
What's Inside the Nucleus?

The Frontiers of the Structure of Matter

Jerry Gilfoyle, University of Richmond

"The Periodic Table"

The Periodic Chart

NIST Physics Laboratory Holdings by Element

1				Solid													2
Н				Liquid													He
3	4			Gas								5	6	7	8	9	10
Li	Be			Artifici								В	С	N	0	F	Ne
11	12			Disable								13	14	15	16	17	18
Na	Mg			Instru	iction	<u>s</u> Da	<u>tabas</u>	<u>se Inf</u>	<u>orma</u>	<u>tion</u>		AI	Si	Ρ	S	СІ	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
К	Са	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мο	Тс	Ru	Rh	Ρd	Ag	Cd	In	Sn	Sb	Те		Xe
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	<u>.</u>	Hf	Та	W	Re	0s	lr	Pt	Au	Hg	TI	Pb	Bi) Po	At	Rn
87	88	Ň,	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq		Uuh		
				ΓO	ΓO	60	61	62	69	C 4	er.	00	67	<u>co</u>	co	70	74
			57						63	64 Ca	65 Th	66 Dv	67	68	69	70 Van	71
		5	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
			89						95	96	97	98	99	100	101	102	103
			Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

What Do We Know?

 The Universe is made of quarks and leptons and the force carriers.

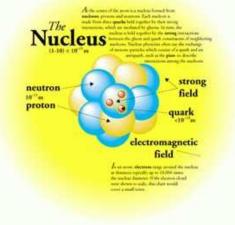
	BOS	ONS	force carr spin = 0,				
Unified Ele	ectroweak	spin = 1	Strong (color) spin = 1				
Name	Mass GeV/c ²	Electric charge	Name	Mass GeV/c ²	Electric charge		
γ photon	0	0	g gluon	0	0		
W-	80.4	-1					
W+	80.4	+1					
Z ⁰	91.187	0					

•	The atomic nucleus is made of
	protons and neutrons bound by
	the strong force.

- The quarks are confined inside the protons and neutrons.
- Protons and neutrons are NOT confined.

F	ERMI	ONS		matter constituents spin = 1/2, 3/2, 5/2,					
Leptor	Leptons spin = 1/2				Quarks spin = 1/2				
Flavor	Mass GeV/c ²	Electric charge		Flavor	Approx. Mass GeV/c ²	Electric charge			
$v_{e} \stackrel{\text{electron}}{\underset{\text{neutrino}}{\text{heutrino}}}$	<1×10 ⁻⁸	0		U up	0.003	2/3			
e electron	0.000511	-1		d down	0.006	-1/3			
ν_{μ} muon neutrino	<0.0002	0		C charm	1.3	2/3			
μ muon	0.106	-1		S strange	0.1	-1/3			
$ u_{\tau}^{ ext{ tau }}_{ ext{ neutrino }}$	< 0.02	0		t top	175	2/3			
$oldsymbol{ au}$ tau	1.7771	-1		b bottom	4.3	-1/3			

What Do We Know?


 The Universe is made of quarks and leptons and the force carriers.

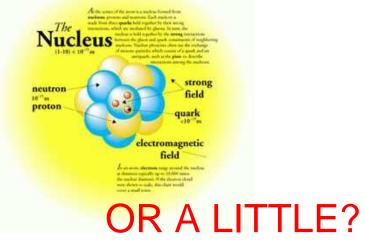
	BOS	ONS	force carriers spin = 0, 1, 2,				
Unified Ele	ectroweak	spin = 1	Strong (color) spin = 1				
Name	Mass GeV/c ²	Electric charge	Name	Mass GeV/c ²	Electric charge		
γ photon	0	0	g gluon	0	0		
W-	80.4	-1					
W+	80.4	+1					
Z ⁰	91.187	0					

- The atomic nucleus is made of protons and neutrons bound by the strong force.
- The quarks are confined inside the protons and neutrons.
- Protons and neutrons are NOT confined.

F	ERMI	ONS	matter constituents spin = 1/2, 3/2, 5/2,						
Leptor	Leptons spin = 1/2				Quarks spin = 1/2				
Flavor	Mass GeV/c ²	Electric charge	Flavo	or	Approx. Mass GeV/c ²	Electric charge			
v_e electron neutrino	<1×10 ⁻⁸	0	U up		0.003	2/3			
e electron	0.000511	-1	d do	wn	0.006	-1/3			
ν_{μ} muon neutrino	<0.0002	0	C cha	arm	1.3	2/3			
μ muon	0.106	-1	<mark>S</mark> str	ange	0.1	-1/3			
$ u_{ au}^{ ext{ tau }}_{ ext{ neutrino }}$	<0.02	0	t top	o	175	2/3			
au tau	1.7771	-1	b bo	ttom	4.3	-1/3			

IS THIS A LOT?

What Do We Know?


 The Universe is made of quarks and leptons and the force carriers.

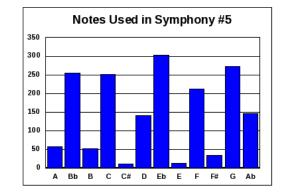
	BOS	ONS	force carr spin = 0,				
Unified Ele	ectroweak	spin = 1	Strong (color) spin = 1				
Name	Mass GeV/c ²	Electric charge	Name	Mass GeV/c ²	Electric charge		
γ photon	0	0	g gluon	0	0		
W-	80.4	-1					
W+ Z ⁰	80.4	+1					
Z ⁰	91.187	0					

- The atomic nucleus is made of protons and neutrons bound by the strong force.
- The quarks are confined inside the protons and neutrons.
- Protons and neutrons are NOT confined.

