## Structure of Hadrons quarks

| Flavor                                                                    | A             | t             | $t_0$          | S  | С | В  | Т | Q(e)             | $Mc^2$ (GeV)    |
|---------------------------------------------------------------------------|---------------|---------------|----------------|----|---|----|---|------------------|-----------------|
| <i>u</i> (up)                                                             | $\frac{1}{3}$ | $\frac{1}{2}$ | $-\frac{1}{2}$ | 0  | 0 | 0  | 0 | $+\frac{2}{3}$   | 0.002 - 0.008   |
| d (down)                                                                  | $\frac{1}{3}$ | $\frac{1}{2}$ | $+\frac{1}{2}$ | 0  | 0 | 0  | 0 | $-\frac{1}{3}$   | 0.005 - 0.015   |
| s (strange)                                                               | $\frac{1}{3}$ | 0             | 0              | -1 | 0 | 0  | 0 | $-\frac{1}{3}$   | 0.1-0.3         |
| c (charm)                                                                 | $\frac{1}{3}$ | 0             | 0              | 0  | 1 | 0  | 0 | $+\frac{2}{3}$   | 1.0 – 1.6       |
| <i>b</i> (bottom)                                                         | $\frac{1}{3}$ | 0             | 0              | 0  | 0 | -1 | 0 | $-\frac{1}{3}$   | 4.1-4.5         |
| <i>t</i> (top)                                                            | $\frac{1}{3}$ | 0             | 0              | 0  | 0 | 0  | 1 | $+\frac{2}{3}$   | $180 \pm 12$    |
|                                                                           |               |               |                |    |   |    |   |                  |                 |
|                                                                           |               |               |                |    |   |    |   | e                | estimates based |
| • the least massive are u- and d-quarks (hence the lightest on properties |               |               |                |    |   |    |   | on properties of |                 |

- the least massive are u- and d-quarks (hence the lightest baryons and mesons must be made exclusively of these two quarks)
- strange quark carries a quantum number called strangeness *S*. Strange particles (such as kaons) carry this quark
- there are also six antiquarks
- they are fermions; they carry half-integer spins



strong interactions conserve the # of quarks

hadrons!

## Structure of Hadrons antiparticles

$$p + \overline{p} \rightarrow \gamma + \gamma$$

#### particle-antiparticle annihilation

- particle and antiparticle have opposite charges, baryon numbers, etc.
- they must have opposite intrinsic parities
- they must have opposite isospins



Charge conjugation transforms particles into antiparticles

| $ p\rangle = a_{1/2,-1/2}^{+} 0\rangle$                                   | $ n\rangle = a_{1/2,+1/2}^{+} 0\rangle$                                   | particles     |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------|
| $\left \overline{n}\right\rangle = b_{1/2,-1/2}^{+} \left 0\right\rangle$ | $\left \overline{p}\right\rangle = b_{1/2,+1/2}^{+} \left 0\right\rangle$ | antiparticles |

Particles into antiparticles are not independent of each other; they transform into each other through charge conjugation!

$$b_{t,t_0}^{+} = (-1)^{t-t_0} a_{t,-t_0}$$
$$|p\rangle \xrightarrow{\mathcal{C}} |\overline{p}\rangle |n\rangle \xrightarrow{\mathcal{C}} - |\overline{n}\rangle$$

the same relation holds for quarks

 $|u\rangle \xrightarrow{c} |\overline{u}\rangle \qquad |d\rangle \xrightarrow{c} - |\overline{d}\rangle$ 

# Structure of Hadrons isospin of quarks $|p\rangle = |uud\rangle \qquad |n\rangle = |udd\rangle$

d- and u-quarks form an isospin doublet

$$\tau_{\pm}(\text{nucleon}) \rightarrow \sum_{i=1}^{3} \tau_{\pm}(q_{i})$$
  
$$\tau_{\pm}|u\rangle = |d\rangle \qquad \tau_{-}|d\rangle = |u\rangle$$

#### quark wave functions of pions

Consider  $\pi^-$  (*t*=1 and *t*<sub>0</sub>=1). The only possible combination is

