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Abstract

We propose to measure the magnetic form factor of the neutron using the 11 GeV elec-
tron beam in the upgraded CEBAF and CLAS12 detector. The measurement will cover the
range Q2 = 2 − 14 GeV2. The neutron’s magnetic form factor is one of the fundamental
quantities of nuclear physics and its value is an important constraint for the newly-developed
generalized parton distributions that hold the promise of dramatically expanding our under-
standing of the nucleon. The form factors are also important challenges for lattice QCD to
meet. This measurement is part of a broad assault on the four, elastic, electromagnetic, nu-
cleon form factors at Jefferson Lab. We will use the ratio of quasielastic e−n to quasielastic
e − p scattering on deuterium. The ratio method is less vulnerable to uncertainties than
previous methods and we will have consistency checks between different detector compo-
nents and an overlap with our previous CLAS measurements. Precise measurements of Gn

M

have already been made by our group and others at lower Q2. This experiment can be done
with the base equipment for CLAS12. The groups behind this project have made significant
commitments to the Jefferson Laboratory 12-GeV Upgrade.
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1 Introduction

The internal structure of the nucleon represents a fundamental challenge for nuclear physics.
The elastic electromagnetic form factors are the most basic observables that describe this
internal structure and their evolution with Q2 characterizes the distributions of charge and
magnetization within the proton and neutron. These observables also provide stringent tests
of non-perturbative QCD and are connected to generalized parton distributions (GPDs) via
the appropriate sum rules. We propose to extend our successful measurements of the neutron
magnetic form factor Gn

M to the higher Q2 that will be available with the 12-GeV Upgrade
of CEBAF. We will use the ratio of the quasielastic electron-neutron to electron-proton
scattering on deuterium to extract a precise (≈ 3%) measurement of Gn

M . In Section 2 we
present more details on the scientific motivation for measuring Gn

M and review the world’s
data for this quantity. In Section 3 we outline the method for making the measurement,
estimate the expected quality of the data, and discuss the relationship of this experiment to
others at JLab. We list the commitments of the co-spokespersons and supporters in Section
4 and draw conclusions in Section 5. In Table 1 we summarize the commitment of the
experimental collaborators to the Jefferson Lab 12-GeV Upgrade.

2 Scientific Motivation

The nucleon elastic form factors are defined through the matrix elements of the electromag-
netic current Jµ = ψγµψ as

〈N(P ′)|Jµ(0)|N(P )〉 = u(P ′)

(

γµF1(Q
2) +

iσµνq
νκ

2M
F2(Q

2)

)

u(P ) (1)

where P and P ′ are the initial and final nucleon momenta, q = P − P ′, Q2 = −q2, M is the
nucleon mass, κ is the anomalous magnetic moment, and F1 and F2 are scalar functions of Q2

that characterize the internal structure of the nucleon. These are the Dirac and Pauli form
factors, respectively. The differential cross section for elastic electron-nucleon scattering can
then be calculated in the laboratory frame as [1]

dσ

dΩ
= σMott

[(

F 2
1 +

κ2Q2

4M2
F 2

2

)

+
Q2

2M2
(F1 + κF2)

2 tan2

(

θ

2

)]

(2)

where θ is the electron scattering angle, κ is the nucleon anomalous magnetic moment, and
σMott is

σMott =
α2E ′ cos2( θ

2
)

4E3 sin4( θ
2
)

. (3)

It is preferable to define different electromagnetic form factors that are related to the charge
and magnetization density of the nucleon in the appropriate kinematics. These so-called
Sachs form factors are defined as

GE = F1 −
κQ2

4M2
F2 GM = F1 + κF2 (4)
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Name Institution Project

G.P. Gilfoyle University of Richmond Software for event simulation and
online/offline reconstruction.

M.F. Vineyard Union College Software for analysis, simulation,
and controls.

S. Stepanyan,
W.K. Brooks

JLab Group leader for the electromag-
netic calorimeters for CLAS12.

L.B. Weinstein,
S.E. Kuhn,
J.D. Lachniet

Old Dominion University Construction of Region 1 drift
chambers.

K. Hafidi,
J.Arrington,
D.Geesaman,
R.Holt,
D.Potterveld,
R.Reimer,
P.Solvignon

Argonne National Lab Design, prototyping, construction,
and testing of the new high-
threshold Cerenkov counter.

M. Holtrop University of New Hampshire Software for simulation and design,
prototyping, construction, and test-
ing of the silicon vertex detector.

M. Garcon DAPNIA/SPhN-Saclay Design, prototyping, construction,
and testing of the central tracker.

Table 1: Summary of commitments (subject to funding approval) of CLAS collaborators on
this proposal to the Jefferson Lab, 12-GeV Upgrade.

so Equation 2 can be written as

dσ

dΩ
= σMott

(

G2
E +

τ

ǫ
G2

M

)

(

1

1 + τ

)

(5)

where

τ =
Q2

4M2
and ǫ =

1

1 + 2(1 + τ) tan2( θ
2
)

. (6)

The current status of our understanding of Gn
M is shown in Figure 1 where Gn

M is scaled
by the dipole form factor GD(Q2) = 1/(1+Q2/∆)2 and ∆ = 0.71 (GeV/c)2. The parameter
∆ is interpreted as the square of the effective meson mass. We focus here on Q2 > 1.0 GeV2

where the neutron magnetic form factor agrees with the dipole form within 5-10%. This
agreement can be qualitatively understood as a virtual photon interacting with the nucleon
after the photon has fluctuated into a vector meson. There are, however, deviations from
the dipole form that invite investigation. Some of the data have large error bars due largely
to uncertainties in subtracting the contribution of the proton in these measurements using
inclusive quasielastic scattering on deuterium [2]. The more precise measurements including
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the recent work by Lachniet, et al. and the CLAS E5 group (the red circles in Figure 1)
[3, 4] and others [5, 6, 7, 8] use a ratio method that we propose to extend to higher Q2 and
which is described in Section 3.
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Figure 1: Selected results for the neutron magnetic form factor Gn
M in units of µnGD as a

function of Q2. See Reference [3] and references therein.

Measuring Gn
M at higher Q2 will shed light on important questions in hadronic physics.

At asymptotically large Q2, the elastic nucleon form factors can be rigorously calculated in
perturbative QCD (pQCD) where the small wavelength of the virtual photon ensures that
the quark substructure of the nucleon can be resolved [10]. It is assumed the nucleons can
be treated as bound systems of point-like quarks governed by the properties of the strong
interaction. Dimensional scaling predicts that only valence quarks will be important and
those quarks interact via a hard-scattering process. These calculations reproduce the Q2

dependence of the proton magnetic form factor for Q2 > 10 GeV2. The transition from the
low-Q2 dipole form to the pQCD regime is still unclear. Evidence from recent Jefferson Lab
experiments and others suggest that non-perturbative effects still dominate the form factors
for Q2 < 10 GeV2. For example, the Q2 dependence of the ratio µpG

p
E/G

p
M is expected

to be constant in pQCD, but surprising Jefferson Lab measurements of this ratio revealed
significant Q2 dependence up to Q2 = 5.0 GeV2 [11, 12, 13]. Figure 2 shows the quantity
µpG

p
E/G

p
M measured in several experiments. The points labeled Punjabi and Gayou are the

Jefferson Lab measurements and are not constant with Q2. Higher Q2 investigations show
evidence of scaling behavior, consistent with predictions of quark dimensional scaling and
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Figure 2: The ratio µpG
p
E/G

p
M from polarization transfer measurements, recent Rosenbluth

data, and a reanalysis by Arrington of older SLAC data. See reference [2] and references
therein.

perturbative QCD [11].
The elastic nucleon form factors are a fundamental challenge for lattice QCD calcula-

tions. Full calculations are still beyond our reach so existing ones use different approxima-
tions. These include techniques like the ‘quenched approximation’ where dynamical effects
of quarks on the vacuum are ignored and the use of quark masses much higher than the
physical ones (by a factor of 5-20) [14]. Extrapolations are then made to the physical quark
mass region. Some success has been achieved in reproducing the Q2 dependence of Gn

M for
Q2 < 1.0 GeV2, but the higher Q2 region remains new territory [14].

Recent theoretical work has led to the development of generalized parton distribu-
tions (GPDs) where form factors and structure functions can be simultaneously embedded.
These distributions hold the promise of performing nuclear tomography and developing a
three-dimensional image (two spatial and one momentum coordinate) of the nucleon. They
have ‘tremendous potential to provide a quantitative description of the quark motion inside
hadrons’ [15]. GPDs are typically studied via deeply virtual Compton scattering or real
Compton scattering at high momentum transfer. However, the elastic form factors (Gn

M ,
Gn

E , Gp
M , and Gp

E) are key constraints on GPDs. The lowest moments of the GPDs multi-
plied by the appropriate quark charges and summed over all quark flavors recover the form
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factors as shown below

Gn
M(t) =

∫ +1

−1

dx
∑

q

(eqH
q(x, ζ ; t) + κeqE

q(x, ζ ; t)) (7)

where t is the invariant momentum transfer, x is the longitudinal momentum fraction, ζ
is the skewness, and Hq and Eq are the flavor-dependent generalized parton distributions
[16, 17]. The GPD Eq is mostly unknown. These sum rules hold for all values of Q2 from
zero to infinity. Measuring the nucleon form factors complements other proposed 12-GeV
programs to measure deeply virtual exclusive (DVE) reactions at low momentum transfer
|t|. The form factors connect to the GPDs at high |t| (= Q2 for elastic scattering) and so
high-Q2 data are needed to obtain the structure of the nucleon at small transverse distances
[18]. A particularly interesting possibility is to extract the u- and d-quark contributions to
Gn

M , but this analysis requires broad Q2 coverage of all four elastic nucleon form factors.
There are some indications that the u- and d-quark contributions behave differently at large
Q2 which may also shed light on the existence of dimensional scaling at low Q2 [17].

We note that the effort to measure Gn
M in the range Q2 = 2 − 14 GeV2 is part of a

larger Jefferson Lab program to increase our understanding of all four nucleon form factors
and express them in terms of common GPDs. All four elastic form factors are needed to
untangle the different quark contributions. However, at high Q2 there is precise data only
for the proton. The limited coverage can be seen by comparing Figure 1 with Figure 3
which shows the normalized proton magnetic form factor Gp

M . The Gp
M data extend out to

Q2 = 30 GeV2 while the Gn
M data in Figure 1 are just now being extended to Q2 = 4.5 GeV2

(red circles in Figure 1 from Lachniet, et al. [3]). With the 12-GeV Upgrade of CEBAF,
Gp

E/G
p
M and Gn

M can be measured up to Q2 ≈ 14 GeV2 and for Gn
E up to Q2 = 5 GeV2 [18].

This nucleon form factor program will be part of a ‘great leap forward in our knowledge of
hadron structure’ [18].

3 The Experiment

3.1 The Ratio Method

We propose to use the ratio of quasielastic e−n to e−p scattering from a deuterium target to
measure Gn

M in the range Q2 = 2−14 GeV2. This technique has been shown to significantly
reduce the uncertainties associated with other methods and has already been used by us [3, 4]
and others [2, 5, 6, 7, 8] to measure Gn

M . See Figure 1 for the results of the E5 measurement
and other data on Gn

M . The method is based on the ratio

R =
dσ
dΩ

(D(e, e′n))
dσ
dΩ

(D(e, e′p))
(8)

for quasielastic kinematics. It is nearly equal to the ratio of the free nucleon e− n to e− p
cross sections. In terms of the free nucleon form factors

R = a(Q2)
σn

mott(G
n
E

2 + τn

εn
Gn

M
2)
(

1

1+τn

)

σp
mott(G

p
E

2 + τp

εp
Gp

M
2)
(

1

1+τp

) . (9)
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Figure 3: World data for proton magnetic form factor Gp
M , in units of µpGD, as a function

of Q2. See [2] and references therein. Compare with Figure 1.

Deviations from this ‘free ratio’ assumption are parametrized by the factor a(Q2) which
can be calculated from deuteron models and is close to unity at large Q2. Once the model
corrections have been applied to R, the results of other measurements of the proton form
factors (see Figures 2 and 3) and the neutron electric form factor (see Figure 4) can be used
to extract Gn

M . The neutron electric form factor shown in Figure 4 is smaller than Gn
M by a

factor of six or more and its contribution is kinematically suppressed at large Q2 so it has
little effect on extracting Gn

M in this way.
The ratio method has several advantages. It is insensitive to the luminosity, electron

acceptance, electron reconstruction efficiency, trigger efficiency, the deuteron wave function,
and radiative corrections. The price one pays is the technique requires a precise measurement
of the neutron detection efficiency and careful matching of the neutron and proton accep-
tances. The experiment performed in CLAS in the E5 run period used a unique dual-cell
target, containing collinear deuterium and hydrogen cells to make in-situ calibration mea-
surements simultaneously with data collection on deuterium. We plan to follow a similar path
at higher Q2. Below we discuss more details on the challenges posed by this measurement.

3.2 Quasielastic Event Selection

The ratio method described above relies on the selection of quasielastic e − n and e − p
scattering. In the previous CLAS measurement of Gn

M a cut on θpq, the angle between the
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Figure 4: The neutron electric form factor Gn
E as a function of Q2. See [2] and references

therein. Results from 3He are indicated by open symbols. The full curve shows the Galster
[9] parameterization; the dashed curve represents the Q2-behavior of Gp

E .

ejected nucleon and the virtual photon, was used to select these events. See Figure 5 for
definitions of the relevant angles. This angle cut θmax

pq was varied with Q2 and an additional
cut on W 2 (0.5 ≤ W 2 ≤ 1.2 (GeV/c2)2) was required. Figure 6 shows the effectiveness of
the θmax

pq cut on reducing the inelastic background for the previous CLAS measurement of
Gn

M . At higher energy and momentum transfer we expect quasi-free kinematic effects to
broaden the W 2 distribution and focus the θpq distribution more tightly along the virtual
photon direction. We have developed a simulation to test the effectiveness of this method in
selecting quasielastic events. In Section 3.2.1 we discuss the simulation we have developed
and study the effectiveness of the θmax

pq cut and other strategies in Section 3.2.2-3.2.3.

3.2.1 Monte Carlo Simulation of D(e, e′p)n and D(e, e′n)p

To simulate the quasielastic production we treat the deuteron as composed of two, on-shell
nucleons, one of which will act as a spectator in the interaction. The quasielastic interaction
is then elastic scattering with the target nucleon, but we must also add the effect of the
Fermi motion of this target nucleon within the deuteron. This approach enables us to take
advantage of existing data on electron scattering on the proton and the deuteron.

We start with the existing, elastic, nucleon form factors. We use Equations 3-6 and



11

Figure 5: Kinematics of D(e, e′p)n and D(e, e′n)p.
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Figure 6: Effect of the cut on θpq, the angle between the direction of the virtual photon and
the direction of the nucleon for the CLAS 4 − GeV, Gn

M data [3].

make the following assumptions about the form factors

Gp
E ≈ GD =

1

(1 +Q2/∆)2
Gp

M ≈ µpGD Gn
M ≈ µnGD Gn

E =
µnτGD

1 + ητ
(10)

where µn and µp are the neutron and proton magnetic moments, ∆ = 0.71 (GeV/c)2, and
η = 5.6 (from the Galster parameterization [9]). The number of quasielastic events in a
particular Q2 bin is calculated from these elastic form factors. Next, the Fermi momentum
~pf for one of the nucleons is chosen at random (the spectator nucleon has momentum −~pf )
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Figure 7: Hulthen distribution representing the nucleon Fermi momentum inside the
deuteron.

and we simulate the kinetics of the scattering. The nucleon momentum ~pf inside the deuteron
is chosen from the Hulthen distribution shown in Figure 7 and depends only on the pf [24].

We also have to account for combined effect of the Fermi motion and the beam energy
dependence of the elastic cross section. A nucleon whose Fermi motion is directed towards
the incoming electron will observe a higher energy beam in its rest frame and (because of
the elastic cross section dependence on the beam energy) will have a lower cross section for
interacting. Conversely, a nucleon ‘running away’ from the beam will see a lower effective
beam energy and have a higher cross section.

We now describe a way to account for this effective-beam-energy effect and the mo-
mentum distribution of the target nucleon. We start with the quasielastic case. For a given
choice of Fermi momentum pf and nucleon polar angle cos θ there is an effective beam en-
ergy in the rest frame of the moving nucleon. The angle θ here is the angle between the
direction of the moving target nucleon and the beam axis in the laboratory. The size of
the cross section at this effective beam energy in the nucleon rest frame and the Hulthen
distribution will determine the relative weight of this pf − cos θ combination. At each ef-
fective beam energy in the quasielastic case the Brash parameterization [25] of the nucleon
cross section is used to obtain the cross section dependence on the electron scattering angle.
This angular dependence is integrated over the CLAS12 angular acceptance to obtain the
weighting due to the effective-beam-energy effect at each pf − cos θ point. Multiplying this
effective-beam-energy weight with the Hulthen distribution at each pf − cos θ point yields
the weight functions for electron-proton and electron-neutron scattering. The results are
shown in Figure 8. The Hulthen distribution produces a long ridge in the range of the Fermi
momentum pf ≈ 0.04− 0.05 GeV/c and the cross section dependence on the effective beam
energy creates a downward slope along this ridge from forward to backward angles. We can
now use these functions to choose the the Fermi momentum ~pf for the quasielastic case.

