Measurement of the Neutron Magnetic Form Factor at High Q ² **Using the Ratio Method on Deuterium (PR12-07-104)**

A New Proposal for the Jefferson Lab 12-GeV Upgrade Program in Hall B

Follow-on to PAC30 Letter of Intent LOI12-06-107

- Outline 1. Scientific Motivation and Previous Measurements.
	- 2. The Ratio Method.
	- 3. Event Selection and Simulations.
	- 4. Corrections and Uncertainties.
	- 5. Summary and Run-Time Estimate.

Collaborators

G.P. Gilfoyle^{∗†} W.K. Brooks^{*}, S.Stepanyan M.F. Vineyard^{*} University of Richmond Tefferson Lab Union College

M. Holtrop K. Hafidi[∗] M. Garcon UNH ANL AND DAPNIA/SPhN-Saclay

P. Kroll[‡] S. Jeschonnek[‡] S.E. Kuhn, J.D. Lachniet^{*}, L.B. Weinstein Universität Wuppertal intervention Ohio State University Theorem Correst Comminion University

and the CLAS Collaboration

- ∗ - Spokesperson
- † Contact person.
- \ddagger Theory support.

'The physics impact of the experiment is high. The group has already successfully performed similar measurements at 6 GeV. This measurement is an important part of the Jlab program to study the 4 elastic nucleon form factors.'

- PAC30 report on LOI12-06-107

Scientific Motivation

 \bullet G_M^n is a fundamental quantity describing \bullet $\mathsf{p}[\mathsf{fm}^{-1}]$ **0.01** the charge and magnetization in the neutron. In the infinite-momentum-frame the parton charge density in transverse space is

 $ρ(b) = \int_0^\infty dQ \frac{Q}{2\pi} J_0(Qb) \times \left(\frac{G_E(Q^2) + \tau G_M(Q^2)}{1+\tau} \right)$

(G.Miller, arXiv:0705.2409v2 [nucl-th]).

- Measurements at large Q^2 will render the results above 'more precise or potentially change them considerably' (Ibid.).
- Elastic form factors (G_{M}^{n} , G_{E}^{n} , G_{M}^{p} , and G_{E}^{p}) provide key constraints on the generalized parton distributions (GPDs) which hold the promise of ^a three-dimensional picture of the nucleon.

'High-quality data on the neutron form factors in a wide t range would be highly valuable for pinning down the differences in the spatial distribution of ^u and d quarks ... drastic differences in the behavior of ^u and d contributions to the form factors'

(M.Diehl, Th. Feldmann, R. Jakob, and P.Kroll, hep-ph/0408173v2).

- Part of ^a broad effort to understand how nucleons are 'constructed from the quarks and gluons of QCD' (NSAC Long Range Plan, April, 2002).
- Fundamental challenge for lattice QCD (J.D. Ashley, D.B. Leinweber, A.W. Thomas and R.D. Young, Eur. Phys. J. A **15**, 487 (2002)).
- There are 'drastic differences' in the u and d quark contributions that require high- Q^2 data to sort out (M. Diehl, *et al.* Eur.Phys.J.C **39** (2005) 1).
- Required for extracting the strange quark distributions in the proton.

The magnetic form factor for the neutron extrapolated from lattice data with lattice spacings $a =$ 0.093 fm (single line), $a = 0.068$ fm (dash-dot line) and $a = 0.051$ fm (dotted line) and compared to experimental results.

World Data on G_M^n

The world data on G_M^n scaled by the dipole approximation where $G_D(Q^2)=1/(1+(Q^2/\Lambda))^2$ and $\Lambda=0.71$ ($GeV/c)^2$. The proposed measurement will extend the upper limit to $Q^2=14(GeV/c)^2$.

The CLAS12 Detector and Dual Target Cell

<code>CLAS12</code> acceptance for quasi-elastic $e\!-\!p$ events calculated with FASTMC (CLAS12 parameterized simulation). Range is $\mathrm{Q}^2=2-14(\mathrm{GeV/c})^2$.

2007-08-02 16:49:32

² (GeV/c) ² Q

The Ratio Method - Some Necessary Background

• Express the cross section in terms of the Sachs form factors.

$$
\frac{d\sigma}{d\Omega} = \sigma_{Mott} \left(G_E^2 + \frac{\tau}{\epsilon} G_M^2 \right) \left(\frac{1}{1+\tau} \right)
$$

$$
\tau = \frac{Q^2}{4M^2} \qquad \epsilon = \frac{1}{1+2(1+\tau)\tan^2(\frac{\theta}{2})} \quad \sigma_{Mott} = \frac{\alpha^2 E' \cos^2(\frac{\theta}{2})}{4E^3 \sin^4(\frac{\theta}{2})}
$$

 $\bullet\,$ Kinematic definitions - The angle θ_{pq} is between the virtual photon direction and the direction of the ejected nucleon.