F	ERMI	ONS	matter constituents spin = 1/2, 3/2, 5/2,					
Leptor	15 spin	= 1/2	Quar	Quarks spin = 1/2				
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge			
$ u_{e}^{electron}_{neutrino} $	<1×10 ⁻⁸	0	U up	0.003	2/3			
e electron	0.000511	-1	d down	0.006	-1/3			
ν_{μ} muon neutrino	<0.0002	0	C charm	1.3	2/3			
μ muon	0.106	-1	S strange	0.1	-1/3			
$ u_{\tau}^{ ext{ tau }}_{ ext{ neutrino }}$	<0.02	0	t top	175	2/3			
au tau	1.7771	-1	b bottom	4.3	-1/3			

IS THIS A LOT?

Is This a Lot (or a Little)?


• Saying this is nuclear and particle physics.

F	ERMI	ONS	;	matter constituents spin = 1/2, 3/2, 5/2,			
Leptons spin = 1/2				Quarks spin = 1/2			
Flavor	Mass GeV/c ²	Electric charge		Flavor	Approx. Mass GeV/c ²	Electric charge	
ν_e electron neutrino	<1×10 ⁻⁸	0		U up	0.003	2/3	
e electron	0.000511	-1		d down	0.006	-1/3	
ν_{μ} muon neutrino	<0.0002	0		C charm	1.3	2/3	
μ muon	0.106	-1		S strange	0.1	-1/3	
$v_{\tau}^{tau}_{neutrino}$	<0.02	0		t top	175	2/3	
au tau	1.7771	-1		b bottom	4.3	-1/3	

Is This a Lot (or a Little)?

• Saying this is nuclear and particle physics.

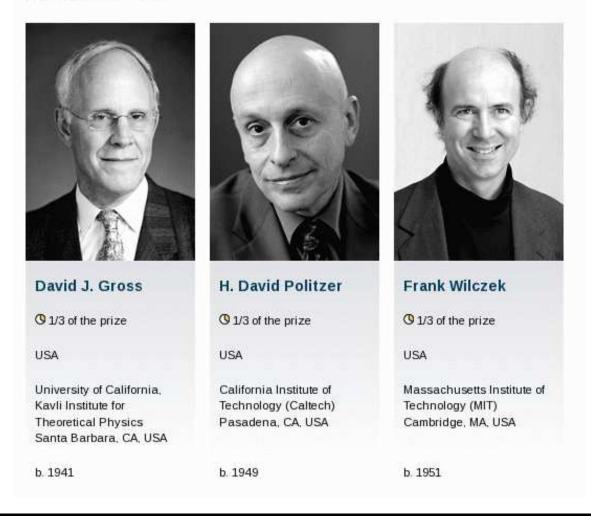
matter constituent FERMIONS spin = 1/2, 3/2, 5/2, Leptons spin = 1/2 Quarks spin = 1/2 Mass GeV/c² Electri lavo Flavo charge charg e electron <1×10⁻⁸ 0 U up 0.003 2/3 0.000511 -1 d down 0.006 -1/3 electron muon < 0.0002 0 C charm 1.3 2/3 μ neutrino µ muon 0.106 -1 S strange 0.1 -1/3 tau neutrino <0.02 175 2/3 0 t top 1.7771 _1 b bottor 4.3 -1/3

• Is like saying this is Beethoven's Fifth Symphony.

Is This a Lot (or a Little)?

Saying this is nuclear and particle physics.

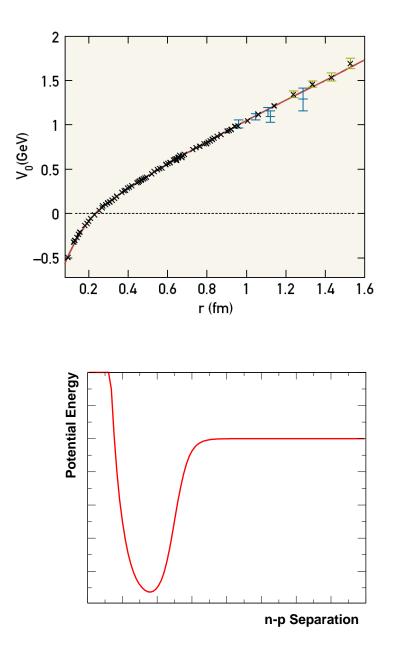
F	ERMI	ONS	matter co spin = 1/2		
Leptor	15 spin	= 1/2	Quar	ks spin	= 1/2
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge
v_{e} electron neutrino	<1×10 ⁻⁸	0	U up	0.003	2/3
e electron	0.000511	-1	d down	0.006	-1/3
ν_{μ} muon neutrino	<0.0002	0	C charm	1.3	2/3
μ muon	0.106	-1	S strange	0.1	-1/3
$ u_{\tau} {}^{\text{tau}}_{\text{neutrino}}$	<0.02	0	t top	175	2/3
au tau	1.7771	-1	b bottom	4.3	-1/3


- Is like saying this is Beethoven's Fifth Symphony.
- The Standard Model of nuclear and particle physics has been superbly successful, but is now looking a bit frayed around the edges. And it has never really worked in the world we live in with protons and neutrons and atomic nuclei.

Quantum Chromodynamics

The Nobel Prize in Physics 2004

"for the discovery of asymptotic freedom in the theory of the strong interaction"

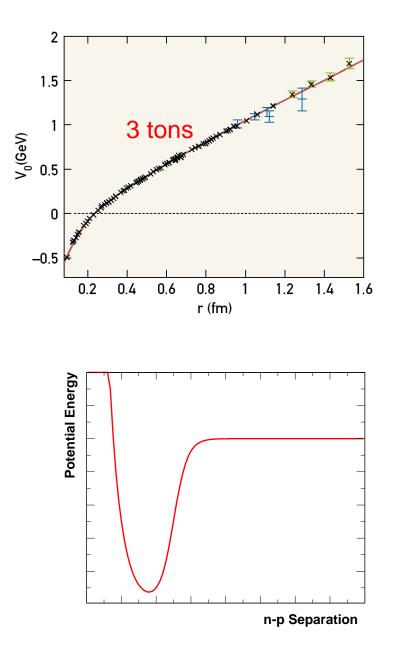


What is the Force?

