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Scientific Motivation

• To explore the ground state structure of the proton and neutron.

• Gn
M(Q2) is a fundamental observable related to the spatial distribution of

the magnetization in the neutron.

• Elastic form factors (Gn
M , Gn

E , Gp
M , and Gp

E) provide key constraints on

generalized parton distributions (GPDs) which promise to give us a

three-dimensional picture of hadrons.

• Elastic hadronic form factors are a fundamental challenge for lattice QCD.

• Required for extracting the strange quark distributions in the proton.

• Part of a broad effort to understand how nucleons are ‘constructed from the

quarks and gluons of QCD’. ∗

∗ ‘Opportunities in Nuclear Science: A Long-Range Plan for the Next Decade’, NSF/DOE

Nuclear Science Advisory Committee, April, 2002.
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Current Status of Neutron Elastic Form Factors

• Gn
M and Gn

E .
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C.E. Hyde-Wright and K.deJager, Ann. Rev. Nucl. Part. Sci. 54 (2004) 54 and references therein.
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Using The Ratio Method

Outline

• Definition of the ratio and some necessary background.

• Selecting quasielastic events.

• Measuring the neutron and proton detection efficiencies.

• Estimates of uncertainties.

Issues

1. Enables us to use deuterium as a neutron target.

2. Reduces sensitivity to changes in running conditions; goal of 3% systematic uncertainty.

3. Take advantage of the experience from the CLAS measurement of Gn
M .

4. Focus on differences with previous experiment.

5. Importance of in-situ calibrations.
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Some Necessary Background

• It is convenient to express the cross section in terms of the Sachs form

factors.
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• We can now take the ratio of the e − p and e − n cross sections (the ratio

method).
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Some More Necessary Background

• To select quasielastic events (more later) we will use a cut on θpq shown

here.

CLAS Collaboration Meeting, June 14-16, 2007



Selecting Quasielastic Events

• Select e − p and e − n events using tracking system electrons and protons, use TOF and

calorimeters as independent detectors for neutrons. The main focus here will be on the

calorimeters since they are more efficient.

• Quasi-elastic event selection: Apply a maxi-

mum θpq cut to eliminate inelastic events plus

W 2 < 1.2 (GeV/c2)2. Plot shows the ef-

fect of this cut on the CLAS Gn
M measure-

ment at 4 GeV which overlaps with the pro-

posed measurement.
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• Acceptance matching: Use the quasi- elastic

electron kinematics to predict if the nucleon

(proton or neutron) lies in CLAS acceptance.

Require both hypotheses to be satisfied.

• Neutrons and protons treated exactly the

same whenever possible.

• Impact of inelastic background will be greater at large Q2 due to increasing width of W 2.
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Monte Carlo Simulation

• Study quasielastic and inelastic scattering from both neutron and proton. The inelastic

scattering produces a background that overlaps with the quasielastic events.

• For quasielastic scattering use the elastic nucleon form factors to get the cross section on

the nucleon and then incorporate the effects of the target nucleon’s Fermi motion inside the

deuteron.

• For inelastic scattering use existing proton and deuteron data to parameterize the cross

sections for both protons and neutrons and add the Fermi motion.
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Procedure for Quasielastic Simulation

• Pick a Q2 weighted by the elastic cross

section.

• Pick pf and cos θ of the target nucleon

weighting it by the combination of the

Hulthen distribution and the effective-

beam-energy effect.

• Boost to the rest frame of the nucleon

and rotate coordinates so the beam di-

rection is along the z axis. Calculate

a new beam energy in the nucleon rest

frame.

• Choose an elastic scattering angle in

the nucleon rest frame using the Brash

parameterization.

• Transform back to the laboratory frame.
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Procedure for Inelastic Simulation - 1
• Use existing measurements of inelastic

scattering on the proton (P. Stoler, Phys.

Rep., 226, 103 (1993)).

• For the neutrons use inelastic scattering

from deuterium (L.M.Stuart, et al., Phys.

Rev. D58 (1998) 032003). Data don’t

cover the full CLAS12 range, but n − p

ratios are roughly constant.

Inelastic cross sections as a function of

ω′ = 1 + W 2/Q2.
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Procedure for Inelastic Simulation - 2

• Pick a Q2 weighted by the measured

cross sections.

• Pick pf and cos θ of the nucleon

weighted by the Hulthen distribution and

the effective-beam-energy effect for in-

elastic scattering.

• Boost to the rest frame of the nucleon

and rotate coordinates so the beam di-

rection is along the z axis. Calculate

a new beam energy in the nucleon rest

frame.

• Choose the final state using genev

(M.Ripani and E.N.Golovach based on

P.Corvisiero, et al., NIM A346, (1994)

433.).

• Transform back to the laboratory frame.
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Selecting Quasielastic Protons - Acceptance
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Acceptance for the D(e, e′p)n in CLAS12 for 11 GeV. Calculated with

FASTMC.
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Selecting Quasielastic Protons - Consistency Check
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Comparison of the W 2 spectra for simulated inclusive electrons (left-hand panel) from this work

and measured inclusive spectra for electron scattering on deuterium (right-hand panel). Inelastic

e−D cross sections are shown in the ∆(1232) resonance region fitted with contributions from

quasielastic (dotted line), ∆(1232) (dashed), and non-resonant (dot-dashed) contributions

(L.M.Stuart, et al., Phys. Rev. D58 (1998) 032003).
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Selecting Quasielastic Protons - W 2 Spectra
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W 2 spectra for the e − p final state. The left-hand panel has θpq < 3◦. The

left-hand panel is for θpq < 3◦ and only e − p in the final state.
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Selecting Quasielastic Protons - Angular Distributions
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Distribution of θpq for the simulations and angular resolution of CLAS12 for

charged particles in the forward tracking system.
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Selecting Quasielastic Neutrons - Acceptance
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Selecting Quasielastic Neutrons - W 2 Spectra
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Comparison of the simulated W 2 spectra for the D(e, e′n)X (left-hand panel)

and D(e, e′n)p reactions (right-hand panel).
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Selecting Quasielastic Neutrons - Angular Distributions
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panel).
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Selecting Quasielastic Neutrons - Angular Distributions - 2
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Angular distribution of θpq neutrons (left-hand panel) for the quasielastic (red),

inelastic (green), and total (black) contributions (left-hand panel) and protons

(right-hand panel).
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Ratio Method Calibrations - Neutron Detection Efficiency

Neutron detection efficiency:

1. Use the ep → e′π+n reaction from the hydrogen target as a source of tagged neutrons in

the TOF and calorimeter.

2. Use CLAS12 tracking for electron selection.

3. For π+, use positive tracks, cut on the difference between β measured from tracking and

from time-of-flight to reduce photon background.

4. For neutrons, ep → eπ+X for

0.9 < mX < 0.95 GeV/c2.

5. In the calorimeter use the neutron

momentum ~pn to determine the lo-

cation of a hit in the fiducial region

(reconstructed event) and search

for that neutron (a found event if it’s

there). Plot shows the results of the

CLAS Gn
M measurement.

Calorimeter efficiency
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6. Acceptance for neutrons in

D(e, e′n)p.
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7. Acceptance for neutrons in

p(e, e′π+)n.
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Ratio Method Calibrations - Proton Detection Efficiency

Proton detection efficiency:

1. Use ep → e′p elastic scattering from hydrogen target as a source of tagged protons.

2. Select elastic e − p eveants with a W 2 cut.

3. Protons were identified as positive tracks with a coplanarity cut applied.

4. Use the missing momentum from ep → e′X to predict the location of the proton (a

reconstructed event). Search the the TOF paddle or an adjacent one for a

positively-charged particle (a found event if it’s there). Results below are for sector 1 in the

CLAS Gn
M measurement.

Paddle Number

E
ffi

ci
en

cy
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Ratio Method Calibrations - Conceptual Target Design

• Dual target cell with two, 2-cm

cells containing liquid hydrogen

and deuterium. The hydrogen

cell is downstream and separated

from the deuterium target by 1.0-

cm gap. Enables us to perform in

situ calibrations during data col-

lection.

• Modeled after E5 target used in

CLAS Gn
M measurement.

Hydrogen Cell
Vacuum

Deuterium Cell
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The Ratio Method - Systematic Errors

• The goal is a systematic uncertainty of 3%.

• Use the CLAS Gn
M measurement for guidance.

Quantity δGn
M

/Gn
M

× 100 Quantity δGn
M

/Gn
M

× 100

Neutron efficiency param-

eterization

< 1.5 θpq cut < 1.0

proton σ < 1.5 Gn
E

< 0.7

neutron accidentals < 0.3 Neutron MM cut < 0.5

neutron proximity cut < 0.2 proton efficiency < 0.4

Fermi loss correction < 0.9 Radiative corrections < 0.06

Nuclear Corrections < 0.2

Upper limits on estimated systematic error for different contributions for the

CLAS Gn
M measurement (∆Gn

M/Gn
M = 2.7%).
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Systematic Uncertainties - Neutron Detection Efficiency

• Characterize the neutron detection effi-

ciency ǫn with the expression

ǫn = S ×

(

1 −
1

1 + exp(pn−p0

a0

)

)

where S is the height of the plateau in

ǫn for pn > 2 GeV/c, p0 is a constant

representing the position of the middle

of the rapidly rising portion of the ǫn,

and a0 controls the slope of the ǫn in

the increasing ǫn region.