The algorithm for simulating the Fermi motion is as follows. (1) Choose the value of
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Figure 8: Plot of the weighting function for electron-proton (left-hand panel) and electron-
neutron (right-hand panel) scattering. The beam energy is 11 GeV. The angle θ is the angle
between the direction of the moving target nucleon and the beam axis in the laboratory.

Q2 and the type of nucleon. The Q2 dependence of the elastic form factors for both neutrons
and protons is used as the weighting function for this step. (2) Next, the magnitude of
the Fermi momentum pf and cos θ are picked from the distributions in Figure 8. The
azimuthal angle φf of the nucleon is chosen from a uniform, random distribution in the
range φf = 0 − 2π. (3) Once the Fermi momentum is chosen, a relativistic boost is made
to the rest frame of the nucleon for all particles and the coordinate system is rotated so the
incoming electron is along the z axis. A new beam energy is calculated. (4) A nucleon, rest-
frame electron scattering angle is chosen from a random distribution weighted by the Brash
parameterization. (5) Last, the momenta of the electron and nucleon are transformed back
to the laboratory frame. A method like this one was implemented in the program QUEEG
and used to simulate quasielastic events here [3].

We have also calculated the contribution of the inelastic channels because it will form
a background under the quasielastic peak. We again treated the deuteron in the spectator
approximation as two, on-shell nucleons described by the Hulthen distribution. To determine
the weighting function for each pf − cos θ point we use the Hulthen distribution as before,
but there is no set of formulas for the inelastic cross section comparable to the elastic form
factors. To calculate the inelastic cross section at a particular value of Q2 and account for the
effective-beam-energy effect in the entrance channel we have to estimate the inelastic cross
section for the p(e, e′)X reaction near the quasielastic peak. We use inclusive measurements
of the inelastic cross section on the proton from Reference [26] and shown in Figure 9. These
inelastic, inclusive electron spectra cover the full range of Q2 of CLAS12. For the neutron
case we used measurements of inclusive electron scattering on deuterium where the ratios
of n − p cross sections were extracted [28]. These measurements are shown in Figure 10.
The measurements on deuterium do not cover the full Q2 range of CLAS12, but the ratios
of neutron to proton cross section in the scattering from deuterium are roughly constant
up to Q2 = 8 (GeV/c)2. We extrapolate these ratios to cover the CLAS12 Q2 range. To
generate the inelastic weighting function an effective beam energy for each pf − cos θ pair
is calculated. The inelastic cross section is integrated over the CLAS12 angular range and
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Figure 9: The structure functions νW2 versus ω′ for inclusive inelastic scattering in the
resonance region for various values of nominal Q2, where ω′ = 1+W 2/Q2. The experimental
data were obtained from Reference [26] and references therein. The solid curves are resonant
fits to the data. The dashed curves are fits to the data in the scaling region extrapolated
down to the resonance region as a test of duality .
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Figure 10: The ratios (a) (σn/σp)∆ and (b) (σn/σp)nonres for inelastic electron scattering
from deuterium from Reference [28].

over the range W 2 = 0.0 − 3.0 (GeV/c2)2. The upper limit on the W 2 integration is chosen
large enough to include high-W 2 events that might be smeared by the kinematics into the
quasielastic peak. Multiplying the Hulthen distribution by this effective-beam-energy weight
gives the final weighting function for picking pf and cos θ. The result is shown in Figure 11
Note the similarity with the distributions in Figure 8.

To simulate the inelastic part we now follow a procedure analogous to what was done
in the quasielastic case. (1) The number of inelastic events in a Q2 bin is estimated by
interpolating the cross section between the measured inelastic cross sections shown in Figure
9 for quasielastic scattering off the proton and combined with the ratios in Reference [28] for
quasielastic scattering off the neutron. (2) The Fermi momentum (pf and cos θ) are chosen
from the distribution in Figure 11. The azimuthal angle φ is chosen from a uniform, random
distribution over the range φ = 0 − 2π. (3) A relativistic boost is then made to the rest
frame of the moving nucleon and the effective beam energy calculated. (4) At this point
final, inelastic state (e′−p−π0, e′−n−π+, ...) needs to chosen and the decay of short-lived
particles and final 4-vectors performed. To do this task we use a modified version of the
program genev from the Genova group [32]. This code includes a wide range of inelastic exit
channels for e− p and e− n scattering and the Q2 dependence follows a dipole form for this
inelastic component that is similar to what has been observed [27]. This Monte Carlo code
produces the final inelastic state using the effective beam energy as input. (5) The 4-vectors
of final particles are then transformed from the nucleon rest frame back to the laboratory
frame. We have modified the original genev program (and called it genevD) to include the
Fermi motion and use the Jetset libraries [33] to perform the relativistic transformations.
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Figure 11: Weighting function of the inelastic cross section for protons. The beam energy
is 11 GeV. The angle θ is the angle between the direction of the moving target nucleon and
the beam axis in the laboratory.

To summarize, we use the Brash parameterization of the elastic cross section to choose
the number of quasielastic events in a particular Q2. For the inelastic cross section we
interpolate between the measured inclusive cross section. The Fermi momentum in each
case is chosen with the combined weights of the Hulthen distribution and the cross section
dependence on the effective beam energy at each pf −cos θ point. Once the Fermi momentum
is determined, the system is boosted to the nucleon rest frame. The final 4-vectors are chosen
from the Brash parameterization (quasielastic case) or with the genevD program (inelastic
case). The final states are then transformed back to the laboratory frame.

After the 4-vectors have been generated the next step is to filter these thrown events
with the code FASTMC [35]. This program contains a parameterization of the CLAS12
acceptance and the anticipated resolutions. Each event is tested to see if it lies in the
CLAS12 acceptance and the final momentum and position are smeared with the resolutions.
In the last stage of the simulation the ROOT program from CERN is used for final analysis
and presentation.

3.2.2 Kinematic cuts for Quasielastic D(e, e′p)n

We now demonstrate our ability to identify quasielastic events in the D(e, e′p)n reaction
with CLAS12. In Figure 12 the acceptance for quasielastic D(e, e′p)n reaction is shown
for a beam energy of 11 GeV and for the full range of Q2. For charged particles, the
forward tracking system covers the range θ = 5◦ − 40◦ with a system consisting of a silicon
vertex tracker, drift chambers, Cerenkov counters, TOF scintillators, and electromagnetic
calorimeters. For larger angles (40◦ − 135◦) there is a central tracker consisting of layers
of silicon (or possibly micromegas), TOF scintillators, and calorimeters. The acceptance is
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Figure 12: Acceptance for the D(e, e′p)n reaction in CLAS12 at 11 GeV. The left-hand
panel shows the number of events as a function of Q2 for generated and accepted events in
our simulation. The right-hand panel shows the acceptance function extracted from those
distributions. We neglect the peak in the acceptance at low Q2 in our fit because we focus
here on the forward detector and that low-Q2 peak in the acceptance is due to the central
detector in CLAS12.



18

hW2
Entries  3901780

2
)

2
 (GeV/c2W

0 0.5 1 1.5 2 2.5 3

C
o

u
n

ts

0

5000

10000

15000

20000

25000

30000

35000

hW2
Entries  3901780

2 GeV2W

E = 11 GeV

Inclusive Electrons
2

 = 6-7 (GeV/c)2Q

Red - quasielastic

Green - Inelastic

Black - Sum

Figure 13: Comparison of the W 2 spectra for simulated inclusive electrons (left-hand panel)
from this work and measured inclusive spectra for electron scattering on deuterium from
Reference [28] (right-hand panel). Inelastic e − d cross sections are shown in the ∆(1232)
resonance region fitted with contributions from quasielastic (dotted line), ∆(1232) (dashed),
and non-resonant (dot-dashed) contributions.

small at low Q2 corresponding to forward angles where the CLAS12 torus coils are converging.
At larger angles (and Q2) the acceptance increases to about 70%. To study our ability to
separate quasielastic from inelastic events we focus on the range Q2 = 6 − 7 (GeV/c2)2; in
the middle of the available Q2 range shown in Figure 12. In the previous measurement of
Gn

M with CLAS, a cut on the angle between the ejected nucleon and the virtual photon θpq

was used to select quasielastic events from a sample of e − p and e − n coincidences. An
additional cut W 2 ≤ 1.2 (GeV/c2)2 reduced the contribution of the inelastic cross section to
the quasielastic peak. We explore the same method here.

Starting with Figure 13, we show in the left-hand panel the W 2 spectrum for inclusive
electrons for a beam energy of 11 GeV and Q2 = 6−7 (GeV/c)2. The red histogram is from
quasielastic events, the green is the inelastic contribution, and the black histogram is the
sum of the two. Note the large width of the quasielastic peak of about 0.7 (GeV/c2)2. At this
Q2 range the inelastic contribution is much larger than the quasielastic one, consistent with
previous observations one of which is shown in the right-hand panel. These are data from
Reference [28] at a similar Q2 range but a higher beam energy (15.74 GeV versus 11 GeV in
our calculation). The quasielastic peak is just visible as a shoulder on a broad peak. These
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Figure 14: W 2 spectra for D(e, e′p)X (left-hand panel) and with only an electron and proton
in the final state (right-hand panel). Both spectra are for θpq < 3◦.

plots emphasize the challenge we face in selecting the quasielastic events in our data.
The left-hand panel in Figure 14 shows the W 2 spectra for the reaction D(e, e′p)X with

the additional requirement that θpq ≤ 3◦. We will discuss the reasoning behind this value
of the limit on θpq below. The inelastic background has been greatly suppressed and the
quasielastic peak (in red) is now clearly visible. The inelastic part contributes about 5%
in the region W 2 ≤ 1.2 (GeV/c2)2. We have also explored another cut on the data set to
reduce the inelastic background further. With the greater hermiticity of CLAS12 (compared
to CLAS) and the higher multiplicity of events at these beam energies, it is likely that we
will capture a large fraction of the three- and four-particle final states produced in CLAS12.
Reactions that produce, say, ∆+ particles in the final state which then decay to pπ0 (with
the subsequent decay π0 → 2γ) can mimic the quasielastic events we desire, but if we can
detect one of the additional particles we can use that information to reduce the inelastic
background. In the right-hand panel of Figure 14 we have added this additional requirement
that only an electron and proton be detected in the final state and nothing else. There is some
limited reduction in the inelastic background. The fraction of inelastic events contaminating
the quasielastic peak drops from 5% to 4% in the region W 2 < 1.2(GeV/c2)2. We will return
to this technique below when we consider the selection of quasielastic neutrons.

To illustrate further the effect of the θpq cut to suppress the inelastic background consider
Figure 15. It displays the angular distribution of θpq for the same simulations discussed
in Figures 12-14. The red histogram represents the quasielastic contribution and is more
forward peaked than the inelastic (green) contribution. The large inelastic background (recall
Figure 13) is found mostly at higher θpq where we can use kinematic cuts to eliminate much
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Figure 15: Distribution of θpq for the simulations discussed in Figures 12-14.

of it. We set the cut at θpq = 3◦ to capture most of the quasielastic events.
Finally, we consider the angular resolution of CLAS12. Figure 16 shows the dependence

of the angular resolution ∆θ in CLAS12 for charged particles on particle momentum [29]. The
angle of the track relative to the beam at the vertex was 35◦. Calculations with other initial
angles produce very similar curves. The design specification is 0.5 mrad (the dashed line)
which the detector will meet over much of the momentum range. The increase in ∆θ at low
momentum is due primarily to multiple scattering. This resolution is more than adequate to
precisely measure the θpq angular distribution. We performed a test by arbitrarily increasing
the size of ∆θ by 50% in our simulation and found no change in the angular distributions
shown in Figure 15.

3.2.3 Kinematic cuts for Quasielastic D(e, e′n)p

We now discuss our ability to separate quasielastic events in the D(e, e′n)p reaction from
the inelastic background in CLAS12. In Figure 17 the acceptance for the D(e, e′n)p is
shown for a beam energy of 11 GeV and the full Q2 range. For neutrons, the forward
detection system consists of TOF scintillators and electromagnetic calorimeters and covers
the angular range 5◦ − 40◦. In this discussion we focus on the calorimeters because they
have much higher efficiency and will be the primary neutron detector. We found in the
CLAS measurement of Gn

M that the TOF scintillators provided a useful consistency check
on our analysis. In Figure 17 the acceptance vanishes at small Q2 (and forward electron
angles) where the torus coils are converging along the beam pipe and it increases to about
30-40% at high Q2 and large electron angles. The neutron simulation includes the effect of
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Figure 16: Angular resolution of CLAS12 for charged particles in the forward tracking
system.
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Figure 17: Acceptance for the D(e, e′n)p reaction at 11 GeV. The left-hand panel shows the
number of events as a function of Q2 for generated and accepted events in our simulation.
The right-hand panel shows the acceptance function extracted from those distributions.
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Figure 18: Comparison of the simulated W 2 spectra for the D(e, e′n)X (left-hand panel)
and D(e, e′n)p reactions (right-hand panel). Both spectra are for θpq < 3◦.

the neutron detection efficiency which reaches a maximum of 60% in the simulation. The
maximum value is based on our experience with the CLAS Gn

M measurement and the results
of a recent simulation of CLAS12 using GSIM12 [30]. As before we focus on the middle
of this 4-momentum transfer range (Q2 = 6 − 7 (GeV/c)2) and use the same cut on θpq to
select quasielastic events along with the restriction that W 2 ≤ 1.2 (GeV/c2)2. We note here
that in this proposal and in the analysis of the CLAS Gn

M measurement, we have tried to
treat the proton and neutron identically to reduce any bias in the ratio. The results of our
simulation of D(e, e′n)p are shown in the left-hand panel of Figure 18 for quasielastic events
(red histogram), inelastic events (green histogram), and the total (black histogram). There is
considerably more inelastic background here than in the proton case. This can be understood
with Figure 19 which shows the θpq distribution for neutrons from our simulation. The peak
in the angular distribution for neutrons is at an angle about 0.2◦ − 0.3◦ larger compared to
the proton θpq distribution (Figure 15). The angular distribution of generated, quasielastic
neutrons is similar to the one for protons which both have widths of ≈ 0.5◦. The angular
resolution for protons is better (recall Figure 16), but the expected neutron angular resolution
is about the same as the width of the neutron angular distribution which is adequate for
this measurement. The results of a study with GSIM12 of the neutron angular resolution
are shown in Figure 20. The study was performed for neutrons in the momentum range
pn = 1−7 GeV/c, angle ranges θn = 20◦−25◦ and φn = −3◦−3◦. The blue points in Figure
20 are for neutrons detected using the inner and outer calorimeters only and the red points
show the improvement obtained when the preshower calorimeter of CLAS12 is added. This
new detector has finer segmentation than the older ones which improves the resolution. The
resolution lies in the range σθn

= 0.55◦ − 0.65◦.
The other feature of Figure 19 is the relative strength of the inelastic contribution calcu-
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Figure 20: Angular resolution of CLAS12 for neutrons in the forward tracking system cal-
culated with GSIM12.
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lated with genevD is larger. To suppress the inelastic background we invoke the requirement
that there be no more than two particles detected in the final state; the scattered electron
and neutron. As discussed above, we are taking advantage of the increased hermiticity of
CLAS12 to detect the additional products of inelastic reactions and use this information to
veto those events. The result of applying this additional constraint is shown in the right-
hand panel of Figure 18. The inelastic background is significantly reduced. For the region
within our W 2 cut (W 2 ≤ 1.2 (GeV/c2)2) the contribution of the inelastic component drops
from 21% to 9% between the left- and right-hand panels.

The inelastic contributions to the proton (4%) and neutron (9%) quasielastic event
sample are significant. However, in the ratio of e − n to e − p events this difference will
be about 5% which in Gn

M will contribute about 3% which is more than we can tolerate to
achieve a total precision of 3%. We can reduce this background by optimizing the choice
of the maximum value of θpq, θ

max
pq , for the neutron and proton channels. Recalling Figures

20 and 16, reducing θmax
pq will eliminate more of the background events than the quasielastic

contribution down to an angle of about of ≈ 1.4◦−1.5◦ for both neutrons and protons. In the
CLAS Gn

M measurement we used theoretical calculations to understand how different choices
of θmax

pq effected the ratio R. We can also perform careful simulations of the background and
subtract it from the spectrum. The wide acceptance of CLAS12 gives us the opportunity
to do this calculation effectively by using the results from the D(e, e′)X and D(e, e′n)X
reactions to calibrate the simulations. The simulations can also be tested by investigating
the evolution of the spectra as θmax

pq is varied in the data and also by adding further constraints
like missing mass on the D(e, e′p)X to isolate the e− p− n final state for study.

3.3 Calibrations

3.3.1 Dual Target

We propose to use a collinear, dual-cell target containing deuterium (for the primary mea-
surement) and hydrogen (for calibrations). A requirement for the ratio method described
above to be successful is an accurate measurement of the neutron detection efficiency. As we
will describe in more detail below this is done using the p(e, e′π+)n reaction. The dual-cell
target will enable us to take calibration data at the same time we are collecting data for the
primary measurement. This method has two important advantages. First, we will collect
high-statistics, calibration data across a wide neutron momentum range. Second, the cali-
bration data will be subject to the same running conditions as the primary measurement.
Any variation in the attributes of the electron beam or CLAS12 (e.g. dead wires, changes
in beam position on target, voltage shifts, ...) will effect both the hydrogen calibration data
and the primary measurement.

