

# Few-Body Physics with CLAS

G.P. Gilfoyle (for the CLAS Collaboration)



#### Outline

- 1. Scientific Motivation
- 2. Jefferson Lab and CLAS
- 3. Short-Range Correlations in Cold Nuclear Matter
- 4. Three-Body Forces in Nuclei
- 5. Scaling in Photonuclear Reactions
- 6. Summary and Conclusions



### **Scientific Motivation**

- What are the phases of strongly interacting matter, and what roles do they play in the cosmos?
- What does QCD predict for the properties of strongly interacting matter?
- What governs the transition of quarks and gluons into pions and nucleons?
- What is the role of gluons and gluon self-interactions in nucleons and nuclei?

*The Frontiers of Nuclear Science, A Long Range Plan*, The DOE/NSF Nuclear Science Advisory Committee, December, 2007.

Similar raised questions in NuPECC Long Range Plan 2004.



#### The Continuous Electron Beam Accelerator Facility at JLab





View of site in Newport News,Schematic of accelerator and<br/>components.

Superconducting Electron Accelerator (338 cavities), 100% duty cycle,  $I_{max} = 200 \ \mu A$ ,  $E_{max} = 6 \ GeV$ ,  $\Delta E/E = 10^{-4}$ ,  $P_e > 80\%$ , 1500 physicists, over 30 countries, operational since end of 1997.



#### **The JLab End Stations**

Hall A - Two identical, high-resolution spectrometers ( $\Delta p/p < 2 \times 10^{-4}$ ); luminosity  $\approx 10^{38} \ cm^{-2} s^{-1}$ .



Hall C - Moderate-resolution  $(10^{-3})$ , 7-GeV/c High-Momentum Spectrometer (HMS) and the large-acceptance Short-Orbit Spectrometer (SOS) and additional detectors.



Hall B - The CLAS, nearly 4- $\pi$ acceptance spectrometer based on a toroidal magnet ( $\Delta p/p = 0.5\%$ ); luminosity  $\approx 10^{34} \ cm^{-2} s^{-1}$ .





### **The Experiment - CLAS**



Six identical mass spectrometers. Charged particle angles:  $8^{\circ} - 144^{\circ}$ . Momentum resolution:  $\approx 0.5\%$  (charged). Particle ID:  $p, \pi^+/\pi^-, K^+/K^-, e^+/e^-$ . Neutral particle angles:  $8^\circ - 70^\circ$ . Angular resolution:  $\approx 0.5 mr$  (charged).

### **The Experiment - CLAS + Real Photons**





#### **Physics Motivation**

- What are they? High momentum nucleon balanced by one (or two ...) other nucleon.
- Nuclei have been long been approximated as individual nucleons moving in the mean field created by the other nucleons.
- This picture is only good to about 70% (e.g. see J.Gao et al., PRL, 84, 3265 (2000)). We get a C<sup>-</sup>. The other 30% may be hidden away in the SRCs and ...
- SRCs probe the high-momentum components of the nuclear wave function, cold, dense nuclear matter, the physics of neutron stars, and the EMC effect.





#### How do we find them?

- SRC expected to exist in quasielastic, inclusive electron scattering, but difficult to extract.
- Signal for SRC in quasielastic exclusive electron scattering obscured by inelastic reactions, final-state interactions (FSI), and quasielastic scattering from low-momentum, uncorrelated nucleons (*e.g.* see J.Arrington *et al.*, PRL, 82, 2056 (1999)).
- Apply new kinematic constraints and exclusive reactions to pull the SRCs out of surrounding noise.
  - Scaling in quasielastic A(e, e')A 1.
  - Exclusive knock-out reactions (e, e'pN).



# Short-Range Correlations in (e, e')

- High-momentum part of nuclear wave function is similar for different nuclei so the ratio should SCALE!
  - Extract the ratio of the cross section in a nucleus to the cross section in  ${}^{3}\mathrm{He}$  to minimize FSI.