 $\left|\pi^{-}\right\rangle = \left|\overline{u}d\right\rangle$ 

In general, it is possible to find several linearly independent components corresponding to the same t and  $t_0$ . The appropriate combination is given by isospin coupling rules. Furthermore, the wave function must be antisymmetric among the quarks

$$\begin{aligned} \left| \pi^{0} \right\rangle &= \frac{1}{\sqrt{2}} \tau_{-} \left| \pi^{-} \right\rangle = \frac{1}{\sqrt{2}} \left( \left| u \overline{u} \right\rangle - \left| d \overline{d} \right\rangle \right) \\ \left| \pi^{+} \right\rangle &= - \left| u \overline{d} \right\rangle \end{aligned}$$
 T=1 triplet

What about the symmetric combination?

$$|\eta_0\rangle = \frac{1}{\sqrt{2}} \left( |u\overline{u}\rangle + |d\overline{d}\rangle \right)$$
 T=0 singlet

To produce heavier mesons we have to introduce excitations in the quark-antiquark system or invoke s- and other more massive quarks

## Structure of Hadrons strange mesons

The lightest strange mesons are kaons or K-mesons. They come in two doublets with t=1/2:

$$\left\{K^{+}(u\overline{s}), K^{0}(d\overline{s})\right\}, \left\{K^{-}(\overline{u}s), \overline{K}^{0}(\overline{d}s)\right\}$$

This means that s-quark has zero isospin (no strange mesons with t=3/2 have been seen),

$$Q = -t_0 + \frac{1}{2}(A + S + C + B + T)$$
 generalization

$$\pi^{-}(\overline{u}d) + p(uud) \rightarrow K^{0}(d\overline{s}) + \Lambda(uds)$$

strangeness is conserved!

Strong interactions conserve the total number of each type of quarks. However, quarks can be transformed from one flavor to another through weak interactions (CKM matrix!).

## Structure of Hadrons color

Consider a  $\Delta$ -particle. It has isospin 3/2 with four different charge states:

 $\Delta^{-}, \Delta^{0}, \Delta^{+}, \Delta^{++}$ 

Since it is nonstrange baryon, is has to be made of u- and d-quarks.  $\Delta^{++}$  has Q=2 and the only possiblity is a (uuu) combination. The intrinsic parity of  $\Delta^{++}$  is known to be positive, its intrinsic spin is 3/2, and isospin is also 3/2. How to get the wave function that is untisymmetric with respect to a permutation of any two of the three quarks? **Is Pauli wrong?** 

Color saves the day. It is a property of quarks. There are three colors: R (red), G (green) and B (blue). The wave function has to be antisymmetric in the color degree of freedom: **the net color in hadron must vanish!** 

Since color is an unobserved property, all hadrons must be colorless oblects!



### Structure of Hadrons static quark model of hadrons

#### pseudoscalar mesons

$$\vec{J} = \vec{\ell} + \vec{S}, \quad \vec{S} = \vec{s}_q + \vec{s}_{\overline{q}}$$

- $\vec{J}$  total angular momentum
- $\ell$  orbital angular momentum
- $\vec{\ell}$  orbital an  $\vec{S}$  total spin

S can be either 0 or 1. The mesons with the relative zero orbital angular momentum are lower in energy. For the pion, S=0, hence J=0. Consequently, pions are "scalar" particles. But what about their parity? The parity of the pion is a product of intrinsic parities of the quark (+1), antiquark (-1) and the parity of the spatial wave function  $(-1)^{l}$ =+1. Hance the pion has negative parity. It is a **pseudoscalar meson**.

With (u,d,s) quarks, one can construct 9 pseudoscalar mesons:

