

Few-Body Physicswith CLAS

G.P. Gilfoyle(for the CLAS Collaboration)

Outline

- 1. Scientific Motivation
- 2. Jefferson Lab and CLAS
- 3. Short-Range Correlations in Cold Nuclear Matter
- 4. Three-Body Forces in Nuclei
- 5. Scaling in Photonuclear Reactions
- 6. Summary and Conclusions

Scientific Motivation

- What are the phases of strongly interacting matter, and what roles do they play in the cosmos?
- What does QCD predict for the properties of strongly interacting matter?
- What governs the transition of quarks and gluons into pionsand nucleons?
- What is the role of gluons and gluon self-interactions in nucleons and nuclei?

The Frontiers of Nuclear Science, ^A Long Range Plan, The DOE/NSFNuclear Science Advisory Committee, December, 2007.

Similar raised questions in NuPECC Long Range Plan 2004.

The Continuous Electron Beam Accelerator Facility at JLab

View of site in Newport News, Va.Schematic of accelerator andcomponents.

Superconducting Electron Accelerator (338 cavities), 100% duty cycle, $I_{max} = 200 \ \mu A, E_{max} = 6 \ GeV, \ \Delta E/E = 10^{-4}$ 4 , $P_e>80\%$, 1500 physicists, over 30 countries, operational since end of 1997.

The JLab End Stations

Hall A - Two identical, high-resolutionspectrometers ($\Delta p/p < 2 \times 10^{-4}$); luminosity $\approx 10^{38}$ $cm^{-2}s^{-1}$ $^{2}s^{-1}$.

Hall C - Moderate-resolution (10^{-3}), 7-GeV/c High-Momentum Spectrometer(HMS) and the large-acceptance Short-Orbit Spectrometer (SOS) and additional detectors.

Hall B - The CLAS, nearly 4- π acceptance spectrometer based ona toroidal magnet ($\Delta p/p~=~~0.5\%);$ luminosity $\approx 10^{34}~cm^{-2}$ $^{2}s^{-1}$.

The Experiment - CLAS

Six identical mass spectrometers. Charged particle angles: 8° \degree – 144 \degree Momentum resolution: $\approx 0.5\%$

 $p,\,\pi^+/\pi^-,\,K^+/K^-, \,e^+/e^-.$. Neutral particle angles: 8° - \degree -70° . % (charged). Angular resolution: ≈ 0.5 *mr* (charged).

The Experiment - CLAS ⁺ Real Photons

Physics Motivation

- What are they? High momentum nucleon balanced by one (or two ...) other nucleon.
- Nuclei have been long been approximated as individual nucleons moving in the meanfield created by the other nucleons.
- This picture is only good to about 70% (*e.g. see J.Gao et al.*, PRL, 84, 3265 (2000)). We get a ${\rm C}^-$. The other 30% may be hidden away in the SRCs and ...
- SRCs probe the high-momentum components of the nuclear wave function, cold, dense nuclear matter, the physics of neutron stars, and the EMC effect.

How do we find them?

- SRC expected to exist in quasielastic, inclusive electron scattering, but difficult to extract.
- Signal for SRC in quasielastic exclusive electron scattering obscuredby inelastic reactions, final-state interactions (FSI), and quasielasticscattering from low-momentum, uncorrelated nucleons (e.g. seeJ.Arrington et al., PRL, 82, ²⁰⁵⁶ (1999)).
- Apply new kinematic constraints and exclusive reactions to pull the SRCs out of surrounding noise.
	- Scaling in quasielastic $A(e,e')A-1.$
	- Exclusive knock-out reactions $(e,e^\prime pN).$

Short-Range Correlations in(e, ^e′)

- High-momentum part of nuclear wave function is similar for different nuclei so the ratioshould SCALE!
	- Extract the ratio of the cross section in a nucleus to the cross section in $^3{\rm He}$ to minimize FSI.