#### Next-Generation Exclusive Reactions in Hall A at JLab

- Use Hall A, BigBite for protons, and a neutron array; smaller kinematic range, but higher luminosity.
- Use ratios of  ${}^{12}C(e, e'p)$  and  ${}^{12}C(e, e'pp)$ ; *pp* correlations are  $\approx 10\%$  (R. Schneor *et al.*, PRL 99, 072501 (2007)).
- Measure <sup>12</sup>C(e, e'p), <sup>12</sup>C(e, e'pp), and <sup>12</sup>C(e, e'pn); pn SRCs dominate - $\sigma(pn)/\sigma(pp) = 18 \pm 5$  (R.Subedi *et al.*, Science, 320, 1476-1478 (2008)).
- Consistent with BNL results with a proton beam (E. Piasetzky *et al.*, PRL. 97, 162504 (2006)).





Next-Generation Exclusive Reactions in CLAS

- Start with the  ${}^{3}\mathrm{He}(\mathrm{e},\mathrm{e'pp})\mathrm{n}$  reaction over a broad kinematic range.
  - Use missing mass to select neutron residual.
  - Make cuts on  $T/\nu$  to select fast nucleons and with an SRC spectator.
  - Require the leading nucleon to be in the direction of  $\vec{q}$  to reduce FSI ( $p_{\perp} < 0.3 \ GeV/c$ ).



#### Next-Generation Exclusive Reactions in CLAS

- Measure <sup>3</sup>He(e, e'pp)n at 4.7 GeV and 2.0 GeV.
- Distributions for *pp* and *np* pairs as functions of *ptot* and *prel* are similar (only 4.7-GeV data shown).
  - Blue Golak single-body calculation (PRC 51, 1638 (1995)).
  - Red Laget single-body plus MEC and IC.
- Integrated  $\sigma(pp)/\sigma(np) \approx 1/4$ . - consistent with pair counting.
- Contradicts results from Hall A (R.Subedi et al., Science, 320, 1476-1478 (2008)) where  $\sigma(pp)/\sigma(np) \approx 1/18$ .



#### Resolving the difference.

Hall A results were for  $0.3 < p_{rel} < 0.5 \text{ GeV/c}$  and  $p_{tot} < 0.3 \text{ GeV/c}$ .

Integrate CLAS results for  $\sigma(pp)/\sigma(pn)$  over the same  $p_{rel}$  range and plot versus  $p_{tot}$ .  $\rightarrow$  AGREEMENT!

- Black: Golak one-body.
   Blue-Dashed: Golak pp:pn ratio in bound state.
   Black-Dotted: Pair counting ratio.
- The tensor force dominates!



- *e.g.* Schiavilla *et al.*, PRL 98, 132501 (2007).
- At low  $p_{tot}$  the pn pair is deuteron-like and the tensor force mixes in d wave.
- At low  $p_{tot}$  the pp pair has little d-wave and there is a deep minimum in the momentum distributions so  $\sigma(pp) < \sigma(pn)$ .

As  $p_{tot}$  increases the pp tensor force fills in this minimum and  $\sigma(pp)/\sigma(pn)$  rises.



#### Conclusions.

- Short-Range Correlations are an important next step in fully describing nuclei; they account for 10-20% of the ground state cross sections.
- Proton-neutron pairs are far more prevalent at low  $p_{tot}$ , but pp pairs rise to the same level at  $p_{tot} > 0.25 \text{ GeV/c}$ .
- The tensor force is essential for understanding SRCs and the nuclear ground state.

#### The Future.

- With CLAS: data mining proposal has been submitted to DOE.
  - More detailed study of 2N-SRC and the deuteron system.
  - A search for non-nucleonic decays of the SRC via  $\Delta$ -isobar production.
  - A search for 3N SRC.
- In Hall A:
  - Experiment E03-101 investigated the photodisintegration of pp pairs in <sup>3</sup>He.
  - Experiment E08-014 is scheduled to search for three-nucleon SRCs in May, 2011.



- The NN force has significant two- and three-body components; the break-up of light nuclei is a path to understand these components.
- The balance between two- and three- body forces could reveal the fundamental features of the NN force, (e.g. the range) and the effect of the nuclear medium.
- We can study the transition from soft (hadronic) physics to hard (constituent-quark).

