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Scientific Motivation
e To explore the ground state structure of the proton and neutron.

° G?M(QZ) Is a fundamental observable related to the spatial distribution of

the magnetization in the neutron.

e Elastic form factors (G}, G, G,;, and G',) provide key constraints on
generalized parton distributions (GPDs) which promise to give us a

three-dimensional picture of hadrons.
e Elastic hadronic form factors are a fundamental challenge for lattice QCD.
e Required for extracting the strange quark distributions in the proton.

e Part of a broad effort to understand how nucleons are ‘constructed from the

quarks and gluons of QCD’. *

* ‘Opportunities in Nuclear Science: A Long-Range Plan for the Next Decade’, NSF/DOE

Nuclear Science Advisory Committee, April, 2002.
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Current Status of Neutron Elastic Form Factors
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C.E. Hyde-Wright and K.deJager, Ann. Rev. Nucl. Part. Sci. 54 (2004) 54 and references therein.
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Some Necessary Background

® |tis convenient to express the cross section in terms of the Sachs form factors.

do B 5 T 9 1
90 o (64 768) (1)

where
Q? 1 o?E’ cos* (%)
T = €E = o o —
AM? 1+2(1+7)tan?(d) " 4E3sin®(9)

e \We can now take the ratio of the e — p and € — n cross sections (the ratio method).

o G2 +7rGn, 2 n 2 9,0
= o — . _
Z_Q(D(e’ ¢'p)) “r ;;TG% + 2,7_(;1]9%2 tanz(g)

e To select quasielastic events (more later) we will use a

cut on qu shown here.
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Experimental Detalils

e Data Set: 2.3 billion triggers at three
sets of running conditions. Two sets at
beam energies 4.2 GeV and 2.6 GeV

with positive torus polarity (electrons in-

e5 Primary Target

bending).
® Another data set was collected at

2.6 GeV with reversed torus polarity

(electrons outbending) to reach lower
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The Ratio Method - Event Selection

e Use e — n/e — pratio to reduce systematic uncertainties.

® ¢ — p selection: ‘standard’ CLAS analysis cuts for electrons and protons .

e ¢ — n selection: same criteria for electrons; use TOF and calorimeter as independent

measurements of the neutron with cuts to reject photons.

e Quasi-elastic event selection: Apply a maxi-
mum Hpq cut to eliminate inelastic events plus
a cut on W2,

e Acceptance matching: Use the quasi- elastic
electron kinematics to predict if the nucleon
(proton or neutron) lies in CLAS acceptance.

Require both hypotheses to be satisfied.

e Neutrons and protons treated exactly the

same whenever possible.
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The Ratio Method - Corrections
Neutron detection efficiency:

1. Usethe ep — e’ n reaction from the hydrogen target as a source of tagged neutrons in
the TOF and calorimeter.

2. Standard CLAS cuts for electron selection.

3. For ™, use positive tracks, cut on the difference between (3 measured from tracking and
from time-of-flight.

4. For neutrons, ep — e'mTX for
0.9 < mx < 0.95GeV/c?.

5. In the calorimeter use the neutron
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6. In the TOF use the neutron momentum
D, to predict which TOF paddle is hit
(reconstructed event) and then search in
that paddle (a found event if it's there).
Reduce photon background by requiring

a minimum energy deposited.

7. We have made two measurements
of the neutron detection efficiency
(calorimeter and TOF) for each set of

running conditions.
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The Ratio Method - Corrections

Proton detection efficiency:

1.

2.

Use ep — €’p elastic scattering from hydrogen target as a source of tagged protons.
Standard CLAS cuts for electron selection with a W2 cut to select ep elastic events.
Protons were identified as positive tracks with a coplanarity cut applied.

In the TOF use the missing momentum from ep — €’ X to predict the TOF paddle that will
be struck by the proton (a reconstructed event). Search that paddle or an adjacent one for a
positively-charged particle (a found event if it's there). Results below are for sector 1 in
CLAS.
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The Ratio Method - Corrections

e Nuclear effects: The e — n/e — p ratio for free nucleons differs from the one for bound
nucleons. Two calculations of the correction a(Qz) to [ (Jeschonnek and Arenhoevel)

averaged to 0.994 and we assigned a systematic uncertainty of 0.6%.

e Radiative corrections: Calculated for exclusive D(e, ¢'p)n with the code EXCLURAD
(CLAS-Note 2005-022) and close to unity.

e Fermi motion in the target: Causes nucleons to migrate out of the CLAS acceptance. This

effect was simulated and the 2.6-GeV results for [ are shown here.
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The Ratio Method - Systematic Errors

Quantity 2.6 GeV | 4.2 GeV | Quantity 2.6 GeV | 4.2 GeV
(%) (%) (%) (%)

Calorimeter neutron | < 1.5 < 1.0 | TOF neutron effi- | < 2.0 < 3.2
efficiency parame- ciency parameteri-

terization zation

proton o < 1.0 <15 | G% < 0.5 < 0.7
Fermi loss correction | < 0.8 < 0.9 | 04 cut <04 < 1.0
neutron accidentals < 0.07 | < 0.3 | neutron MM cut < 0.5 | <0.07
neutron proximity cut | < 0.22 | < 0.15 | proton efficiency < 0.3 < 0.35
Nuclear Corrections | < 0.17 | < 0.2 | Radiative corrections | < 0.05 | < 0.06

Upper limits on percent estimated systematic error

for different contributions.
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Results - Overlaps and Final Averages
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Results - Comparison with Existing Data
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Current Status and the Future

e Analysis of the normal-torus-field data at 2.6 GeV and 4.2 GeV are under CLAS
Collaboration review and have received verbal approval.

e The reversed-torus-polarity data set is still being analyzed.
e A draft of a Physical Review Letter is ready for Collaboration review.

e A proposal to measure G'f\% at 12 GeV was approved by the JLab PAC in June, 2007. The
expected data range and uncertainties are shown below.
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Conclusions

e \We have measured the neutron magnetic form factor G?\Z over the range
Q? = 1.0 — 4.5 (GeV /c)* to a precision better than 2.5%.

e The four different measurements of G}, at two beam energies with the

calorimeter and the TOF system in CLAS are consistent.
e Some differences exist with previous measurements at Q* < 1(GeV /c)?.

e The results are consistent with the dipole approximation within 5% across

almost the full range of Q.

e Analysis note has been approved and a well-developed draft of a Letter is

ready for ad hoc review.
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Additional Slides
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Effect of Fermi Correction
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Uncertainty of the Fermi Correction
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Published Measurements of Elastic Form Factors
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The Ratio Method - Systematic Errors

e Calorimeter neutron detection efficiency parameterization: The neutron efficiency
was fitted with a third order polynomial plus a flat region at higher momentum. To
study systematic uncertainties the highest order term was dropped and the ratio R
regenerated. The upper limit on the range of differences for the different extractions

of R was assigned the systematic uncertainty.

e TOF neutron detection efficiency parameterization: Similar to calorimeter extraction

except the second and third order terms in the polynomial were dropped.

Detector 2.6 GeV | 4.2 GeV

Calorimeter 1.5 1.0

TOF 2.0 2.0

Percentage systematic uncertainties in neu-

tron efficiency parameterization.

e These are the largest contributions from this measurement.
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Reducing SC Background

1. Cut on the time difference between the measured TOF and the predicted

TOF using the neutron momentum extracted from the missing momentum.

2. Require a minimum of 5 MeV (electron equivalent) in the SC to reject

low-energy photons.
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