Next-Generation Exclusive Reactions in Hall A at JLab

- Use Hall A, BigBite for protons, and ^a neutron array; smaller kinematic range, but higher luminosity.
- Use ratios of $^{12}{\rm C}({\rm e},{\rm e}'{\rm p})$ $^{12}{\rm C}({\rm e},{\rm e'}{\rm pp});\ pp$ correlations are \approx 10% and (R. Schneor et al., PRL 99, ⁰⁷²⁵⁰¹(2007)).
- Measure ${}^{12}{\rm C}({\rm e},{\rm e'}{\rm p}),\ {}^{12}{\rm C}({\rm e},{\rm e'}{\rm p p}),$ and ${}^{12}C(e, e'pn)$; pn SRCs dominate - $\sigma(pn)/\sigma(pp) \, = \, 18 \pm 5 \,$ (R.Subedi *et al.*, Science, 320, 1476-1478 (2008)).
- Consistent with BNL results with a proton beam (E. Piasetzky *et al.*, PRL. 97, 162504 (2006)).

Next-Generation Exclusive Reactions in CLAS

- Start with the $^3\mathrm{He}(\mathrm{e}, \mathrm{e}'\mathrm{pp})$ n reaction over a broad kinematic range.
	- Use missing mass to select neutron residual.
	- Make cuts on T/ν to select fast nucleons and with an SRC spectator.
	- Require the leading nucleon to be in the direction of \vec{q} to reduce FSI $(p_\perp < 0.3~GeV/c).$

Angular distribution will be test for correlated pairs.

Next-Generation Exclusive Reactions in CLAS

- Measure $^3\rm{He}({\rm e},{\rm e}'{\rm pp})$ n at 4.7 GeV and 2.0 GeV.
- Distributions for pp and np pairs as functions of p_{tot} and p_{rel} are similar (only 4.7-GeV data shown).
	- Blue Golak single-body calculation(PRC 51, 1638 (1995)).
	- Red Laget single-body plus MECand IC.
- Integrated $\sigma(pp)/\sigma(np) \approx 1/4.$ - consistent with pair counting.
- Contradicts results from Hall A (R.Subedi et al., Science, 320, 1476-1478 (2008))where $\sigma(pp)/\sigma(np) \approx 1/18.$

Resolving the difference.

Hall A results were for $0.3 < p_{rel} < 0.5~{\rm GeV/c}$ and $p_{tot} < 0.3~{\rm GeV/c}$.

Integrate CLAS results for $\sigma(pp)/\sigma(pn)$ over the same $\, p_{rel} \,$ range and plot versus $p_{tot.} \rightarrow$ AGREEMENT!

- Black: Golak one-body. Blue-Dashed: Golak $pp{:}pn$ ratio in bound state. Black-Dotted: Pair counting ratio.
- The tensor force dominates!
	- e.g. Schiavilla et al., PRL 98, 132501 (2007).
	- At low p_{tot} the pn pair is deuteron-like and the tensor force mixes in d wave.
	- At low p_{tot} the pp pair has little d-wave and there is a deep minimum in the momentum distributions so $\sigma(pp)<\sigma(pn).$

As p_{tot} increases the pp tensor force fills in this minimum and $\sigma(pp)/\sigma(pn)$ rises.

Conclusions.

- Short-Range Correlations are an important next step in fully describing nuclei; theyaccount for 10-20% of the ground state cross sections.
- Proton-neutron pairs are far more prevalent at low $p_{tot},$ but pp pairs rise to the same level at $p_{tot}>0.25~{\rm GeV/c}.$
- The tensor force is essential for understanding SRCs and the nuclear ground state.

The Future.

- With CLAS: data mining proposal has been submitted to DOE.
	- More detailed study of 2N-SRC and the deuteron system.
	- A search for non-nucleonic decays of the SRC via Δ -isobar production.
	- A search for 3N SRC.
- In Hall A:
	- Experiment E03-101 investigated the photodisintegration of pp pairs in $^3{\rm He}$.
	- Experiment E08-014 is scheduled to search for three-nucleon SRCs in May, 2011.

- The NN force has significant two- and three-body components; the \blacksquare break-up of light nuclei is ^a path to understand these components.
- The balance between two- and three- body forces could reveal thefundamental features of the NN force, (e.g. the range) and the effect of the nuclear medium.
- We can study the transition from soft (hadronic) physics to hard(constituent-quark).