• Fit the ǫn with a third-order polynomial

and a flat region.

• Use the original ǫn and the fit in recon-

structing the neutrons and compare.
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Systematic Uncertainties - Other Elastic Form Factors

• Systematic uncertainty

(∆Gn
M/Gn

M × 100) based

on differences in the proton

reduced cross section param-

eterizations of Bosted and

Arrington-Melnitchouk.

• Systematic uncertainty

(∆Gn
M/Gn

M × 100) based

on differences in Gn
E pa-

rameterizations of Kelly and

BBBA05.
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Systematic Uncertainties - Summary

Quantity δGn
M/Gn

M × 100 Quantity δGn
M/Gn

M × 100

Neutron efficiency

parameterization

< 0.7(1.5) θpq cut < 1.0(1.7)

proton σ < 1.5(1.5) Gn
E < 0.7(0.5)

neutron accidentals < 0.3 Neutron MM cut < 0.5

neutron proximity cut < 0.2 proton efficiency < 0.4

Fermi loss correction < 0.9 Radiative corrections < 0.06

Nuclear Corrections < 0.2

Summary of expected systematic uncertainties for CLAS12 Gn
M measurement

(∆Gn
M/Gn

M = 2.7%(2.7)). Red numbers represent the previous upper limits

from the CLAS measurement.
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Run Statistics

2.5 0.2566 1.3384 0.499 × 106 0.142 0.26 × 107 0.062

3.5 11.7592 1.8455 0.229 × 108 0.021 0.36 × 107 0.053

4.5 4.9359 1.4266 0.960 × 107 0.032 0.28 × 107 0.060

5.5 1.8363 0.6011 0.357 × 107 0.053 0.12 × 107 0.093

6.5 0.7002 0.2103 0.136 × 107 0.086 0.41 × 106 0.156

7.5 0.2829 0.0816 0.550 × 106 0.135 0.16 × 106 0.251

8.5 0.1236 0.0342 0.240 × 106 0.204 0.66 × 105 0.388

9.5 0.0595 0.0152 0.116 × 106 0.294 0.29 × 105 0.583

10.5 0.0303 0.0070 0.590 × 105 0.412 0.14 × 105 0.857

11.5 0.0144 0.0033 0.280 × 105 0.598 0.65 × 104 1.242

12.5 0.0069 0.0016 0.135 × 105 0.860 0.31 × 104 1.784

13.5 0.0034 0.0008 0.657 × 104 1.234 0.15 × 104 2.554

Rates and statistical uncertainties for quasielastic scattering. All bins are

±0.5 (GeV/c)2. Based on 45 PAC days of beam time and a luminosity per

nucleon of 0.5 × 1035 cm−2s−1.
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Anticipated Results and Beam Request

• The expected Q2 range and systematic uncertainty of less than 3% are

shown belong along with the world data for Gn
M . We will more than double

the Q2 range of the current knowledge of the neutron magnetic form factor.
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• We request 45 PAC days of beam time at 11 GeV in order to obtain

statistical precision as good as the anticipated systematic uncertainty.
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Selecting Quasielastic Neutrons - W 2 Spectra - 2
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Simulated W 2 spectra for the D(e, e′n)p with θpq cut reduced from 3◦

(left-hand panel) to 1.5◦ (right-hand panel).
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The Ratio Method - Corrections

• Nuclear effects: The e−n/e− p ratio for free nucleons can be altered here

because we measure the quasielastic scattering from bound nucleons. This

factor a(Q2) was calculated and we compared results from Jeschonnek

and Arenhoevel. Where the calculations overlap in Q2, the average

correction to R is 0.994 and we assigned a systematic uncertainty of 0.6%.

• Radiative corrections: Calculated

for exclusive D(e, e′p)n with the

code EXCLURAD by Afanasev

and Gilfoyle (CLAS-Note 2005-

022). The ratio of the correction

factors for e− n/e− p events is

close to unity.
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Results - Comparison with Existing Data
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Combined Systematic Uncertainty
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Published Measurements of Elastic Form Factors

• Gn
M -

• Gp
M HHHHHHHHHHHHHHj

• Gp
E/Gp

M

AAU
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C.E. Hyde-Wright and K.deJager, Ann. Rev. Nucl. Part. Sci. 54 (2004) 54 and references therein.
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