This measurement will be done with the base equipment for CLAS12. The dual-cell
target will be similar in design to the one used for the CLAS measurement of Gn

M during the
E5 running period [31]. A conceptual drawing of the target is shown in Figure 21. Each of
the cells containing liquid will be 2.0 cm in length with a 1.0 cm gap in between. The length
of the cells is designed to fit within the current design of the CLAS12 silicon vertex tracker.
To measure effects due to different target positions, we will collect data with the targets in
opposite cells from the configuration shown in Figure 21.
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Hydrogen Cell
Vacuum

Deuterium Cell

Figure 21: Conceptual design of the dual-target cell to measure Gn
M .

3.3.2 Neutron Detection Efficiency

A precise knowledge of the neutron detection efficiency is essential to keep the uncertainties of
the ratio method under control. The reaction ep→ e′π+n on the hydrogen part of the dual-
cell target in CLAS12 will provide a source of tagged neutrons that can be used to measure
the neutron detection efficiency simultaneously with the data collection on deuterium. First,
the electron and positive pion will be identified. Neutron candidates will be identified using
a missing mass cut (ep→ e′π+X) and the direction of the neutron will be inferred from the
missing momentum of the ep→ e′π+(n) reaction. A ray will be drawn from the e′−π+ vertex
in the direction of the missing momentum to the face of the electromagnetic calorimeter (EC).
If the intersection of this ray and the EC is outside of the fiducial region of the EC, the event
will be dropped. If the event is inside the EC fiducial region it is classified as a reconstructed
event. If the same event is found to have an EC neutron hit in the region of the intersection,
then the event is counted as a found event. The neutron detection efficiency is the ratio
of found to reconstructed events. These events will also be subject to other cuts to reduce
background, improve particle identification, etc.

A second overlapping measurement of the neutron detection efficiency can be made using
the time-of-flight (TOF) system in CLAS12. The same calibration reaction (ep → e′π+n)
will be used and a similar procedure followed to reconstruct a neutron event, except the event
is required to produce a signal in one of the TOF paddles. As before, the efficiency is the
ratio of found events to reconstructed ones. Other cuts will be used to reduce background
events which likely will be higher in the TOF system than in the EC. For example, we found
in the CLAS Gn

M analysis that requiring a minimum amount of energy deposited in the TOF
reduced the photon background. This second measurement of the neutron efficiency will
provide a useful cross check on the analysis.

Our studies suggest there will be adequate statistics for the neutron efficiency mea-
surement. The requirement here is to obtain an adequate number of calibration neutrons
produced by the p(e, e′π+)n reaction on the hydrogen part of the dual-cell target. These
calibration neutrons should cover the same neutron momentum and angle range (as much as
possible) as the quasielastic, e− n events from deuterium. The CLAS12 acceptance for the
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D(e, e′n)p reaction in quasielastic kinematics is shown in Figure 22. The neutron production
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Figure 22: Neutron acceptance for the D(e, e′n)p reaction in quasielastic kinematics.

extends from low-Q2 (low pn and high θn) to high Q2 where the neutron momentum is high
(pn ≈ 9 GeV ) and angle is forward (θn ≈ 7◦). The cross section for the p(e, e′π+)n reaction
is not well known across the Q2 range that will be accessible with CLAS12.

To study this question, we have modeled the Q2 behavior of the π+ production in
CLAS12. The coincidence cross section for meson electroproduction in the one-photon ex-
change approximation can be written as [34]

d3σ

dΩdE ′dΩπ

= ΓV

dσV

dΩπ

(11)

where the virtual photon flux factor ΓV is

ΓV =
α

2π2

E ′

E

K

Q2

1

1 − ǫ
(12)

and

K =
W 2 −Q2

2M
and ǫ =

[

1 + 2(1 +
ν2

Q2
) tan2 θ

2

]

−1

. (13)

The cross section dσV /dΩπ in Equation 11 depends only on the energy transfer ν = E − E ′

and Q2. We have made preliminary measurements of the single π+ production from the
S11 resonance using the p(e, e′π+)n reaction during the E1-6 run period in CLAS [27]. The
beam energy was E = 5.75 GeV , W = 1.535 ± 0.1 GeV and Q2 = 3.0 ± 0.5 (GeV/c)2. We
use these results to estimate the production of π+’s at the upgraded CLAS12 beam energy
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E = 11 GeV and the same W and Q2 region by correcting for differences in solid angle,
photon flux factor ΓV , CLAS and CLAS12 acceptances and luminosities, and running time.
Once we have the π+ production from the S11 for Q2 = 3.0±0.5 (GeV/c)2 and E = 11 GeV ,
we can then use a model to extrapolate to different Q2 ranges. We assume the cross section
has a dipole form so σ ∝ (1/(1 +Q2/∆S)2)2 where ∆S = 1.6 (GeV/c)2. This assumption is
based on an overview of the inclusive inelastic electron scattering [26]. The preliminary E1-6
results agree with the Reference [26] results at Q2 = 3.0 (GeV/c)2 and the higher resonances
measured in Reference [26] scale like the dipole form factor. These experimental results
justifies the use of the event generator developed by the Genova group [32] since it assumes
dipole behavior for the Q2 dependence.

To summarize our method, we use the preliminary measurement of the single, positive
pion production in CLAS at E = 5.75 GeV and Q2 = 3.0 (GeV/c)2 to establish a normaliza-
tion for CLAS12 measurement at E = 11.0 GeV and Q2 = 3.0 (GeV/c)2 (with appropriate
corrections for solid angle, acceptances, virtual photon flux, etc.). We then use the Gen-
ova event generator to predict the behavior at other Q2. The π+ production is simulated
with the Genova event generator and the events filtered through the CLAS12 parameterized
simulation FASTMC. We note here this is a conservative estimate since we consider only a
single resonance (the S11) in the simulation whereas we can use tagged neutrons from other
resonances for our measurement of the neutron detection efficiency. We assumed 54 days of
beam time for our calculations. See Section 3.5.3 for more details on the run-time statistics.

The results of our simulation of the neutron calibration reaction are shown in Figure 23
The left-hand panels shows the calculation for the range Q2 = 2 − 14 (GeV/c)2. Neutrons
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Figure 23: FastMC simulation of the p(e, e′π+)n reaction in CLAS12 for E = 11 GeV and a
torus current of 2250 A for two different Q2 ranges.

cover a wide angle range past θn = 40◦ (the limit of the forward detector in CLAS12) meaning
we will be able to calibrate the large-angle portions of the calorimeter. To focus on the most
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forward angles and highest energies we ran another simulation with Q2 > 7 (GeV/c)2. The
results are shown in the right-hand panel. Notice that we cover close to the full range of
momentum and angle that the production neutrons will reach as shown in Figure 22.

3.3.3 Proton Detection Efficiency

The proton efficiency measurement will be done using the hydrogen target and elastic ep
scattering as a source of tagged protons. The kinematics of the scattered electron will be
used to calculate the mass of the recoiling system W and a cut applied to select a proton.
For these ep events, a track will be calculated going from the electron vertex, through the
CLAS12 magnetic field, to a TOF paddle. If the track misses the fiducial region of CLAS12,
it will be dropped. If the event is inside the fiducial region of CLAS12, it will be classified
as a reconstructed event. If the same event is found to have a hit in the predicted TOF
paddle, then it will be classified as a found event. The proton detection efficiency is the
ratio of found to reconstructed events. These events will be subject to other cuts to reduce
background and improve particle identification. The kinematics of elastic scattering from
hydrogen is similar to the kinematics of quasielastic scattering from the proton in deuterium
so we expect we will obtain adequate angle and momentum coverage for calibration.

3.4 Other Corrections

For the ratio method to be successful, careful matching of the geometric acceptance for e−p
and e − n events from deuterium must be done. To make sure the proton and neutron
acceptances are equal, a common fiducial region will be required for both nucleons. This
can be done event-by-event in the following manner. The expected 3-momentum of the
neutron or proton is determined from the electron kinematics assuming elastic scattering
from a stationary nucleon. The effect of the internal motion of the nucleons in deuterium is
discussed below. Assuming the event has a neutron, a ray is drawn from the electron vertex
out to the TOF or EC systems and required to be in the respective fiducial region of the
TOF or EC. Next, the event is assumed to have a proton and the track ‘swum’ from the
electron vertex, through the magnetic field of CLAS12, to the TOF system; again requiring
that it fall in the fiducial region of CLAS12. If either one of these conditions (neutron or
proton predicted to be in the CLAS12 fiducial region based on the electron kinematics) is not
met, then the event will be dropped. If both conditions are met, then the event is searched
for a neutron or proton in the predicted location. This analysis will ensure the neutron and
proton have the same geometric acceptance.