 Quantum chromodynamics (QCD) looks like the right way to get the force at high energy (Nobel Prize in 2004).

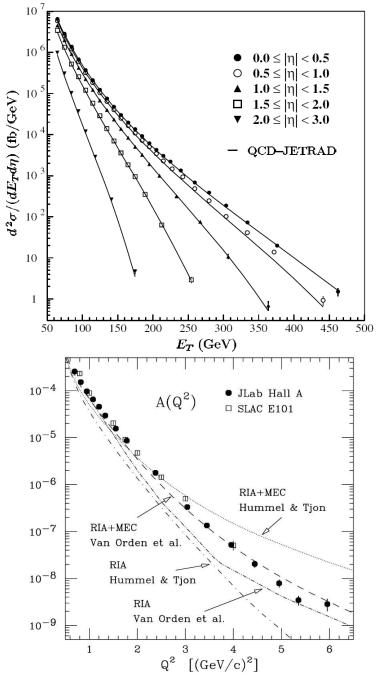
The hadronic model uses

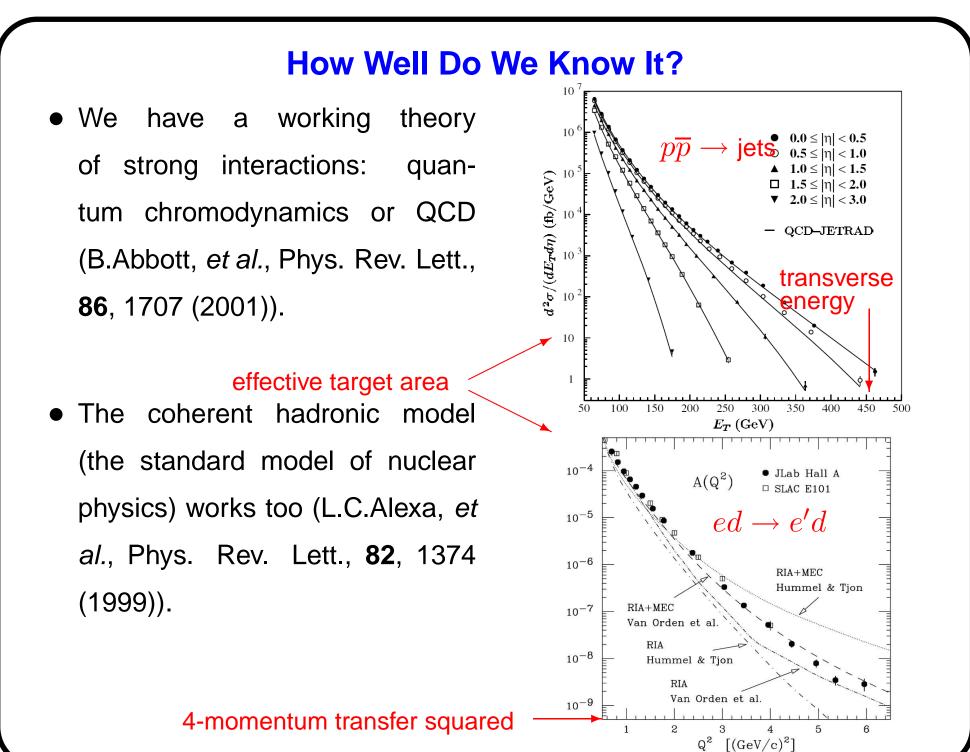
 a phenomenological force
 fitted to data at low en ergy. This 'strong' force is
 the residual force between
 quarks.



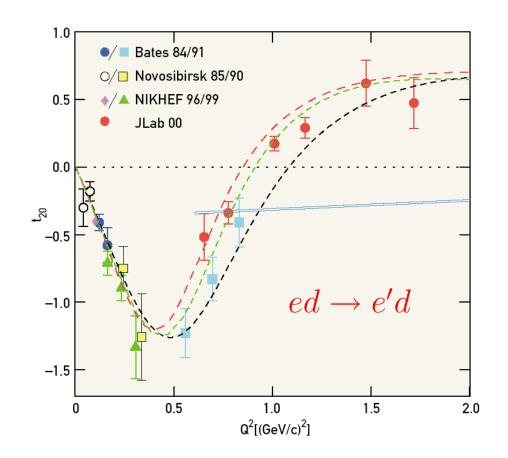
What is the Force?

 Quantum chromodynamics (QCD) looks like the right way to get the force at high energy (Nobel Prize in 2004).

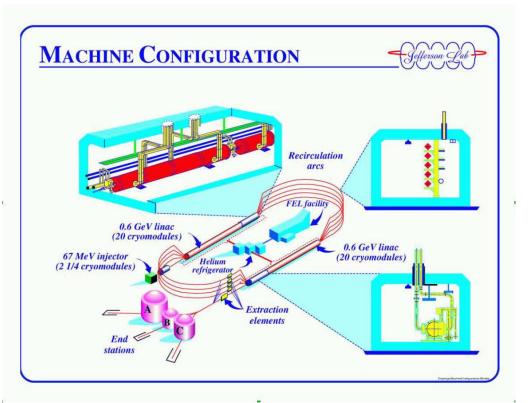

The hadronic model uses

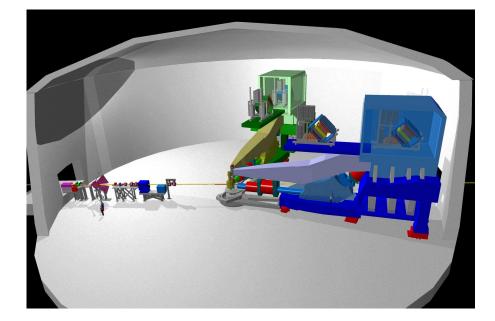

 a phenomenological force
 fitted to data at low en ergy. This 'strong' force is
 the residual force between
 quarks.

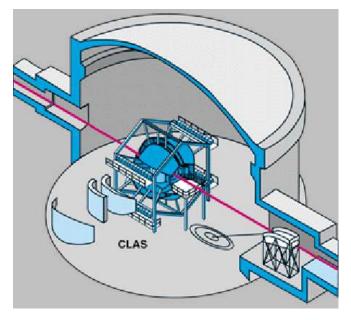
How Well Do We Know It?

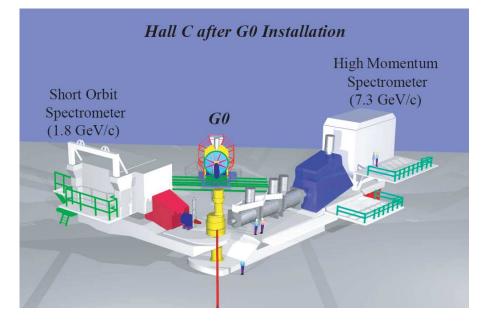

- We have a working theory of strong interactions: quantum chromodynamics or QCD (B.Abbott, *et al.*, Phys. Rev. Lett., 86, 1707 (2001)).
- The coherent hadronic model (the standard model of nuclear physics) works too (L.C.Alexa, *et al.*, Phys. Rev. Lett., **82**, 1374 (1999)).

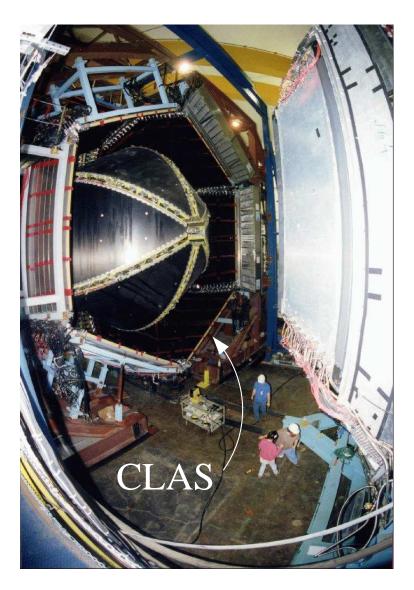
What Don't We Know?

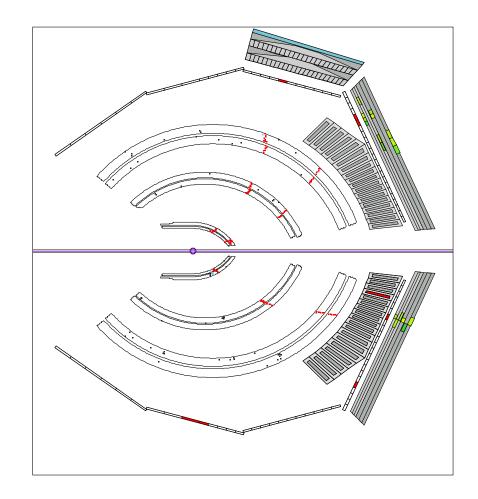

- We can't get QCD and the hadronic model to line up.
 D. Abbott, *et al.*, Phys. Rev Lett. **84**, 5053 (2000).
- 2. NEED TO FIGURE OUT QCD AT THE ENERGIES OF NUCLEI!!

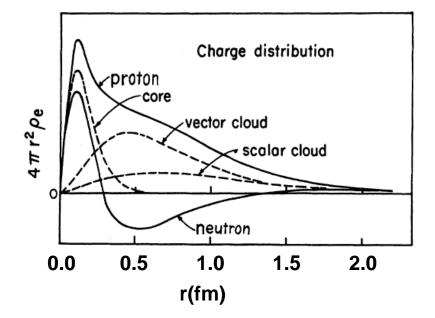

A Laboratory for the Strong Force.

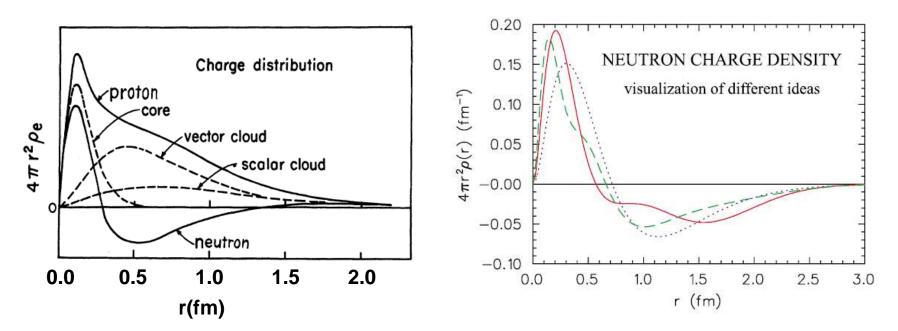

Thomas Jefferson National Accelerator Facility (JLab)