Reactions being analyzed: $^3{\rm He}(\gamma,{\rm dp})$ (2-body breakup) $^3{\rm He}(\gamma,{\rm tp})$ (2-body breakup) ${}^4\textrm{He}(\gamma,\textrm{dd})$ (2-body breakup) $^3{\rm He}(\gamma,{\rm t}\pi^+)$ (coherent)

 $^3{\rm He}(\gamma,{\rm pp})$ n (helicities) $^3{\rm He}(\gamma,{\rm pp})$ (hard/2-body breakup) $^3{\rm He}(\gamma,{\rm p}\pi^+){\rm nn}$ (Δ^{++} knockout) $^{3,4}{\rm He}(\gamma,\pi^+\pi^+)$ (ρ production)

- The NN force has significant two- and three-body components; the \blacksquare break-up of light nuclei is ^a path to understand these components.
- The balance between two- and three- body forces could reveal thefundamental features of the NN force, (e.g. the range) and the effect of the nuclear medium.
- We can study the transition from soft (hadronic) physics to hard(constituent-quark).

I also want to recognize the ³He(γ, dp) (2-body breakup) ³He(γ, many contributions to this fieldfrom Barry Berman, a valued Herriber of ddi CLAO Collad
Llen member of our CLAS Collaboration.

 $\check{\mathbf{T}}$ не $(\check{\gamma},\mathfrak{t}\pi^+)$ (conerent)

/ breakup) **iockout)** *uction*)

- The NN force has significant two- and three-body components; the \blacksquare break-up of light nuclei is ^a path to understand these components.
- The balance between two- and three- body forces could reveal thefundamental features of the NN force, (e.g. the range) and the effect of the nuclear medium.
- We can study the transition from soft (hadronic) physics to hard(constituent-quark).

I also want to recognize the ³He(γ, dp) (2-body breakup) ³He(γ, many contributions to this fieldfrom Barry Berman, a valued Herriber of ddi CLAO Collad
Llen member of our CLAS Collaboration.

 $\check{\mathbf{T}}$ не $(\check{\gamma},\mathfrak{t}\pi^+)$ (conerent)

Two- and Three-Body Forces in³He(γ, pp)n

Selecting two- and three-body events using the Dalitz plot. \bullet

Two- and Three-Body Forces in³He(γ, pp)n

- Extract ratio of three- to two-body cross sections; peak corresponds to three-body range scale?
- E_{γ} dependence with neutron spectator by angle bin (red).

Blue - Deuteron photodisintegration.

- Mirazita *et al.*, PRC 70, 014005 (2004).
- Scaled by $\frac{1}{4}$ 4.
- \bigcirc forward; \bigtriangleup back angles. \bigcirc
- Evidence of scaling?

Two- and Three-Body Forces in³He(γ, ^π+t)

Motivation

- Compare elementary process on a free nucleon ($\gamma p\to\pi^+n$) with the same reaction in the nucleus.
- Probe the NN force, the pion cloud, and mesonic degrees of freedom.
- The triton and 3 He are the lightest nuclei with coherent photoproduction with charge exchange and ^a well-defined final state.

Previous work

- Previous data at low Q^2 could be explained by including one- and two-body effects.
- Failed to account for all the cross section at higher momentum transfer.

S. Kamalov *et al.* PRL 75, 1288 (1995).

Two- and Three-Body Forces in³He(γ, ^π+t)

Good agreement with CLAS results and previous data (D. Bachelier *et al.*, PLB 44, 44 (1973) and D.Bachelier *et al.*, NP A251, 433 (1975)) with updated 2-body calculation.

Major deviations between previous calculations and CLAS results at smaller $\theta_\pi!$

 10 $3He(\gamma.\pi^{+})^3H$ 10^o θ = 137⁰ 10 $d\sigma/d\Omega(\mu b/sr)$ 10 10 10 10^{-5} 10 $\frac{18}{Q^2 \text{ fm}^{-2}}$ 10 26 34

Conclusions

- Active program focused on helium nuclei with ^a variety of physics topics.
- Three body forces are an essential ingredient forunderstanding these nuclei.
	- For example, three-body calculations from Laget do well forsome reactions (e.g. ${}^4\textrm{He}(\gamma,\mathrm{pt})$), but miss others $(^4{\rm He}(\gamma,{\rm pd})).$
- Testing ground for nuclear medium effects like $^3\mathrm{He}(\gamma,\pi^{\mathrm{+}}\mathrm{t}).$
- Signs of scaling.
- Need for contributions from theorists!!