There are other corrections to R which must be considered in this experiment. The
Fermi motion of the nucleons bound inside the deuteron can push events to different scat-
tering angles so that they do not fall in the predicted detector component and could be
lost. For the CLAS Gn

M experiment we have simulated this effect and found the contribution
to the systematic uncertainty in the neutron magnetic form factor was less than 1%. The
uncertainty on this correction was found to be small by using drastically different physics
models in the event generator for the simulation and getting similar results in the correction
to the ratio R. Radiative corrections will also be applied in this experiment. For the CLAS
Gn

M analysis we have calculated radiative corrections using a modified version of the code



29

Quantity 2.6 GeV 4.2 GeV Quantity 2.6 GeV 4.2 GeV
Calorimeter
neutron effi-
ciency param-
eterization

< 1.5 < 1.0 TOF neutron
efficiency pa-
rameterization

< 2.0 < 2.0

proton σ < 1.0 < 1.5 Gn
E < 0.5 < 0.7

neutron acci-
dentals

< 0.07 < 0.3 neutron MM
cut

< 0.5 < 0.07

neutron prox-
imity cut

< 0.22 < 0.15 proton effi-
ciency

< 0.3 < 0.35

Fermi loss cor-
rection

< 0.8 < 0.9 θpq cut < 0.4 < 1.0

Nuclear Cor-
rections

< 0.17 < 0.2 Radiative cor-
rections

< 0.05 < 0.06

Table 2: Upper limits on the estimated systematic errors in % for different contributions.

EXCLURAD written by Afanasev, et al. for exclusive electro-nuclear reactions [19, 20]. The
corrections can be large (up to 30%) for Q2 < 4 GeV2 for the individual cross sections σep

and σen, but these radiative corrections to R nearly cancel in the e − n/e− p ratio (to less
than 0.2%) [3, 20]. The quantity of interest in this project is the ratio of free e−n scattering
to e − p scattering so corrections for the effect of nuclear binding in the deuteron must be
applied. For the CLAS Gn

M analysis we used two calculations from S. Jeschonnek and H.
Arenhoevel to estimate these effects and both were found to be small (less than 0.3%) [3].
For this experiment, a similar calculation by Jeschonnek showed a correction factor of less
than 0.1% [21].

3.5 Experimental Uncertainties

An essential goal of this experiment is to achieve low (≈ 3%) uncertainties on Gn
M . This is

about the same level of precision we reached in the CLAS Gn
M measurement with the electro-

magnetic calorimeter for neutron detection. The uncertainties on the TOF measurements of
the neutrons were higher. A summary of the uncertainties for the CLAS measurement of Gn

M

is shown in Table 2. The largest contributor to the systematic uncertainty at both CLAS
energies was the determination of the neutron detection efficiency. Those measurements are
in a neutron momentum range where the detection efficiency is changing rapidly (see Figure
24) so fits to the data to extract the efficiency curve had significant (≈ 1 − 2%) errors. We
expect to reach similar levels of precision with CLAS12. Much of the new data will be at
higher neutron momentum where the efficiency curve will be flatter and less sensitive to
variations in neutron momentum. The uncertainties in the other elastic form factors used
to extract Gn

M in the ratio are the next largest contributor to the systematic uncertainty
(≈ 1 − 1.5 %).

The rest of the sources of uncertainty in the CLAS measurement in Table 2 are small.
None of these sources showed signs of significant increases with higher beam energy so we
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Figure 24: A comparison of the neutron detection efficiency measured in the EC from the
CLAS Gn

M , as measured at two different beam energies. In this figure, the efficiency has
been integrated over all six sectors [3].

are encouraged that we can achieve the desired precision. In this section we will discuss the
method for determining the uncertainty in Gn

M and focus on estimates of the effect of the
parameterization of the neutron detection efficiency and the other elastic form factors which
were the largest contributors to the total systematic uncertainty.

In Equation 9 we defined the ratio R in terms of the elastic form factors. Solving that
equation for Gn

M gives

Gn
M = ±

√

[

R

(

σp
mott

σn
mott

)(

1 + τn
1 + τp

)(

Gp
E

2 +
τp
εp

Gp
M

2

)

−Gn
E

2

]

εn

τn
(14)

where the subscripts refer to the separate quantities for protons and neutrons. For the
purpose of evaluating systematic errors, the above equation can be simplified by making the
approximations

σp
mott

σn
mott

≈ 1 (15)

1 + τn
1 + τp

≈ 1 (16)

The neutron magnetic form factor expression becomes

Gn
M =

√

[

RσR −Gn
E

2
] ε

τ
(17)
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where σR = Gp
E

2
+ τp

εp
Gp

M
2

is the reduced proton cross section. The standard propagation of

errors formula is applied.

(δGn
M)2 =

(

∂Gn
M

∂σR

)2

(δσR)2 +

(

∂Gn
M

∂Gn
E

)2

(δGn
E)2 +

∑

i

(

∂Gn
M

∂fi

)2

(δfi)
2 (18)

The fi are the set of all other parameters the ratio R depends on (efficiencies, radiative
corrections, and so on). We will use this result in our analysis below.

3.5.1 Neutron Detection Efficiency Parameterization

The uncertainty in the parameterization of the neutron detection efficiency is the largest
single source of uncertainty in the Gn

M measurement. To estimate that uncertainty in the
proposal we have done the following.

1. We start with function that will qualitatively describe the neutron detection efficiency
(NDE). See Figure 24 which shows the measured NDE from the CLAS Gn

M measure-
ment. However, we avoid a simple polynomial because that is the function that was
used to fit the NDE in our analysis and could bias the result. We chose to use the
function

ǫn = S ×

(

1 −
1

1 + exp(pn−p0

a0

)

)

(19)

where S is the height of the plateau in NDE for pn > 2 GeV/c, p0 is a constant
representing the position of the middle of the rapidly rising portion of the NDE, and
a0 controls the slope in the increasing NDE region. The points in Figure 25 fall along
this curve.

2. We use the momentum distribution of simulated neutrons assuming NDE=1 and apply
the source NDE function from above (Equation 19) to obtain the number of accepted
neutrons as a function of momentum. The square root of this number gives us the
uncertainty in that neutron momentum bin.

3. Monte Carlo events are generated in each momentum bin with a Gaussian distribution
with the centroid and width from the previous step.

4. We fit the distribution with the original source NDE in Equation 19 (which simply
recovers the original parameters) and with a third-order polynomial in pn with a plateau
(we will refer to this function as the CLAS-Gn

M fit). The results are shown in Figure
25. Notice the small differences between the red curve (original source NDE) and the
green one ( CLAS-Gn

M curve). We chose the original source function so that it would
have the same features as the measured neutron detection efficiency, but would not
necessarily make a perfect fit to the simulated neutron detection efficiency.

5. We then do two calculations. In both we use the source NDE function above (the red
curve in Figure 25) to generate the events. In one calculation we use the functional form
of the original source NDE to correct the neutron yield for the NDE in the analysis.
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Figure 25: Monte Carlo simulation of the neutron detection efficiency along with two fits to
the simulated data. The red curve is a fit to the simulated neutron detection curve using
Equation 19; the green curve is a third-order polynomial at low pn and has a constant value
at high pn. The boundary between the two parts of the green curve is varied to find the best
fit.

In the second calculation we use the CLAS-Gn
M fit in the analysis code to correct the

neutron yield for the neutron detection frequency. We use the original source NDE
function to throw the events in each case.

6. Last, we calculate R = e − n/e − p for each case and take the difference between the
two. We call this δRNDE. To calculate the uncertainty in Gn

M caused by δRNDE we go
back to the third term on the right-hand-side of Equation 18. For the contribution of
the parameter fi to the overall uncertainty is

(δGn
M)2

i =

(

∂Gn
M

∂fi

)2

(δfi)
2 (20)

which can be rewritten as the following.

(δGn
M)2

i =

(

∂Gn
M

∂RNDE

∂RNDE

∂fi

)2

(δfi)
2 (21)

=

(

σpǫ

2Gn
Mτ

∂RNDE

∂fi

)2

(δfi)
2 (22)
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We can approximate the partial derivative as

∂RNDE

∂fi

≈
δRNDE

δfi

(23)

and use Gn
M ≈ µnGD to obtain the following result that can be used to calculate the

effect of δRNDE on the uncertainty in Gn
M .

(

δGn
M

Gn
M

)2

=

(

σpǫ

2µ2
nG

2
Dτ

)2

(δRNDE)2 (24)

The result is shown in Figure 26 for the relative uncertainty on Gn
M . The error bars

are statistical ones from the Monte Carlo calculation. The difference in the two pa-
rameterizations of the NDE is roughly constant with Q2 and less than 1.0% across the
full range. The size of this effect is comparable to what was observed in the CLAS Gn

M

measurement.
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Figure 26: Relative difference inGn
M between the two forms of the neutron detection efficiency

in the analysis.