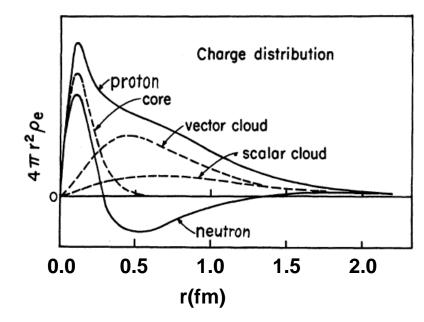


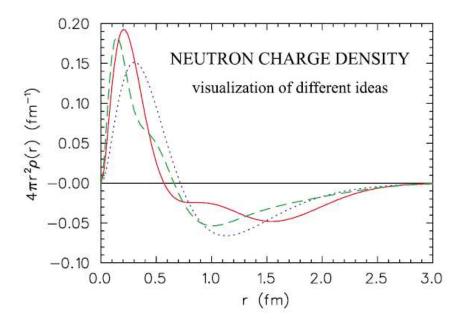

Halls A, B, C

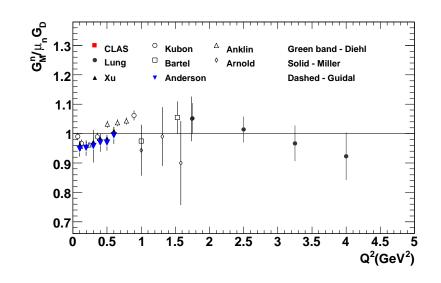


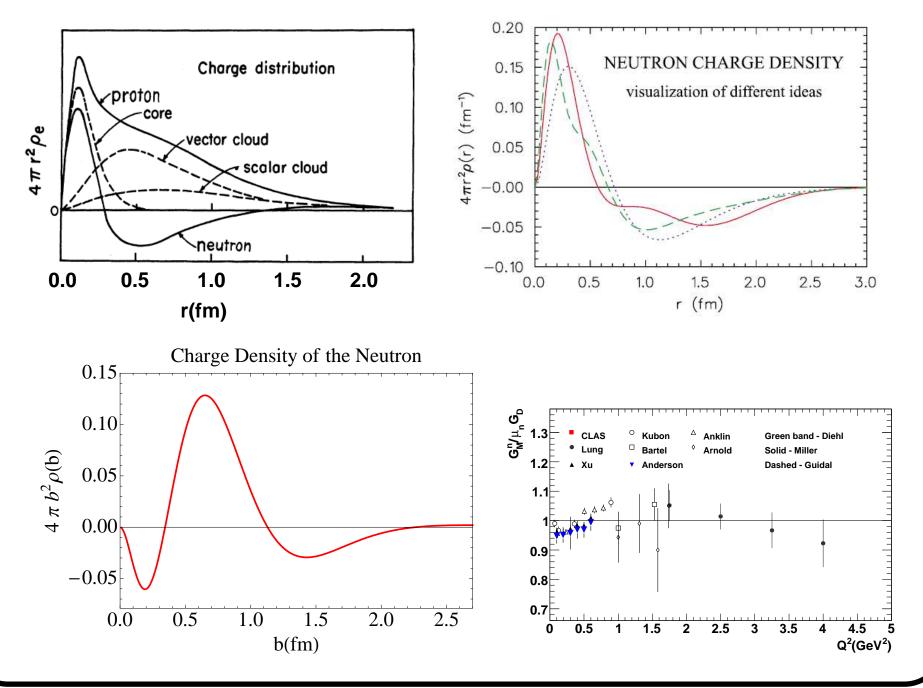


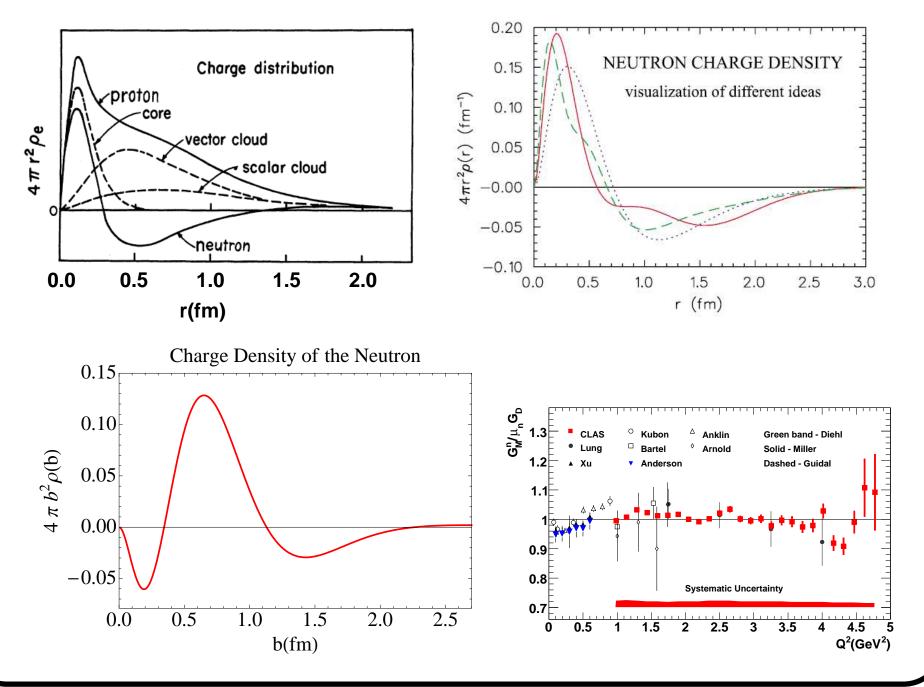



The CEBAF Large Acceptance Spectrometer (CLAS)









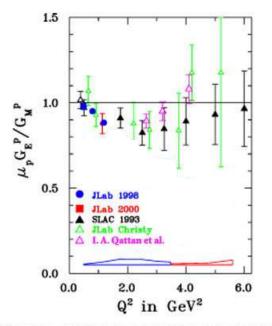


Figure 1: The ratios $\mu_p G_{E^p}/G_M^p$ from the two JLab recoil polarization experiments, compared to the Rosenbluth separation data.

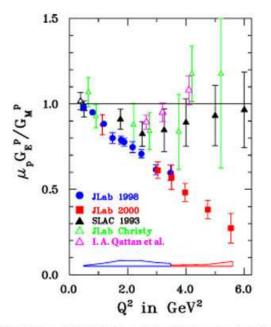


Figure 1: The ratios $\mu_p G_{E^p}/G_M^p$ from the two JLab recoil polarization experiments, compared to the Rosenbluth separation data.