Reactions being analyzed:
<sup>3</sup>He( $\gamma$ , dp) (2-body breakup)
<sup>3</sup>He( $\gamma$ , tp) (2-body breakup)
<sup>4</sup>He( $\gamma$ , dd) (2-body breakup)
<sup>3</sup>He( $\gamma$ , t $\pi^+$ ) (coherent)

<sup>3</sup>He( $\gamma$ , pp)n (helicities) <sup>3</sup>He( $\gamma$ , pp) (hard/2-body breakup) <sup>3</sup>He( $\gamma$ , p $\pi^+$ )nn ( $\Delta^{++}$  knockout) <sup>3,4</sup>He( $\gamma$ ,  $\pi^+\pi^+$ ) ( $\rho$  production)



- The NN force has significant two- and three-body components; the break-up of light nuclei is a path to understand these components.
- The balance between two- and three- body forces could reveal the fundamental features of the NN force, (e.g. the range) and the effect of the nuclear medium.
- We can study the transition from soft (hadronic) physics to hard (constituent-quark).

I also want to recognize the many contributions to this field from Barry Berman, a valued member of our CLAS Collaboration.

 $\mathbf{ne}(\gamma, \iota\pi^+)$  (conerent)



/ breakup)nockout)Jction)



- The NN force has significant two- and three-body components; the break-up of light nuclei is a path to understand these components.
- The balance between two- and three- body forces could reveal the fundamental features of the NN force, (e.g. the range) and the effect of the nuclear medium.
- We can study the transition from soft (hadronic) physics to hard (constituent-quark).

I also want to recognize the many contributions to this field from Barry Berman, a valued member of our CLAS Collaboration.

 $\operatorname{IIe}(\gamma, \operatorname{train})$  (concretent)



### Two- and Three-Body Forces in ${}^{3}\mathrm{He}(\gamma,\mathrm{pp})\mathrm{n}$

Selecting two- and three-body events using the Dalitz plot.





# Two- and Three-Body Forces in ${}^{3}\mathrm{He}(\gamma,\mathrm{pp})\mathrm{n}$

- Extract ratio of three- to two-body cross sections; peak corresponds to three-body range scale?
- $E_{\gamma}$  dependence with neutron spectator by angle bin (red).





Blue - Deuteron photodisintegration.

- Mirazita *et al.*, PRC 70, 014005 (2004).
- Scaled by  $\frac{1}{4}$ .
- $\bigcirc$  forward;  $\triangle$  back angles.
- Evidence of scaling?

# Two- and Three-Body Forces in ${}^{3}\mathrm{He}(\gamma,\pi^{+}\mathrm{t})$

#### **Motivation**

- Sompare elementary process on a free nucleon ( $\gamma p \rightarrow \pi^+ n$ ) with the same reaction in the nucleus.
- Probe the NN force, the pion cloud, and mesonic degrees of freedom.
- The triton and <sup>3</sup>He are the lightest nuclei with coherent photoproduction with charge exchange and a well-defined final state.

**Previous work** 

- Previous data at low Q<sup>2</sup> could be explained by including one- and two-body effects.
- Failed to account for all the cross section at higher momentum transfer.



S. Kamalov et al. PRL 75, 1288 (1995).



# Two- and Three-Body Forces in ${}^{3}\mathrm{He}(\gamma,\pi^{+}\mathrm{t})$



- Good agreement with CLAS results and previous data (D. Bachelier et al., PLB 44, 44 (1973) and D.Bachelier et al., NP A251, 433 (1975)) with updated 2-body calculation.
- Major deviations between previous calculations and CLAS results at smaller  $\theta_{\pi}$ !

10

10<sup>0</sup>









26

Conclusions

- Active program focused on helium nuclei with a variety of physics topics.
- Three body forces are an essential ingredient for understanding these nuclei.
  - For example, three-body calculations from Laget do well for some reactions (e.g.  ${}^{4}\text{He}(\gamma, \text{pt})$ ), but miss others ( ${}^{4}\text{He}(\gamma, \text{pd})$ ).
- Testing ground for nuclear medium effects like  ${}^{3}\mathrm{He}(\gamma, \pi^{+}\mathrm{t})$ .
- Signs of scaling.
- Need for contributions from theorists!!



#### **Physics Motivation**

ferson G

- Signature of scattering from individual partons inside the nucleus; sign that we have reached territory beyond the hadronic model.
- Central goal of JLab; a laboratory for the study of QCD.
- Identifying scaling has been elusive; the geography of the transition from hadronic to quark-gluon degrees of freedom is rugged.



#### How do we find it?

Brodsky and Farrar (PRL 31, 1153 (1973)) predict constituent counting rules (CCR)

$$\frac{d\sigma}{dt}_{AB\to CD} \approx s^{2-n} f(t/s)$$

where t and s are the Mandelstam variables (total energy and 4-momentum transfer squared) for  $s \to \infty$  and t/s fixed. The number n is the total number of leptons, photons, and quark components.