Physics Motivation

lerson C

- Signature of scattering from individual partons inside the nucleus; sign that we have reached territory beyond the hadronic model.
- Central goal of JLab; ^a laboratory for the study of QCD.
- Identifying scaling has been elusive; the geography of the transitionfrom hadronic to quark-gluon degrees of freedom is rugged.

How do we find it?

Brodsky and Farrar (PRL 31, 1153 (1973)) predict constituent counting rules (CCR)

$$
\frac{d\sigma}{dt}_{AB \to CD} \approx s^{2-n} f(t/s)
$$

where t and s are the Mandelstam variables (total energy and 4-momentum transfer squared) for $s \to \infty$ and t/s fixed. The number n is the total number of leptons,
photons, and quark components photons, and quark components.

9 Deuteron photodisintegration (
$$
n = 13
$$
).

- large momentum transfers can bereached at relatively low energy.
- Hall A and C results.
	- Schulte et al., PRC 66, ⁰⁴²²⁰¹ (2002). Hall A green points.
	- Bochna *et al.*, PRL 81, 4576 (1998); Schulte et al. PRL 87, ¹⁰²³⁰² (2001). Hall C red points.

CLAS results (Rossi et al., PRL 94, 012301 (2005))

efferson C

- Measure $d\sigma/dt$ at fixed proton angle θ^{cm}_p and in terms of the center-of-mass proton transverse momentum $P_T=\,$ $\sqrt{\frac{1}{2}}$ $\frac{1}{2}E_{\gamma}M_d\sin^2$ 2 θ_p^{cm} where M_d is the deuteron mass.
	- Combine CLAS data and other measurements and use fits to s^{-11} to determine the minimum P_T where the scaling begins (at $P_T>1.1~{\rm GeV/c}$).

But....

lferson (

- CCR is valid for $t\approx s >> m^2$ and not expected to work in the few-GeV region.
- Several competing, quark-gluon theories describe the unpolarized data: QGSM(Grishina *et al.* Eur. Phys. J. A 10, 355 (2001)), RNA (Brodsky and Hiller, PRC 30 412(E) (1984)), AMEC (Diepernik and Nagorny, PLB 456, 9 (1999)), and HRM(Frankfurt *et al.* PRL 84 3045 (2000)).
	- Analysis of existing CLAS data (CAA-NP07-01) on the azimuthal asymmetry hold thepromise of differentiating among the different approaches.

Other exclusive reactions

- Brodsky *et al.* (Phys.Lett. B578, 69 (2004).) $\,$ suggest that $\,{}^{3}{\rm He}(\gamma,{\rm pp}){\rm n}$ could be ^a testing ground for hardprocesses.
	- \overline{pp} breakup not much smaller than the pn breakup.
	- energy-dependent oscillationsseen in pp could appear.
- Recall $^3\mathrm{He}(\gamma,\mathrm{pp})$ n (red points).
	- Blue points from deuteronphotodisintegration.
	- Mirazita *et al.*, PRC 70, 014005 (2004).
	- Scaled by $\frac{1}{4}$ 4.
	- \bigcirc forward; \bigtriangleup back angles.

Complementary results from Hall A

- Experiment E03-101 measured $^3\mathrm{He}(\gamma,\mathrm{pp})\mathrm{n}$ at $\theta_p^{cm} = 90^{\circ}$ and for $E_{\gamma} = 0.8 - 4.7 \text{ GeV}$ (Pomerantz, PLB 684, 106 (2010)).
- Scaling observed for $E_\gamma>2{\rm ~GeV}$ and σ_{pp} is about 20 times smaller than σ_{pn} measured in deuteron photodisintegration.
- Hard rescattering model (Frankfurt et al. PRL, 84, 3045 (2000)) reproduces scaling.
- Results could be due to scaling but the tensorforce effects seen in the SRC studies by Baghdasaryan *et al.* offer an alternative explanation.
- Large structure in $E_\gamma\,=\,1-2\,\,{\rm GeV}$ may be due to γN or γNN resonances reminiscent of pion photoproduction.
	- Consistent with preliminary results from CLAS.