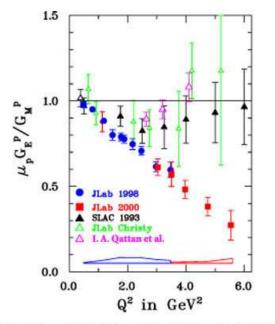


Figure 1: The ratios $\mu_p G_{E^p}/G_M^p$ from the two JLab recoil polarization experiments, compared to the Rosenbluth separation data.

THE SPIN CRISIS!! - Only $\sim 1/3$ of

the proton spin is accounted for!!

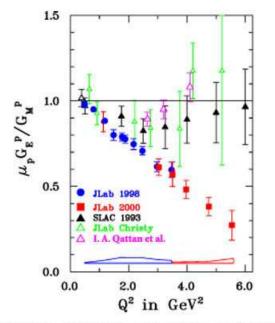


Figure 1: The ratios $\mu_p G_{E^p}/G_{M^p}$ from the two JLab recoil polarization experiments, compared to the Rosenbluth separation data.

THE SPIN CRISIS!! - Only $\sim 1/3$ of the proton spin is accounted for!!

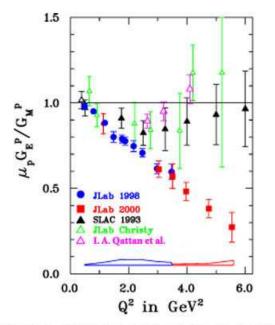
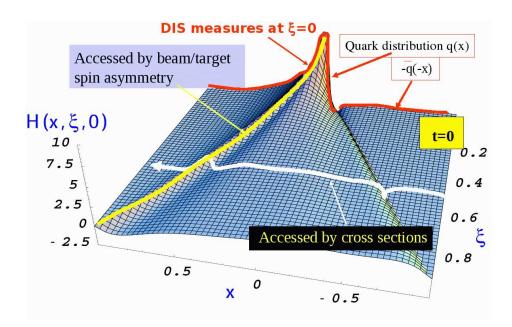



Figure 1: The ratios $\mu_p G_{E^p}/G_M^p$ from the two JLab recoil polarization experiments, compared to the Rosenbluth separation data.

THE SPIN CRISIS!! - Only $\sim 1/3$ of the proton spin is accounted for!!

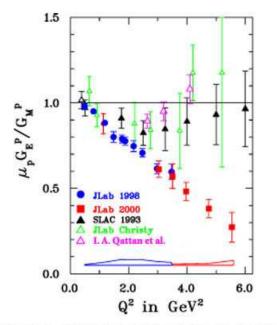
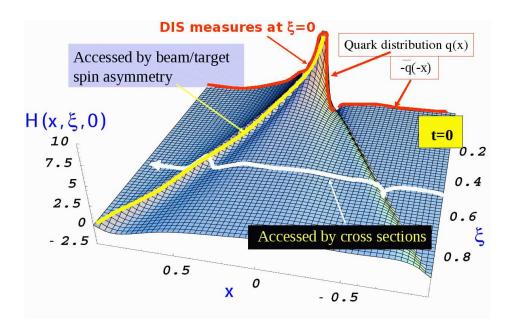



Figure 1: The ratios $\mu_p G_{E^p}/G_M^p$ from the two JLab recoil polarization experiments, compared to the Rosenbluth separation data.

THE SPIN CRISIS!! - Only $\sim 1/3$ of the proton spin is accounted for!!

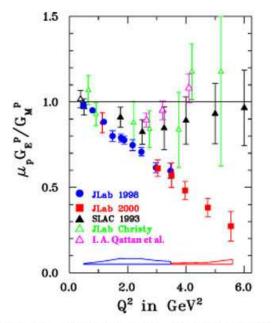
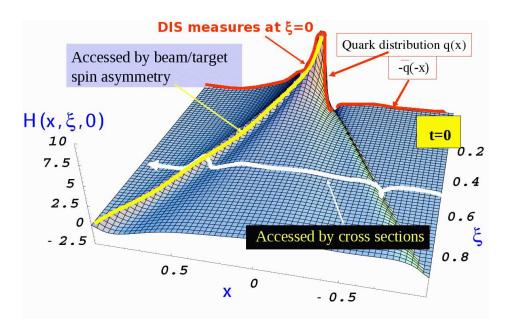
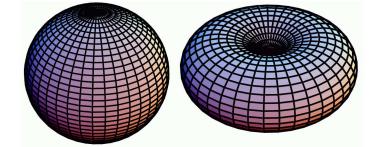
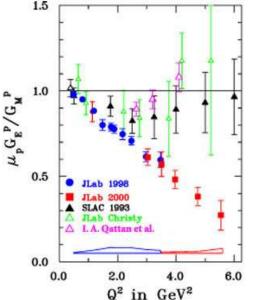
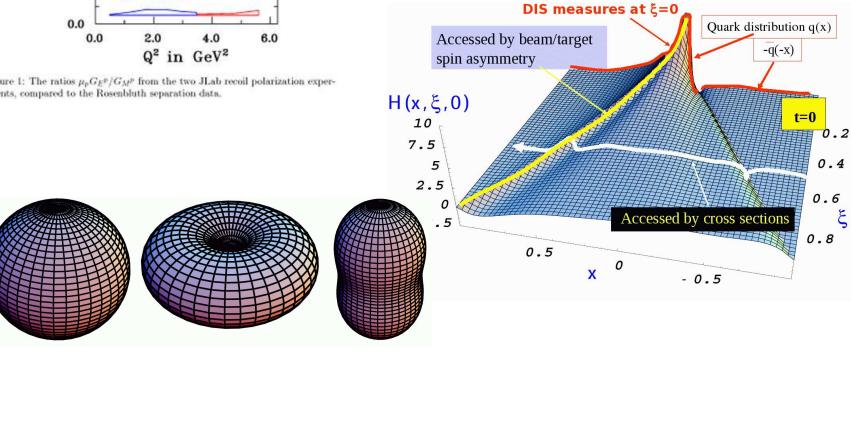
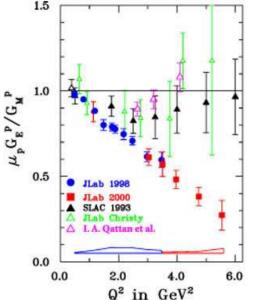
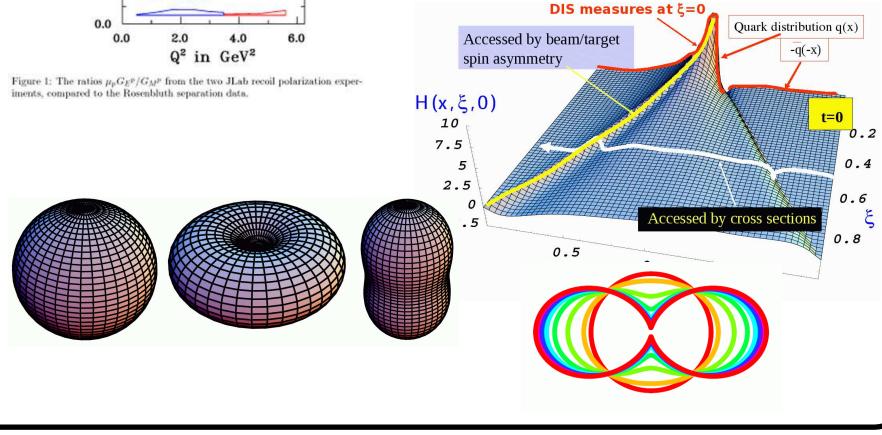
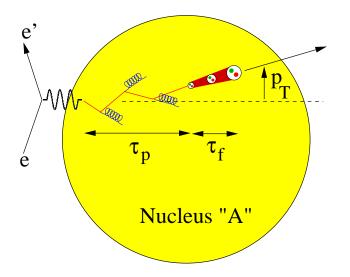