3.5.2 Knowledge of Other Elastic Form Factors

The fractional error on Gn
Mdue to uncertainty in the proton reduced cross section is the

following.
(∂Gn

M )R

Gn
M

=
1

2Gn
M

2
R
ε

τ
δσR (25)
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To estimate this contribution, we assume Gn
M ≈ µnGD. The ratio R is taken as the free

neutron to proton [37] cross section ratio and δσR as the difference between the Arrington-
Melnitchouk [38] (AM) and Bosted [36] parameterizations:

δσR = σArrington−Melnitchouk
R − σBosted

R (26)

Several parameterizations are available on the market but only few are results of cross section
fits. The parameterizations that are based on form factor measurement fits should not be
used to evaluate the systematic error in Gn

M due to uncertainty in proton cross section. The
reason is that they do not take into account the two photon exchange contribution. In that
case we are left only with three parameterizations [36],[37],[38] to choose from. The AM
[38] parametrization is an update for the Arrington one [37]. Therefore we have decided to
compare the AM parametrization to the Bosted one [38]. We used the Kelly parametrization
[39] to evaluate R since none of the above parameterizations provide information on the
neutron cross section. The difference δσR is shown in the upper plot of Figure 27. Using
that δσR, the estimated systematic uncertainty on Gn

M caused by the uncertainty in σR can
be determined. Both the relative size of the difference in the two parameterizations and
the fractional uncertainty on Gn

M expressed as a percentage are shown in the lower plot of
Figure 27. The obtained systematics are realistic for Q2 below 6 GeV, where measurements
of the proton elastic cross sections are available with good precision. For higher Q2 values,
few measurements exist and those have large errors. Therefore all fits give good χ2 and the
difference between parameterizations are meaningless. Nonetheless, measurements of the
proton elastic cross section are expected to be the first available data from the JLab 12 GeV
upgrade since this reaction is also used for calibration purposes. A 4% ep elastic cross section
measurements will lead to roughly 2% on the Gn

Msystematic error due to uncertainty on the
proton cross section. We expect to reduce this error below 1.5% by combining different
measurements.

The fractional error on Gn
M due to the uncertainty in the neutron electric form factor is

(∂Gn
M )E

Gn
M

=
Gn

E

Gn
M

2

ε

τ
δGn

E (27)

To estimate this contribution, we assume: Gn
M ≈ µnGD, and use the Kelly parametrization

for Gn
E. We take δGn

Eto be the difference between Kelly and BBBA05 parameterizations [40]

δGn
E = Gn

E
Kelly −Gn

E
BBBA05 (28)

The Kelly and BBBA05 results are shown in Figure 28. Due to the lack of measurements
for Gn

E above Q2 of 1.5 GeV2, the two parameterizations have very different behaviors. The
BBBA05 use high Q2constraints based on QCD sum rule which cause Gn

E to die off much
more quickly at high Q2 than does the Kelly parametrization. Fortunately, the contribution
of Gn

E is expected to decrease with increasing Q2 because it is already measured to be small
and it is kinematically suppressed. We took these two extreme behaviors of existing Gn

E

parametrization in order to draw the worst case scenario. The difference δGn
E is plotted in

the upper plot of Figure 29. The fractional uncertainty on Gn
M expressed as a percentage

are shown in the lower plot of Figure 29. These errors are larger at low Q2region where the
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Figure 27: The upper plot is the difference in the proton reduced cross section as determined
from AM and Bosted parameterizations as a function of Q2. The lower plot is the systematic
error on Gn

Mdue to the uncertainties in the reduced proton cross section (solid curve) and
the relative difference in the proton reduced cross section, as determined for AM and Bosted
parameterizations scaled to the AM result (dashed curve)
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Figure 28: The neutron electric form factor from Kelly and BBBA05 parameterizations as a
function of Q2
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Figure 29: The upper plot plot is the difference in the neutron electric form factor as deter-
mined from Kelly and BBBA05 parameterizations as a function of Q2. The lower plot is the
systematic error on Gn

Mdue to the uncertainties in Gn
E as a function of Q2
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Gn
E values are larger. Taking into account the measurements of Hall A experiment E02-013

that are being analyzed, the errors in the Q2 region between 1.7 (GeV/c)2 and 3.4 (GeV/c)2

are expected to drop by a factor of 3. Similar measurements for Q2 of 4.5 (GeV/c)2 are
being planned. In addition, measurements at Q2 = 7.5 (GeV/c)2are part of the JLab 12
GeV program. If performed, the largest error in the neutron magnetic form factor due to
the uncertainty in Gn

E will not exceed 0.5%.

3.5.3 Statistical Uncertainties

We have estimated the rate of the D(e, e′p)n and D(e, e′n)p reactions to determine how much
beam time would be needed to obtain data of similar quality to the CLAS Gn

M measurement.
The primary consideration is to obtain an adequate number of events so the statistical
uncertainty does not dominate the systematics ones. We used Equations 3-6 and made the
following assumptions about the form factors

Gp
E ≈ GD =

1

(1 +Q2/∆)2
Gp

M ≈ µpGD Gn
M ≈ µnGD Gn

E =
µnτGD

1 + ητ
(29)

where µn and µp are the neutron and proton magnetic moments, ∆ = 0.71 (GeV/c)2, and
η = 5.6 (from the Galster parameterization [9]). The acceptances are shown in Figures 12
(protons) and 17 (neutrons). The anticipated luminosity is 0.5× 1035 cm−2s−1 for the dual-
cell target. The length of each target cell is 2.0 cm. We have to compensate for two effects
which reduce the usable data sample from the production and calibration targets. As we did
in the CLAS measurement, we will apply cuts on the vertex position of the tracks to remove
contributions from the aluminum windows of the target cells. These cuts effectively make
the target shorter. Based on expectations for the CLAS12 vertex resolution we anticipate
using a cut of about 1.5 mm on the two windows on each cell which requires a factor of
about 15% to compensate for the loss (3 mm out the total of 20 mm in the target). The
second effect is from events produced in the windows that add to the total luminosity and
effectively reduce the beam current on the production and calibration targets. The amount
of material in the aluminum windows is about 3% of the material in the deuterium target.
Without these two effects, we would obtain the desired statistics shown in Table 3 in 45
days. To compensate for the two effects requires a total of 54 days. We are also requesting
one day for diagnostic tests like empty target runs and straight-track runs and one more
day for interchanging the hydrogen and deuterium targets. In the last procedure, we would
switch the liquids in each cell to test for any measurable effects due to the different target
positions. The total request is for 56 days.

The beam time request for this experiment is 56 days of 11.0 GeV beam at a luminosity
per nucleon of of 0.5 × 1035 cm−2s−1. The expected count rates, cumulative number of
events and statistical uncertainty for a bin size of ±0.5 (GeV/c)2 around each value of Q2 for
quasielastic scattering are given in Table 3. From the table, the precision of the experiment
will be limited by systematic uncertainties at low Q2. At high Q2 the experiment is near the
limit where statistical uncertainty begins to dominate.

The results are shown in another form in Figure 30 along with existing data on Gn
M

[23]. The blue, open points show the expected Q2 coverage and uncertainties for 56 days
of beam time. The uncertainties include both statistical and systematic uncertainties. The
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Q2 Proton Neutron Proton Proton Neutron Neutron
δGn

M

Gn
M

(GeV/c)2 Rate (s−1) Rate (s−1) Counts Error Counts Error

2.5 0.016 0.081 3.0 × 104 0.0057 1.6 × 105 0.0025 0.0031
3.5 0.74 0.12 1.4 × 106 0.00083 2.3 × 105 0.0021 0.0011
4.5 0.34 0.098 6.6 × 105 0.0012 1.9 × 105 0.0023 0.0013
5.5 0.14 0.046 2.7 × 105 0.0019 8.9 × 104 0.0033 0.0019
6.5 0.061 0.018 1.2 × 105 0.0029 3.5 × 104 0.0053 0.0030
7.5 0.028 0.0081 5.5 × 104 0.0043 1.6 × 104 0.0080 0.0045
8.5 0.014 0.0040 2.8 × 104 0.00607 7.7 × 103 0.011 0.0064
9.5 0.0082 0.0021 1.6 × 104 0.0079 4.0 × 103 0.016 0.0088
10.5 0.0050 0.0012 9.7 × 103 0.010 2.2 × 103 0.021 0.012
11.5 0.0029 0.00068 5.7 × 103 0.013 1.3 × 103 0.028 0.015
12.5 0.0018 0.00041 3.4 × 103 0.017 8.0 × 102 0.035 0.020
13.5 0.0011 0.00026 2.2 × 103 0.021 5.0 × 102 0.044 0.025

Table 3: Rates and statistical uncertainties for quasielastic scattering.

red points at low Q2 are the preliminary results of the measurement of Gn
M by Lachniet, et

al. [3]. It is worth noting the large overlap of the CLAS12 measurement with the CLAS
one. This overlap gives us another useful consistency check. The proposed measurement will
significantly expand our understanding of the neutron magnetic form factor.