Complementary results from Hall A

- Experiment E03-101 measured $^3\mathrm{He}(\gamma,\mathrm{pp})\mathrm{n}$ at $\theta_p^{cm} = 90^{\circ}$ and for $E_{\gamma} = 0.8 - 4.7 \text{ GeV}$ (Pomerantz, PLB 684, 106 (2010)).
- Scaling observed for $E_\gamma>2{\rm ~GeV}$ and σ_{pp} is about 20 times smaller than σ_{pn} measured in deuteron photodisintegration.
- Hard rescattering model (Frankfurt et al. PRL, 84, 3045 (2000)) reproduces scaling.
- Results could be due to scaling but the tensorforce effects seen in the SRC studies by Baghdasaryan *et al.* offer an alternative explanation.
- Large structure in $E_\gamma\,=\,1-2\,\,{\rm GeV}$ may be due to γN or γNN resonances reminiscent of pion photoproduction.
- Consistent with preliminary results from CLAS.

Conclusions

- We have seen the transition, but it's complicated. Alternative explanations remain.
- \bullet Future measurements (*e.g.* asymmetry measurements of $^3{\rm He}(\gamma,{\rm pp})$ n) may help untangle things.
- Wonderful example of the interplay of experiments in different halls at JLab.

JLab 12-GeV Upgrade

- The electron beam energy at JLab (CEBAF) will be doubled from ⁶ GeV to ¹² GeV.
- Halls A, B and C will be upgraded to accommodate the new physics opportunities.
- A new hall (Hall D) will house ^a large-acceptance detector built around ^a solenoidal magnet for photon beam experiments.
- All of the physics discussed here will be extended to ¹² GeV.
- Specific proposals have already been approved for running during the first five years tostudy SRC (PR12-06-105) and other few-body phenomena like color transparency(PR12-06-106 and PR12-06-107).

Conclusions

- SRCs improve our understanding of the NN force and
the around atote etructure of puolei the ground state structure of nuclei.
- The study of two- and three-body forces still needed to understand the range of physics in helium nuclei.
- Scaling is an important phenomenon that points to the quark-gluon substructure, but alternative explanationshave to be reconciled.
- MORE TO COME at 6 GeV and 12 GeV!!

Additional Slides

G.P.Gilfoyle et al. Few-Body Physics with CLAS – p. 30/35

Short-Range Correlations in(e, ^e′)

Selecting SRCs in Quasielastic (e,e') on Nuclei with CLAS

Use broad kinematic coverage of the reaction $A(e,e')A-1$ to isolate the SRCs.

Momentum and energy conservation lead to

Two- and Three-Body Forces in⁴He(γ,tp)

- Complementary reaction to $^3\mathrm{He}(\gamma,\mathrm{pp})$ n; different kinematics probes different elementary amplitudes.
- Investigate the contribution of 3-body mechanisms to the reactions and to furtherconstrain the theoretical calculations.
- Investigate the possible transition from soft (hadronic) physics to hard(constituent-quark) physics in the energy range of the g3 experiment (up to 1.5 GeV).
- Part of a bigger program using JLab/CLAS g3 data on $^{3,4}{\rm He}$ including $^3{\rm He}(\gamma,{\rm dp}),$ $^3{\rm He}(\gamma,{\rm pp}){\rm n}_{\rm spect}$ (hard), polarization measurements, and 3-body breakup and other channels.

Two- and Three-Body Forces in⁴He(γ,tp)

Results:

Three-body forces are essential for Helium nuclei at E_γ $0.40~{\rm GeV/c}$; Laget diagrammatic approach works reasonably well. $>$

Two- and Three-Body Forces in³He(γ, pp)n

Two- and Three-Body Forces in³,⁴He

Scaling! Have we reached the transition from hadronic to quark-gluon degrees of freedom?

 $^3\mathrm{He}(\gamma,\mathrm{pp})\mathrm{n}$