Figure 1: The ratios $\mu_p G_{E^p}/G_{M^p}$ from the two JLab recoil polarization experiments, compared to the Rosenbluth separation data.


Figure 1: The ratios $\mu_p G_E^p / G_M^p$ from the two JLab recoil polarization experiments, compared to the Rosenbluth separation data.

THE SPIN CRISIS!! - Only $\sim 1/3$ of the proton spin is accounted for!!



THE SPIN CRISIS!! - Only $\sim 1/3$ of the proton spin is accounted for!!

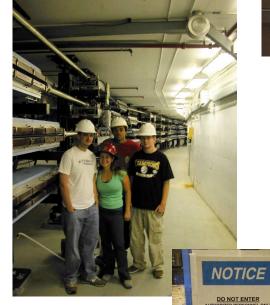
Quark Propagation and Hadron Formation

- Probe space-time properties of hadronization in nuclear DIS.
- Struck quark is deconfined and loses energy by multiple scattering and/or gluonic radiation (production time τ_p).
- The quark is finally 'dressed' to form a hadron (formation time τ_f).



• Direct confrontation of QCD and confinement in the nuclear environment.

- How long can a light quark be deconfined?
- How long does it take to form the color field of a hadron?


Life on the Frontiers of Knowledge

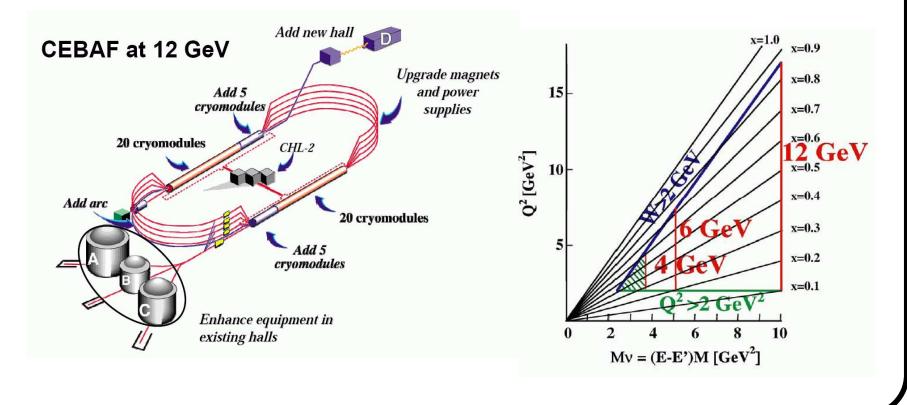
The LHC or JLab - Why should YOU pay for it?

