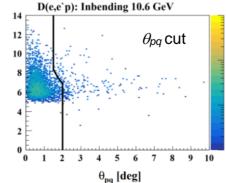

Measurement of the Neutron Magnetic Form Factor G_M^n at High Q² Using the Ratio Method on Deuterium

10²

10

L.Baashen (KSU), B.A.Raue (FIU), G.P.Gilfoyle (Richmond)

Goal: Extract G_M^n at high Q² using the ratio of quasi-elastic e-n and quasi-elastic e-p events on deuterium: $R = \frac{d(e, e'n)p}{d(e, e'p)n}$



Quasi-Elastic e-n and e-p Event Selection

1. Use *e-n* and *e-p* scattering angles for electron and nucleon to calculate beam energy. Require 1σ cut on result.

2. Require reaction products to lie in the same plane: $|\Delta \phi| < 1.7$ deg.

3. Require θ_{pq} < 2-3 deg where θ_{pq} is the angle of the nucleon relative to the 3-momentum transfer.

[GeV²]

1. The neutron magnetic form factor is a fundamental observable related to the distribution of magnetization in the neutron.

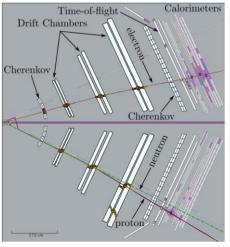
2. Figure to the left shows world's data for G_M^n including anticipated results.

3. Curves show recent theoretical calculations from Gutsche et al. (PRD 97, 054011, 2018))and Miller et al. (arXiv 1912.07797 [nucl-th], 2020).

4. Considerable progress has been made. The Pass 1 extraction of G_M^n is complete and was the topic of L.Baashen's doctoral thesis at Florida International University.

5. The group is now analyzing the Pass 2 data which has increased statistics and improved resolution.

6. Additional RGB run time will extend the reach in Q^2 and improve the statistical precision.

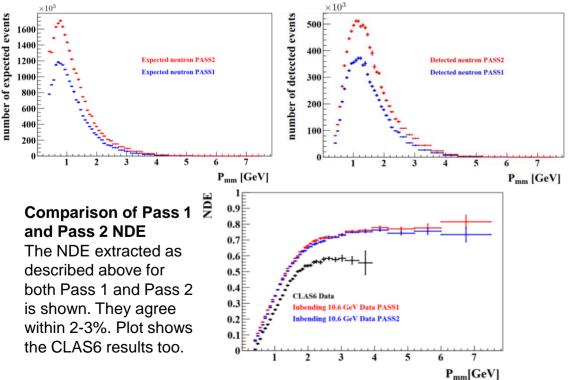

Acceptance Matching

1. Need to have the same solid angle Ω for *e*-*n* and *e*-*p* events.

Start with a good electron.
Assume elastic scattering and a stationary nucleon.

3.Swim a proton and a neutron through CLAS12 and require

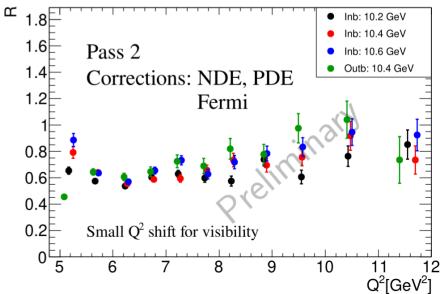
both to hit the PCAL/ECAL. 4. Complete the analysis of the event.



Corrections to the e-n/e-p Ratio

Measuring the neutron detection efficiency (NDE) for quasi-elastic e-n

Use ep→ e'π⁺n from Run Group A on LH₂ target to obtain tagged neutrons.
In each event require a good electron and π⁺ and then predict the neutron trajectory.
If the trajectory intersects the PCAL/ECAL this is an expected event. See below.
Search for a neutral hit near the intersection. If found, this is a detected event.
Note the increase in the number of Pass 2 events below compared with Pass 1.


6. The NDE is the ratio of detected events to expected ones.

Other Corrections

- 1. Proton Detection Efficiency (PDE)
- 2. Fermi Correction
- 3. Radiative Correction
- 4. Nuclear Correction

Corrections 1-3 above have been completed for Pass 1 and are ongoing for Pass 2. Radiative corrections are very close to one. We are working with two theorists on the nuclear correction.