• We can now take the ratio of the $e-p$ and

 $e - n$ cross sections (the ratio method).

$$
R = \frac{\frac{d\sigma}{d\Omega}(D(e, e'n))}{\frac{d\sigma}{d\Omega}(D(e, e'p))} = a(Q^2) \frac{\frac{G_E^{n^2} + \tau G_M^{n^2}}{1+\tau} + 2\tau G_M^{n^2} \tan^2(\frac{\theta}{2})}{\frac{G_E^{n^2} + \tau G_M^{n^2}}{1+\tau} + 2\tau G_M^{n^2} \tan^2(\frac{\theta}{2})}
$$

.

The Ratio Method - Outline and Advantages

Outline

- 1. Selecting quasielastic events: inelastic background, acceptance matching.
- 2. Neutron detection efficiency.
- 3. Proton detection efficiency.
- 4. Estimates of uncertainties.

Advantages

- Use deuterium as a neutron target.
- Reduces sensitivity to changes in running conditions, nuclear effects, radiative corrections, Fermi motion corrections.
- Importance of *in-situ* calibrations of neutron and proton detection efficiencies .
- Take advantage of the experience from the CLAS measurement of G_Λ^n M^\centerdot

GOAL: 3% systematic uncertainty

Selecting Quasielastic Events

- Select $e p$ events using the CLAS12 tracking system for electrons and protons.
- Use TOF and calorimeters as independent detectors for neutrons. The main focus here will be on the calorimeters since they are more efficient.
- $\bullet~$ Apply a θ_{pq} cut to select quasi-elastic events plus $W^2 < 1.2 \, (GeV/c^2)^2$. \searrow
- Match acceptances using quasi- elastic electron kinematics to determine if the nucleon lies in CLAS12 acceptance.
- Neutrons and protons treated exactly the same whenever possible.

- $\bullet~$ The CLAS G_{M}^{n} measurement at 4 GeV overlaps the proposed measurement to provide a consistency check.
- $\bullet~$ Impact of inelastic background will be greater at large ${\rm Q}^2$ due to increasing width of W^2 requiring simulation.

Monte Carlo Simulation

- 1. Quasielastic events \rightarrow elastic form factors.
- 2. Inelastic events \rightarrow proton and deuteron data (P. Stoler, Phys. Rep., **226**, 103 (1993), L.M.Stuart, et al., Phys. Rev. **D58** (1998) 032003).
- 3. For exit channel use elastic form factors and the genev program (for inelastic events) M. Ripani and E.M. Golovach based on P.Corvisiero, et al., Nucl. Instr. and Meth., **A346**, 433 (1994)).
- 4. Use FASTMC (CLAS12 parameterized Monte Carlo) to simulate the CLAS12 response.
- 5. Validate the Monte Carlo simulation.

Simulated (top panel) and measured (lower panel) inclusive electron spectra (L.M.Stuart, et al., Phys. Rev. **D58** (1998) 032003).

${\bf S}$ electing Quasielastic Protons - The θ_{pq} Cut

Distribution of θ_{pq} for the simulations and angular resolution of CLAS12 for charged particles in the forward tracking system from GSIM12.

Selecting Quasielastic Protons - W ² **Spectra**

 W^2 spectra for the $e-p$ final state. The left-hand panel has no θ_{pq} cut and the middle panel shows the effect of requiring $\theta_{pq} < 3^\circ.$ The right-hand panel is for $\theta_{pq} < 3^\circ$ and only $e-p$ in the final state (the multi-particle veto).

Selecting Quasielastic Neutrons - W ² **Spectra**

Comparison of the simulated W^2 spectra for the $D(e,e^\prime n)X$ (left-hand panel) and $D(e,e^\prime n)p$ reactions (right-hand panel) with $\theta_{pq} < 3^\circ$ in both.

Selecting Quasielastic Events - Angular Distributions

Angular distribution of θ_{pq} neutrons (left-hand panel) for the quasielastic (red), inelastic (green), and total (black) contributions (left-hand panel) and protons (right-hand panel).

Suppressing the Inelastic Background

 $\bullet~$ Reduce the maximum value of $\theta_{pq}.$ Plots below show effect of reducing the maximum angle from 3.0° (left-hand panel) to 1.5° (right-hand panel) for $\rm Q^2 = 6-7(GeV/c)^2$.

• Calculate the background using the dependence of the spectra on the maximum θ_{pq} , multiple-particle veto, and other kinematic quantities to tune the simulation.

Selecting Quasielastic Events - Acceptances

Acceptance for the $D(e,e^\prime p)n$ (left-hand panel) and $D(e,e^\prime n)p$ (right-hand panel) in CLAS12 (forward EC only) for 11 GeV. Calculated with FASTMC (parameterized Monte Carlo simulation of CLAS12).

Ratio Method Calibrations - Proton Detection Efficiency

- 1. Use $ep \rightarrow e^\prime p$ elastic scattering from hydrogen target as a source of tagged protons.
- 2. Select elastic $e-p$ events with a W^2 cut.
- 3. Identify protons as positive tracks with ^a coplanarity cut applied.
- 4. Use the missing momentum from $ep\to e'X$ to predict the location of the proton and search the TOF paddle or an adjacent one for ^a positively-charged particle.
- 5. Calibration data taken simultaneously with production data using the dual-cell target shown here.

Ratio Method Calibrations - Neutron Detection Efficiency

- 1. Use the $ep\rightarrow e^\prime \pi^+ n$ reaction from the hydrogen target as a source of tagged neutrons in the TOF and calorimeter.
- 2. For electrons, use CLAS12 tracking. For π^+ , use positive tracks, cut on the difference between β measured from tracking and from time-of-flight to reduce photon background.
- 3. For neutrons, $ep\to e\pi^+ X$ for $0.9 <$ $m_X < 0.95~{\rm GeV/c^2}.$
- 4. Use the predicted neutron momentum \vec{p}_n to determine the location of a hit in the fiducial region and search for that
neutron.
The CLAS C^n results neutron.
- 5. The CLAS \bar{G}_M^n results.
- 6. GSIM12 simulation results for CLAS12 are shown in the inset. Proposed measurement will extend to higher momentum where the efficiency is stable.

Calorimeter efficiency

The Ratio Method - Systematic Errors

 \bullet G_{M}^{n} is related to the $e-n/e-p$ ratio R by

$$
G_M^n = \pm \sqrt{ \left[R \left(\frac{\sigma_{mott}^p}{\sigma_{mott}^n} \right) \left(\frac{1 + \tau_n}{1 + \tau_p} \right) \left(G_E^{p-2} + \frac{\tau_p}{\varepsilon_p} G_M^{p-2} \right) - G_E^{n-2} \right] \frac{\varepsilon_n}{\tau_n}}
$$

where the subscripts refer to neutron (n) and proton (p).

 $\bullet~$ Upper limits on systematic error from the CLAS measurement ($\Delta G_M^n/G_M^n=2.7\%).$

• Investigate the largest contributors (the top two rows in the table) and assume the other maximum values stay the same. **Goal: 3% systematic uncertainty**

Systematic Uncertainty Studies

Other elastic form factors

Systematic uncertainty ($\Delta G_M^n/G_M^n\,\times\,100$) based on differences in the proton reduced cross section parameterizations of Bosted and Arrington-Melnitchouk.

• Neutron Detection Efficiency - Simulate the uncertainty associated with fitting the shape of the measured neutron detection curves.

Systematic Uncertainties - Summary

Summary of expected systematic uncertainties for CLAS12 G_{M}^{n} measurement ($\Delta G_M^n/G_M^n=2.4\%$ (2.7)). Red numbers represent the previous upper limits from the CLAS measurement.

Anticipated Results and Beam Request

- $\bullet~$ Expected Q^2 range and systematic uncertainty of 3% and world data for G_Λ^n \tilde{M} .
- Will almost triple the current Q^2 range.
- Need to obtain statistical precision as good as the anticipated systematic uncertainty.

• We request 56 PAC days of beam time at 11 GeV at ^a luminosity per nucleon of 0.5×10^{35} cm^{-2} s − 1 .

Anticipated Results and Beam Request

- $\bullet~$ Expected Q^2 range and systematic uncertainty of 3% and world data for G_Λ^n \tilde{M} .
- Will almost triple the current Q^2 range.
- cision as good as the anticipated systematic uncertainty.

• We request 56 PAC days of beam time at 11 GeV at ^a luminosity per nucleon of 0.5×10^{35} cm^{-2} s − 1 .

Lomon, Phys.Rev.C **66** 045501 (2002)

G. MIller, Phys. Rev. C **66**, 032201(R) (2002)

M.Guidal, M.K. Polyakov, A.Radyushkin, and M. Vanderhaeghen, Phys. Rev. D **72**, 054013 (2005).

Conclusions

- The neutron magnetic form factor is a fundamental quantity and extending the Q^2 range and coverage will probe deeper into hadronic structure, provide essential constraints on GPDs, and challenge lattice QCD.
- The CLAS12 detector will provide wide kinematic acceptance $(Q^2 = 3 14(GeV/c)^2)$ and independent measurements of neutrons with its calorimeters and TOF systems.
- We propose to use the ratio method on deuterium to reduce our sensitivity to ^a variety of sources of systematic uncertainty and limit systematic uncertainties to less than 3%.
- To keep systematic uncertainties small we will measure the detection efficiencies with ^a unique dual-cell target. Production and calibration data will be taken simultaneously.
- We request 56 PAC days of beam time at 11 GeV and ^a luminosity per nucleon of 0.5×10^{35} $cm^{-2}s^{-1}$ to obtain statistical precision in the highest Q^2 bin as good as the anticipated systematic uncertainty.

Run Statistics

Rates and statistical uncertainties for quasielastic scattering. All bins are ± 0.5 $(GeV/c)^2$. Based on 56 PAC days of beam time and a luminosity per nucleon of 0.5×10^{35} $cm^{-2}s^{-1}$.

Procedure for Quasielastic Simulation

- Pick a \mathbf{Q}^2 weighted by the elastic cross section.
- $\bullet~$ Pick p_f and $\cos\theta$ of the target nucleon weighting it by the combination of the Hulthen distribution and the effectivebeam-energy effect.
- Boost to the rest frame of the nucleon and rotate coordinates so the beam direction is along the z axis. Calculate ^a new beam energy in the nucleon rest frame.
- Choose an elastic scattering angle in the nucleon rest frame using the Brash parameterization.
- Transform back to the laboratory frame.

Procedure for Inelastic Simulation - 1

- Use existing measurements of inelastic scattering on the proton (P. Stoler, Phys. Rep., **226**, 103 (1993)).
- For the neutrons use inelastic scattering from deuterium (L.M.Stuart, et al., Phys. Rev. **D58** (1998) 032003). Data don't cover the full CLAS12 range, but $n-\overline{p}$ ratios are roughly constant.

Inelastic cross sections as a function of $\omega'=1+W^2/Q^2.$

Procedure for Inelastic Simulation - 2

- Pick a Q^2 weighted by the measured cross sections.
- \bullet Pick p_f and $\cos\theta$ of the nucleon weighted by the Hulthen distribution and the effective-beam-energy effect for inelastic scattering.
- Boost to the rest frame of the nucleon and rotate coordinates so the beam direction is along the z axis. Calculate ^a new beam energy in the nucleon rest frame.
- Choose the final state using genev (M.Ripani and E.N.Golovach based on P.Corvisiero, et al., NIM A**346**, (1994) 433.).
- Transform back to the laboratory frame.

Selecting Quasielastic Neutrons - Angular Distributions

Angular distribution of θ_{pq} for the quasielastic (red), inelastic (green), and total (black) contributions (left-hand panel) and ^a GSIM12 simulation of the angular resolution of CLAS12 for neutrons in the forward tracking system (right-hand panel).

Ratio Method Calibrations - Neutron Detection Efficiency - 2

1. Acceptance for neutrons in $D(e,e^\prime n)p.$

2. Acceptance for neutrons

Systematic Uncertainties - Neutron Detection Efficiency

• Characterize the neutron detection efficiency ϵ_n with the expression

$$
\epsilon_n = S \times \left(1 - \frac{1}{1 + \exp(\frac{p_n - p_0}{a_0})}\right)
$$

where S is the height of the plateau in ϵ_n for $p_n>2$ GeV/c , p_0 is a constant representing the position of the middle of the rapidly rising portion of the $\epsilon_n,$ and a_0 controls the slope of the ϵ_n in the increasing ϵ_n region.

- Fit the ϵ_n with a third-order polynomial and ^a flat region.
- $\bullet\,$ Use the original ϵ_n and the fit in reconstructing the neutrons and compare.

Systematic Uncertainties - Other Elastic Form Factors

- Systematic uncertainty ($\Delta G_M^n/G_M^n\,\times\,100$) based on differences in the proton reduced cross section parameterizations of Bosted and Arrington-Melnitchouk.
- Systematic uncertainty ($\Delta G_M^n/G_M^n\,\times\,100$) based on differences in $G_{\bm{\mu}}^n$ E° parameterizations of Kelly and BBBA05.

${\bf N}$ eutron Electric Form Factor G^n \bm{E}

World data on G_E^n . (C.E. Hyde-Wright and K.deJager, Ann. Rev. Nucl. Part. Sci. **54** (2004) 54 and references therein.)

The neutron electric form factor from Kelly and BBBA05 parameterizations as a function of Q^2 (J. J. Kelly, Phys. Rev, C 70, 068202 (2004) and R. Bradford, A. Bodek, H. Budd and J. Arrington, hep-ph/0602017.)

Suppressing the Inelastic Background

- Additional analysis to improve the neutron angular resolution: different EC fitting algorithm, use pCAL which has greater segmentation.
- Calculate the inelastic background.
	- **–** 'Calibrate' the calculation with other information from CLAS12.
	- **–** D (e, ^e ′) ^X (L.M.Stuart, et al., Phys. Rev. ^D **⁵⁸**, ⁰³²⁰⁰³ (1998)).
	- Use $D(e,e'p)X$ and $D(e,e'n)X$ and study dependence of maximum $\theta_{pq},$ multiplicity veto (recall previous plot), and ϕ_{pq} dependence.
	- $\hbox{\textbf{--} Use missing mass to study } D(e,e'p)n.$
- Calculate the quasielastic lineshape.
	- **–** 'Calibrate' the reaction with other information using other reactions as mentioned above.
	- $-$ Inelastic background is small for $W^2 \leq 0.9~GeV^2$.
	- Calculate lineshape with Sim12 and fit the low W^2 portion of the W^2 spectrum.

W² **Spectra at the Acceptance Edge**

 W^2 spectra at the edge of the acceptance $Q^2 = 12 - 14(GeV/c)^2$ for protons (left-hand panel) and neutrons (right-hand panel). Both reactions include the multi-particle veto.

The Ratio Method - Corrections

- $\bullet\,$ Nuclear effects: The $e-n/e-p$ ratio for free nucleons can be altered here because we measure the quasielastic scattering from bound nucleons. This factor $a(Q^2)$ was calculated and we compared results from Jeschonnek and Arenhoevel. Where the calculations overlap in Q^2 , the average correction to R is 0.994 and we assigned a systematic uncertainty of 0.6%.
- Radiative corrections: Calculated for exclusive $D(e,e^\prime p)n$ with the code EXCLURAD by Afanasev and Gilfoyle (CLAS-Note 2005- 022). The ratio of the correction factors for $e-n/e-p$ events is close to unity.

Published Measurements of Elastic Form Factors

C.E. Hyde-Wright and K.deJager, Ann. Rev. Nucl. Part. Sci. **54** (2004) 54 and references therein.

G_M^n and GPDs

Elastic form factors $(G_{M}^{n}, G_{E}^{n}, G_{M}^{p},$ and G_{E}^{p}) provide key constraints to 'stabilize the parameterizations' of generalized parton distributions (GPDs) which hold the promise of ^a three-dimensional picture of the nucleon.

$$
G_M^n(t) = \int_{-1}^{+1} dx \sum_q (e_q H^q(x, \zeta; t) + \kappa e_q E^q(x, \zeta; t))
$$

'High-quality data on the neutron form factors in a wide t range would be highly valuable for pinning down the differences in the spatial distribution of ^u and d quarks ... drastic differences in the behavior of u and d contributions to the form factors'

(M.Diehl, Th. Feldmann, R. Jakob, and P.Kroll, hep-ph/0408173v2).

Effect of Fermi Motion

• The Fermi motion in the target can drive some of the nucleons out of the CLAS acceptance. This effect turns out to be small in the ratio and decreases as Q^2 increases.

 3.5
 $3 - 1$
 $3 - 1$
 $\frac{1}{2}$

 2.5 $\frac{2}{5}$

 $\frac{2}{\pi}$

 $\frac{1.5}{1}$
 $\frac{1}{1}$

 1.5

 $\frac{f_{\text{Hulthen}} - f_{\text{flat}}}{f_{\text{Hulthen}} - f_{\text{flat}}}$ x 100

f
Hulthen

 $\overline{2}$

2.5

Fraction of nucleons scattered into the EC acceptance at 4.2 GeV

3

 Q^2 (GeV/c)² 4.5

 3.5