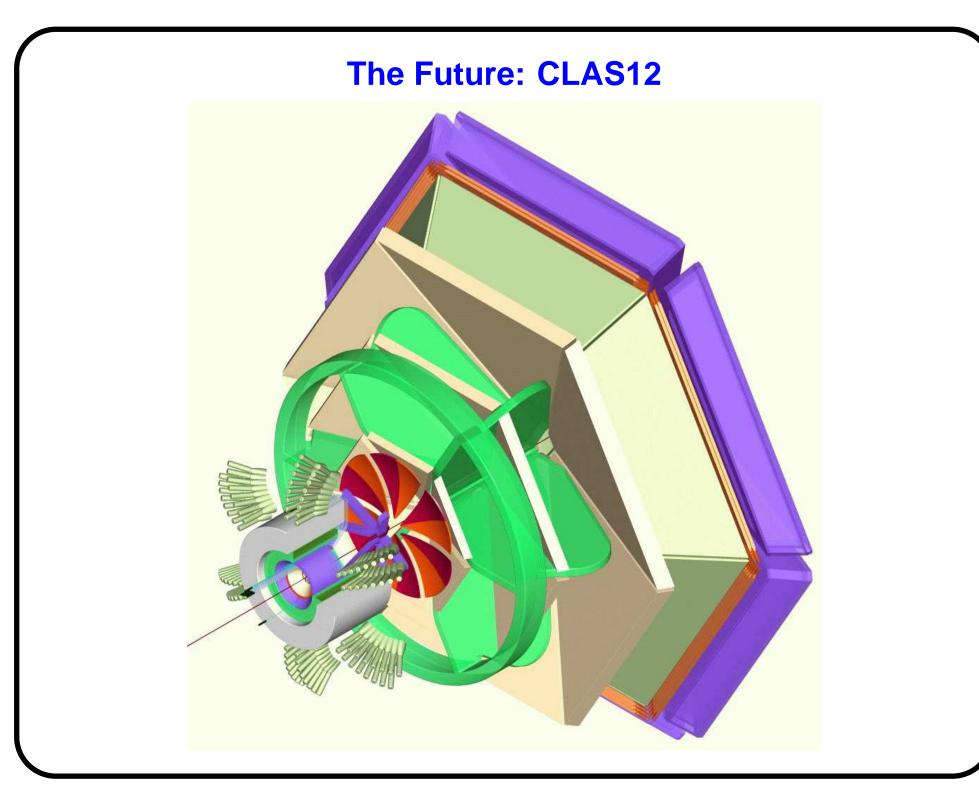
- 1. Over the last 100 years, at least 50% of the growth in our standard of living is due to technological change.
- 2. Technological spinoffs: NMR \rightarrow MRI, WWW, transistors, computers, ...
- 3. Production of trained scientists, engineers, technicians.

The LHC or JLab - Why should YOU pay for it?

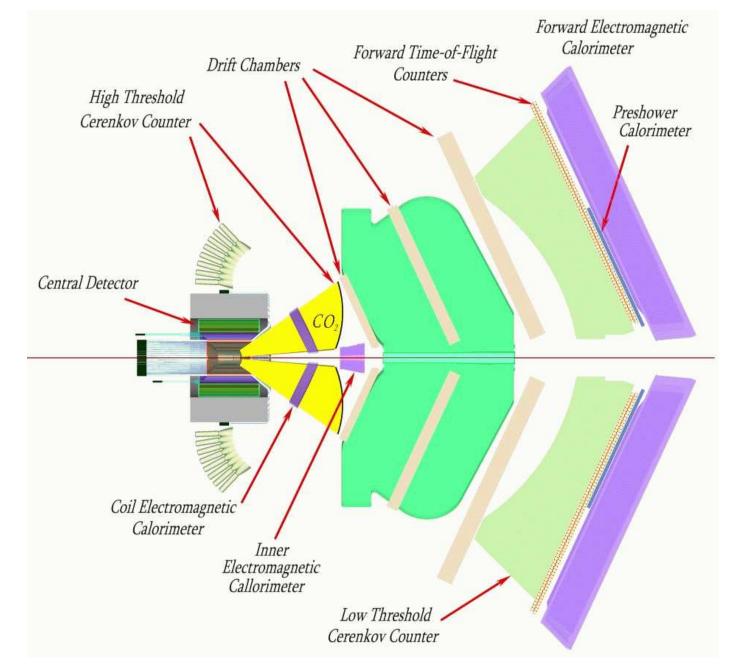
- 1. Over the last 100 years, at least 50% of the growth in our standard of living is due to technological change.
- 2. Technological spinoffs: NMR \rightarrow MRI, WWW, transistors, computers, ...
- 3. Production of trained scientists, engineers, technicians.

In Paris in 1783 Benjamin Franklin watched with amazement one of the first hot-air balloon flights. The following exchange was said to occur.


Ben Franklin's answer:


Unknown questioner to Franklin: Sir, what's the use of flying in the air?

Sir, what's the use of a newborn baby?


The Future: JLab 12-GeV Upgrade

- The electron beam energy at JLab (CEBAF) will be doubled from 6 GeV to 12 GeV.
- Halls A, B and C will be upgraded to accommodate the new physics opportunities.
- A new hall (Hall D) will house a large-acceptance detector built around a solenoidal magnet for photon beam experiments.
- All of the physics discussed here will be extended to 12 GeV.

The Future: CLAS12

Additional Slides

More Life on the Frontier - the Large Hadron Collider

- 1. The Large Hadron Collider (LHC) is the largest and highest-energy particle accelerator, colliding opposing beams of protons at 99.99999% of the speed of light.
- 2. Will test various predictions of high-energy physics, including the existence of the Higgs boson and other new particles.
- 27 kilometres around, beneath the Franco-Swiss border, built by over 10,000 scientists and engineers from over 100 countries and hundreds of universities and laboratories.
- On 10 September 2008, the proton beams were successfully circulated in the main ring of the LHC for the first time.

The LHC - It Won't Eat You!

 No danger of creating a black hole that will suck in the Earth despite what some people say.

• It may be responsible for other surprising effects.

The LHC or JLab - Why should YOU pay for it?

- 1. Over the last 100 years, at least 50% of the growth in our standard of living is due to technological change.
- 2. Technological spinoffs: NMR \rightarrow MRI, WWW, transistors, computers, ...
- 3. Production of trained scientists, engineers, technicians.

The LHC or JLab - Why should YOU pay for it?

- 1. Over the last 100 years, at least 50% of the growth in our standard of living is due to technological change.
- 2. Technological spinoffs: NMR \rightarrow MRI, WWW, transistors, computers, ...
- 3. Production of trained scientists, engineers, technicians.

In Paris in 1783 Benjamin Franklin watched with amazement one of the first hot-air balloon flights. The following exchange was said to occur.

Ben Franklin's answer:

Unknown questioner to Franklin: Sir, what's the use of flying in the air?

Sir, what's the use of a newborn baby?

The LHC - It Won't Eat You!

It may be responsible for other surprising effects.

http://www.comedycentral.com/colbertreport/full-episodes/index.jhtml?episodeId=209851

http://www.youtube.com/watch?v=j50ZssEojtM