Deuteron photodisintegration (
$$n = 13$$
).

- large momentum transfers can be reached at relatively low energy.
- Hall A and C results.
  - Schulte *et al.*, PRC 66, 042201 (2002). Hall A green points.
  - Bochna *et al.*, PRL 81, 4576 (1998);
     Schulte *et al.* PRL 87, 102302 (2001). Hall C red points.



#### CLAS results (Rossi et al., PRL 94, 012301 (2005))

Cellerson Pal

- Measure  $d\sigma/dt$  at fixed proton angle  $\theta_p^{cm}$  and in terms of the center-of-mass proton transverse momentum  $P_T = \sqrt{\frac{1}{2}E_{\gamma}M_d\sin^2\theta_p^{cm}}$  where  $M_d$  is the deuteron mass.
  - Combine CLAS data and other measurements and use fits to  $s^{-11}$  to determine the minimum  $P_T$  where the scaling begins (at  $P_T > 1.1 \text{ GeV/c}$ ).





#### But....

lferson C

- $\checkmark$  CCR is valid for  $t \approx s >> m^2$  and not expected to work in the few-GeV region.
- Several competing, quark-gluon theories describe the unpolarized data: QGSM (Grishina *et al.* Eur. Phys. J. A 10, 355 (2001)), RNA (Brodsky and Hiller, PRC 30 412(E) (1984)), AMEC (Diepernik and Nagorny, PLB 456, 9 (1999)), and HRM (Frankfurt *et al.* PRL 84 3045 (2000)).
  - Analysis of existing CLAS data (CAA-NP07-01) on the azimuthal asymmetry hold the promise of differentiating among the different approaches.



#### Other exclusive reactions

- Brodsky *et al.* (Phys.Lett. B578, 69 (2004).) suggest that  ${}^{3}\text{He}(\gamma, pp)n$  could be a testing ground for hard processes.
  - pp breakup not much smaller than the pn breakup.
  - energy-dependent oscillations seen in pp could appear.
- **P** Recall  ${}^{3}\mathrm{He}(\gamma,\mathrm{pp})\mathrm{n}$  (red points).
  - Blue points from deuteron photodisintegration.
  - Mirazita *et al.*, PRC 70, 014005 (2004).
  - Scaled by  $\frac{1}{4}$ .
  - **9**  $\bigcirc$  forward;  $\triangle$  back angles.



#### Complementary results from Hall A

- Experiment E03-101 measured  ${}^{3}\text{He}(\gamma, \text{pp})\text{n}$ at  $\theta_{p}^{cm} = 90^{\circ}$  and for  $E_{\gamma} = 0.8 - 4.7 \text{ GeV}$ (Pomerantz, PLB 684, 106 (2010)).
- Scaling observed for  $E_{\gamma} > 2 \text{ GeV}$  and  $\sigma_{pp}$  is about 20 times smaller than  $\sigma_{pn}$  measured in deuteron photodisintegration.
- Hard rescattering model (Frankfurt *et al.* PRL, 84, 3045 (2000)) reproduces scaling.
- Results could be due to scaling but the tensor force effects seen in the SRC studies by Baghdasaryan *et al.* offer an alternative explanation.
- Large structure in  $E_{\gamma} = 1 2$  GeV may be due to  $\gamma N$  or  $\gamma NN$  resonances reminiscent of pion photoproduction.
- Consistent with preliminary results from CLAS.



#### Complementary results from Hall A

- Experiment E03-101 measured  ${}^{3}\text{He}(\gamma, \text{pp})\text{n}$ at  $\theta_{p}^{cm} = 90^{\circ}$  and for  $E_{\gamma} = 0.8 - 4.7 \text{ GeV}$ (Pomerantz, PLB 684, 106 (2010)).
- Scaling observed for  $E_{\gamma} > 2 \text{ GeV}$  and  $\sigma_{pp}$  is about 20 times smaller than  $\sigma_{pn}$  measured in deuteron photodisintegration.
- Hard rescattering model (Frankfurt *et al.* PRL, 84, 3045 (2000)) reproduces scaling.
- Results could be due to scaling but the tensor force effects seen in the SRC studies by Baghdasaryan *et al.* offer an alternative explanation.
- Large structure in  $E_{\gamma} = 1 2$  GeV may be due to  $\gamma N$  or  $\gamma NN$  resonances reminiscent of pion photoproduction.
- Consistent with preliminary results from CLAS.



