and structure
of the colliding particles.

Solenoid

e Scatter electrons off pro-
tons and deuterons (pro-
ton-+neutron).
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A CLAS12 Event
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A CLAS12 Event - Drift Chamber close-up
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A CLAS12 Event - Drift Chamber close-up
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A Real CLAS12 Event - Building the Drift Chambers
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A Real CLAS12 Event - Building the Drift Chambers
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A Real CLAS12 Event - Building the Drift Chambers
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A CLAS12 Event - Calorimeter close-up
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Scintillator bars

U - plane p

Lead sheets

V - plane p

W - plane p

Fiber Light Guides
(front)

Fiber Light Guides
(rear)

ok CLASIK 2197
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A CLAS12 Event - Calorimeter close-up

Scintillator bars

U - plane p

V - plane »

W - plane p

(front)

Fiber Light Guides
(rear)

v
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A CLAS12 Event - Calorimeter close-up

Scintillator bars

U - plane p
V - plane »
W - plane p

------
& R

(front)
Fiber Light Guides
(rear)

—— PMT's
v
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A CLAS12 Event - Time-of-Flight close-up
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A CLAS12 Event - Time-of-Flight close-up
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A CLAS12 Event - Time-of-Flight close-up

55 cm -
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A CLAS12 Event
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A CLAS12 Event - Cherenkov close-up

Jerry Gilfoyle Hunting for Quarks 24 / 35



A CLAS12 Event - Cherenkov close-up
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Cherenkov close-up
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A CLAS12 Event - Cherenkov close-up

Calc\ = - /

Hyperbolical
Mirrors

e w Mirrors
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Bring the bread crumbs together (Step 4)

E12-07-104 in Hall B (Gilfoyle, Hafidi, Brooks).
@ Ratio Method on Deuterium:
R— 92 [2H(e,e’ n)ge]
9% [2H(e,e’p) el
T Mott <(Gg.)21tr$,"’/,)2+27 tan? %(Gﬁﬂ)z)
9Z[LH(e,e")p]
where a is nuclear correction.

@ Precise neutron detection efficiency
needed to keep systematics low.

=ax

£ = T T T T 3
o tagged neutrons from 9125 | qepiimi Anticipated E
2H ’ P B | N Statistical uncertainties only —
(e, €'pn). ©  EPenkady ~ E
o LH, target. L e TR E
@ Kinematics:Q? = 3.5 — 13.0 (GeV/C)Q. 08E £ g T gMiller 5 g
. o oo— ) E
@ Beamtime: 40 days. 07E Guidal etal
. P 0 0.6 Red-J.Lachnietetal. R E!
o Systematlc uncertainties < 25%) E Green - Previous World Data T 3
2 0.5F Black - CLAS12 anticipated Cloet et al_{
across full Q range. E Blue‘-HaIIAa‘mlc\pa&e‘d (with s‘yslema(i‘c uncen‘almies) N

0.4 ‘
@ Half of Run Group B done January, 2020. S Qz(g;‘\,z)
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Do the hard work (Step 5)

o Quas|_e|astlc event Selec_ Sector 1: Inbending 10.2 GeV

. S0 F =10.261+0.015
tion:  Apply a cut on a0 f 0=0.487 0018
350 |
the beam energy calculated 300 F Lo BB oy
i) F eam
from the e — p angles. Ap- s
ERd
ply a second cut on 0,4 cut C sl
to eliminate inelastic events. 3
07(‘) 8 l‘l) lIZ 1I4 16 1‘8 2‘0 2‘2 Z‘
Epeem GV
o Use the ep — €/ n reaction Inbending 102 Gev
nbending 10.2 Ge
from the hydrogen target as a I
« 0.9
source of tagged neutrons in  ~ 08f e
the TOF and calorimeter. e T
osé ;‘f
04E 7
0.3 =‘- Inbending 10.2 GeV Data using G+Pold [Limited Range]
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Do the hard work (Step 5)

o Quasi-elastic event selec-
tion: Apply a cut on
the beam energy calculated
from the e — p angles. Ap-
ply a second cut on 0,4 cut
to eliminate inelastic events.

o Use the ep — €/ n reaction
from the hydrogen target as a
source of tagged neutrons in
the TOF and calorimeter.

NDE

P.m[GeV]
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Use the machines (Step 6)

Analyzing the data - Scientific computing at Jefferson Lab is large. The Computer
Center must keep up with calibration and reconstruction of a data flow that can reach
over 30 terabytes per day (that's 30,000 gigabytes). To do that requires extensive
computing facilities.

That experience has lead JLab to the leadership of a US Department of Energy project
to build a new High Performance Data Facility Hub (HPDF). It will provide

transformational capabilities for data analysis, networking and storage for the nation's
research enterprise. The HPDF will cost $300-500 million.

The 10g cluster - one of
an array of high performance
computing systems.
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Preliminary Results
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Concluding Remarks

o JLab is a laboratory to test and expand our
understanding of quark and nuclear matter, QCD, and
the Standard Model.

o We continue the quest to unravel the nature of matter
at greater and greater depths.

o Lots of new and exciting results are coming out.

o A bright future lies ahead.

U. S. Department of Energy's

(YN

= CgW Fal

THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY
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Life on the Frontiers of Knowledge
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Life on the Frontiers of Knowledge
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Some Facts of Life On The Frontier

@ Work at Jefferson Lab in Newport News.
@ 700 physicists, engineers, technicians,
and staff.
@ Vibrant intellectual environment - talks,
visitors, educational programs...
@ Lots going on.
@ Richmond group part of CLAS Collaboration.

o operates CLAS12.

@ ~190 physicists, 40 institutions, 13
countries.

o Part of Software Group - emphasis on
software development.

o Past Surrey masters students (and
Richmond undergrads) have presented
posters at meetings, appeared on JLab
publications,....

@ Run-Group B consists of seven experiments (in-
cluding Gjy) and ran in spring 2019.
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d Scattering Results From Rutherf
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Standard Model

1st 2nd 3rd generation Goldstone outside
standard matter unstable matter force carriers bosons standard model
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