3.6 Relationship to Existing Experiments

All nucleon form factor measurements are closely connected and this proposed one is part
of a broad assault on the nucleon elastic form factors in the current 6-GeV program and
the 12-GeV Upgrade at JLab. We propose to extend the existing data set for Gn

M from the
current limit of Q2 ≈ 4.5 (GeV/c)2 up to Q2 ≈ 14 (GeV/c)2. The proposed measurement
will also overlap the CLAS measurement and provide an important consistency check. The
extraction of the neutron magnetic form factor depends to some extent on the proton elastic
cross section and the neutron electric form factor. A proposal [41] to measure the proton
elastic cross section with a precision better than 2% in Hall A after the JLab 12 GeV Upgrade
has been planned for submission to PAC32. These measurements are also expected to extract
the proton magnetic form factor for Q2 up 17 GeV2. At 6 GeV, E04-108 [42] is an approved
experiment that is scheduled to run this year in Hall C. The goal here is to measure the ratio
Gp

E/G
p
M for Q2 of 5.2, 7.1 and 8.6 GeV2. An extension to Q2 of 15 GeV2 for the 12 GeV

Upgrade was suggested in LOI-07-013 using SHMS and BigCAL in Hall C [43]. New results
for Gn

E are expected soon from Hall A experiment E02-013 [44]. The measured Q2 values are
1.2, 2.48 and 3.43 GeV2. There is also an effort investigating the possibility of measuring
Gn

M at 6 GeV in Hall A [45].
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Figure 30: Selected data and estimated results for the neutron magnetic form factor Gn
M for

45 days of running time with CLAS12 (blue, open circles) in units of µnGD as a function
of Q2. The red circles at low Q2 represent the preliminary results from the E5 experiment
[3, 23].

3.7 Summary and Request

We propose to measure the magnetic form factor of the neutron using the 11 GeV electron
beam in the upgraded CEBAF and CLAS12 detector. The measurement will be in the
range Q2 = 2− 14 GeV2 with a systematic uncertainty of 3%. The neutron’s magnetic form
factor is one of the fundamental quantities of nuclear physics and its value is an important
constraint for the newly-developed generalized parton distributions that hold the promise
of dramatically expanding our understanding of the nucleon. The form factors are also
important challenges for lattice QCD to meet. This measurement is part of a broad assault
on the four elastic nucleon form factors at Jefferson Lab.

We will use the ratio of elastic e−n to elastic e−p scattering on deuterium described in
Section 3. The ratio method is less vulnerable to uncertainties than previous methods and
we will have consistency checks between different detector components (e.g., the TOF and
EC) and a large overlap with our previous CLAS measurements. Precise measurements of
Gn

M have already been made by our group and others at lower Q2 [3, 5, 6, 7]. The group of
international CLAS collaborators from universities and national laboratories that are part
of this proposal have made significant commitments to the 12-GeV Upgrade program.

We request 56 days of beam time at an energy of 11.0 GeV and a luminosity per nucleon
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of 0.5 × 1035 cm−2s−1. We anticipate we will obtain adequate statistics across the full Q2

range so the systematic uncertainties will not be dominated by statistical ones.

4 Technical participation of research groups

4.1 University of Richmond

The University of Richmond group is actively involved in this proposal, as well as in one
other proposal using CLAS12 that was approved by PAC30 (PR12-06-117).

Among CLAS12 baseline equipment, the group intends to take responsibility for the
design, prototyping, development and testing of software for event simulation and recon-
struction. One faculty member along with 2-3 undergraduates each year are likely to work
at least part time on this project in the next few years. Work has begun during the summer
of 2007 to develop software to enable users to pass simulated events to SIM12, the GEANT4-
based, CLAS12, simulation package. The group has a 50-CPU computing cluster solely for
nuclear physics supported by a linux-trained, technical staff member. The cluster was funded
by NSF and the University. The University also supports routine travel to Jefferson Lab and
undergraduate summer stipends. Funding for the group is from DOE. Additional sources of
funding will be sought as appropriate.

4.2 Old Dominion University

The Old Dominion University group (Prof. Amarian, Bültmann, Dodge, Kuhn and Wein-
stein) is actively involved in several other proposals using CLAS12, in addition to the present
one. Other members of our group are pursuing 12-GeV proposals for Hall A, but their con-
tributions are not included here. In support of our strong interest in Physics with CLAS12,
our group has taken on responsibility for a major component of the CLAS12 baseline equip-
ment. The group has begun work on the design and prototyping of the new Region I drift
chambers for CLAS12. This work has involved the faculty, two graduate students, several
undergraduate students and a technician. We have set up a data acquisition system to test
various prototype chambers and have been involved and the detailed engineering design of
the chamber, parts of which have already entered the procurement phase.

As a result of an in-depth review of the whole CLAS12 tracking project (of which one
of us is the co-organizer), it was decided that our group will ultimately design, prototype,
construct and test the Region 2 Drift Chambers. A Memorandum of Understanding be-
tween ODU and JLab to this end has been executed. We expect to continue our strong
commitment of manpower to this project. Funding for the group is from DOE and from the
university (75% of research faculty salary + one regular faculty summer salary + 50% of the
technician). The university has also provided 6000 square feet of high bay laboratory space
with clean room capabilities for our use. We will seek other sources of funding as appropri-
ate. Gail Dodge is the chair of the CLAS12 Steering Committee and the user coordinator for
the CLAS12 tracking technical working group. Sebastian Kuhn is the user coordinator for
beamline elements. Beyond the baseline equipment, the group is also interested in working
on improvements to the existing BoNuS detector and on polarized targets.
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4.3 Argonne National Laboratory

Argonne National Laboratory Medium Energy group is actively involved in this proposal,
as well as other proposals using CLAS12. Among CLAS12 baseline equipment, the group
intends to take responsibility for the design, prototyping, construction and testing of the
high threshold Cerenkov counter. Three research staff and two engineers are likely to work
at least part time on this project in the next few years. Funding for the group is from DOE.
Additional sources of funding will be sought as appropriate. Beyond the baseline equipment,
the group is also interested in exploring the possibility of building a RICH detector for
CLAS12.

4.4 Union College

The Union College group is actively involved in this proposal and other parts of the CLAS12
physics program. The group plans to work with the CLAS12 software group on the de-
velopment of software for analysis, simulation, and controls. One faculty member and 2-3
students will work at least part time on this project over the next few years. The group has
a 20-CPU Beowulf cluster provided by Union College to support the work at Jefferson Lab.
The College also provides stipends for undergraduate students involved in research during
the summer. The group is also funded by DOE.

4.5 University of New Hampshire

The University of New Hampshire is a supporter of this proposal as well as actively involved
in other proposals using CLAS12.

The UNH group is committed to significant contributions in the development of the
CLAS12 software. Maurik Holtrop is currently chair of the CLAS12 GEANT4 simulation
group to which one of the UNH post-doctoral fellows (Hovanes Egiyan) is also contributing.
Since currently the main software efforts for CLAS12 are in the area of simulation we are
also part of and contributing to the general CLAS12 Software group. Current manpower
commitments to this effort are 0.15 FTE of a faculty member and 0.4 FTE of one post-
doc. We expect to increase this effort as our CLAS activities wind down and our CLAS12
activities pick up and we expect to attract some talented undergraduate students to this
project.

Among CLAS12 baseline equipment, the group intends to take responsibility for design,
prototyping, construction, and testing of the silicon vertex detector and perhaps the inner
detector’s silicon tracking detectors. Faculty member Maurik Holtrop is likely to work at
least part time on this project in the next few years and is likely to be joined by Jim Connel,
a cosmic ray experimentalist with a background in nuclear physics, who is very interested in
joining the vertex detector project. He has considerable experience with silicon detectors for
space observations. Funding for the group is from DOE and additional sources of funding
will be sought for this project to bring aboard Dr. Connel. If funded we are likely to attract
a post-doc, graduate students, and one or two undergraduate students to this project.

Beyond the baseline equipment, the group is also interested in exploring an extended
inner calorimeter for CLAS12.
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4.6 DAPNIA/SPhN-Saclay

The DAPNIA/SPhN-Saclay group expressed interest in this proposal. It is actively involved
in two proposals using CLAS12, and one other proposal for Hall A.

Among CLAS12 baseline equipment, the group intends to take responsibility for the
design, prototyping, construction and testing of the central tracker (both the cylindrical part
and the forward part). The group has started working on an option based on cylindrical
Micromegas detectors. Provided this is shown to work as designed, the group anticipates that
this option will be examined in comparison with the Silicon Strip tracker, toward the end of
2007 or the beginning of 2008. Four research staff members and four technicians/engineers
are likely to work at least part time on this project in the next few years. Funding for the
group is from CEA-France. Additional sources of funding (ANR-France, European Union
7th PCRD) will be sought as appropriate.

In case the Micromegas option is not suitable, or not selected for valid reasons, the
group would study other technical participation in the CLAS12 baseline equipment.

Beyond the baseline equipment, the group is also interested in exploring neutral particle
detection (mostly neutrons) in the central detector of CLAS12, in the so far empty space
between the TOF scintillators and the solenoid cryostat.
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