Conclusions

- We have seen the transition, but it's complicated. Alternative explanations remain.
- ✓ Future measurements (*e.g.* asymmetry measurements of <sup>3</sup>He( $\gamma$ , pp)n) may help untangle things.
- Wonderful example of the interplay of experiments in different halls at JLab.



# JLab 12-GeV Upgrade

- The electron beam energy at JLab (CEBAF) will be doubled from 6 GeV to 12 GeV.
- Halls A, B and C will be upgraded to accommodate the new physics opportunities.
- A new hall (Hall D) will house a large-acceptance detector built around a solenoidal magnet for photon beam experiments.
- All of the physics discussed here will be extended to 12 GeV.
- Specific proposals have already been approved for running during the first five years to study SRC (PR12-06-105) and other few-body phenomena like color transparency (PR12-06-106 and PR12-06-107).



rson



# Conclusions

- SRCs improve our understanding of the NN force and the ground state structure of nuclei.
- The study of two- and three-body forces still needed to understand the range of physics in helium nuclei.
- Scaling is an important phenomenon that points to the quark-gluon substructure, but alternative explanations have to be reconciled.
- MORE TO COME at 6 GeV and 12 GeV!!



#### **Additional Slides**



G.P.Gilfovle et al. Few-Body Physics with CLAS - p. 30/3

# **Short-Range Correlations in** (e, e')

Selecting SRCs in Quasielastic (e, e') on Nuclei with CLAS

Use broad kinematic coverage of the reaction A(e, e')A - 1 to isolate the SRCs.

Momentum and energy conservation lead to

$$\Delta M^{2} - Q^{2} + \frac{Q^{2}}{m_{N}x_{B}} \left( M_{A} - \sqrt{M_{A-1}^{2} + p_{m}^{2}} \right) - 2\vec{q} \cdot \vec{p}_{m} - 2M_{A}\sqrt{M_{A-1}^{2} + p_{m}^{2}} = 0$$
where  $x_{B} = Q^{2}/2m_{N}\nu$ ,  $\Delta M^{2} = M_{A}^{2} + M_{A}^{2}$ .
$$\vec{p}_{m} = \vec{p}_{f} - \vec{q} = -\vec{p}_{A-1} \text{ (see K. Egiyan PRC, 68, 014313 (2003)).}$$
This result relates a minimum  $p_{m} (p_{m}^{min})$  to Bjorken  $x_{B}$  and  $Q^{2}$ .
For a given  $Q^{2}$  we can select a value of  $x_{B}$  such that the  $p_{m}^{min} > p_{Fermi}$ .
We can do this for different nuclei.



# Two- and Three-Body Forces in ${}^4\mathrm{He}(\gamma,\mathrm{tp})$

- Complementary reaction to  ${}^{3}\text{He}(\gamma, pp)n$ ; different kinematics probes different elementary amplitudes.
- Investigate the contribution of 3-body mechanisms to the reactions and to further constrain the theoretical calculations.
- Investigate the possible transition from soft (hadronic) physics to hard (constituent-quark) physics in the energy range of the g3 experiment (up to 1.5 GeV).
- Part of a bigger program using JLab/CLAS g3 data on  ${}^{3,4}$ He including  ${}^{3}$ He $(\gamma, dp)$ ,  ${}^{3}$ He $(\gamma, pp)$ n<sub>spect</sub> (hard), polarization measurements, and 3-body breakup and other channels.





### Two- and Three-Body Forces in ${}^4\mathrm{He}(\gamma,\mathrm{tp})$

Results:



Three-body forces are essential for Helium nuclei at  $E_{\gamma} > 0.40 \text{ GeV/c}$ ; Laget diagrammatic approach works reasonably well.



# Two- and Three-Body Forces in ${}^{3}\mathrm{He}(\gamma,\mathrm{pp})\mathrm{n}$



#### Two- and Three-Body Forces in $^{3,4}$ He

Scaling! Have we reached the transition from hadronic to quark-gluon degrees of freedom?



 $^{3}\mathrm{He}(\gamma,\mathrm{pp})\mathrm{n}$