• The structure of matter.

 \rightarrow Table of Elements (TOE)

H	Ŕ			PER	IODI	C TA	BLE	OF	THE	ELE	MEN	TS					He
Ľ.	Be										a 🤇	B	Ċ	N	0		Ne
Na	Mg											AI	Si	• P	* S	"CI	Ar
K	Ca	Sc inter	" Ti		Cr	Mn	Fe	Co	Ni	* Cu	Zn In	Ga	Ge	* As	Se	s Br	"Kr
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Âg	Cd	In	sn Sn	Sb	Te	• - ::-	Xe
	Ba	La - Lu	Hf	Ta	W	Re	Os Internet	" Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	AG-Lr	Rf	Db	Sg	" Bh ≟	Hs III	Mt	Uun	Uuu	Uub	Uut	Uuq	Uup	Uuh	Uus	Üuo
Lasthor	vide series	La	Ce	Pr	Nd	Pm	Sm	Eu Eu	Gd	"Tb	Dy	Ho	Er	°Tm ∏	Тур 	Lu	
Actin	de series	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

- The structure of matter. → Table of Elements (TOE)
- The current TOE!

 \rightarrow quarks and leptons.

	FERMIONS matter constituents spin = 1/2, 3/2, 5/2,							
Lep	otons spin =1/2	:	Quar	Quarks spin =1/2				
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge			
V _L lightest neutrino* e electron	(0−2)×10 ^{−9} 0.000511	0 -1	u _{up} d _{down}	0.002 0.005	2/3 1/3			
$\mathcal{V}_{\mathbf{M}}$ middle neutrino* μ muon	(0.009–2)×10 ^{–9} 0.106	0 -1	C charm S strange	1.3 0.1	2/3 1/3			
\mathcal{V}_{H} heaviest neutrino* au tau	(0.05–2)×10 ^{–9} 1.777	0 -1	t _{top} b _{bottom}	173 4.2	2/3 1/3			

- The structure of matter. \rightarrow Table of Elements (TOE)
- The current TOE!
 - \rightarrow quarks and leptons.
- We are made mostly of triplets of quarks.
 - \rightarrow protons and neutrons
 - ightarrow the nucleons

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,							
Lep	otons spin =1/2	:	Quar	ks spin	=1/2		
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge		
V _L lightest neutrino* e electron	(0−2)×10 ^{−9} 0.000511	0 -1	u _{up} d _{down}	0.002 0.005	2/3 -1/3		
$\mathcal{V}_{\mathbf{M}} \stackrel{\mathrm{middle}}{_{\mathrm{neutrino}^{*}}}$ μ muon	(0.009–2)×10 ^{–9} 0.106	0 -1	C charm S strange	1.3 0.1	2/3 -1/3		
\mathcal{V}_{H} heaviest neutrino* au tau	(0.05–2)×10 ^{–9} 1.777	0 -1	t _{top} b _{bottom}	173 4.2	2/3 -1/3		

- The structure of matter. \rightarrow Table of Elements (TOE)
- The current TOE!
 - \rightarrow quarks and leptons.
- We are made mostly of triplets of quarks.
 - \rightarrow protons and neutrons
 - \rightarrow the nucleons

	FERMIONS matter constituents spin = 1/2, 3/2, 5/2,							
Lep	otons spin =1/2	:	Quar	ks spin	=1/2			
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge			
V _L lightest neutrino* e electron	(0−2)×10 ^{−9} 0.000511	0 -1	u _{up} d _{down}	0.002 0.005	2/3 -1/3			
$\mathcal{V}_{\mathbf{M}} \stackrel{ ext{middle}}{ ext{neutrino}^{*}} \mu$ muon	(0.009-2)×10 ⁻⁹ 0.106	0 -1	C charm S strange	1.3 0.1	2/3 1/3			
\mathcal{V}_{H} heaviest neutrino* au tau	(0.05–2)×10 ^{–9} 1.777	0 -1	t _{top} b _{bottom}	173 4.2	2/3 -1/3			

• More than 99% of 'our mass' is in quark triplets.

- The structure of matter. \rightarrow Table of Elements (TOE)
- The current TOE!
 - \rightarrow quarks and leptons.
- We are made mostly of triplets of quarks.
 - \rightarrow protons and neutrons
 - \rightarrow the nucleons

	FERMIONS matter constituents spin = 1/2, 3/2, 5/2,							
Lep	otons spin =1/2		Quar	ks spin	=1/2			
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge			
\mathcal{V}_{L} lightest neutrino* \mathbf{e} electron	(0−2)×10 ^{−9} 0.000511	0 -1	u _{up} d _{down}	0.002 0.005	2/3 -1/3			
$\mathcal{V}_{\mathbf{M}} \stackrel{\mathrm{middle}}{_{\mathrm{neutrino}^*}}$ μ muon	(0.009-2)×10 ⁻⁹ 0.106	0 -1	C charm S strange	1.3 0.1	2/3 1/3			
\mathcal{V}_{H} heaviest neutrino* au tau	(0.05–2)×10 ^{–9} 1.777	0 -1	t _{top} b _{bottom}	173 4.2	2/3 -1/3			

- More than 99% of 'our mass' is in quark triplets.
- The color force binds quarks together.

- The structure of matter. \rightarrow Table of Elements (TOE)
- The current TOE!
 - \rightarrow quarks and leptons.
- We are made mostly of triplets of quarks.
 - \rightarrow protons and neutrons
 - \rightarrow the nucleons

	FERMIONS matter constituents spin = 1/2, 3/2, 5/2,							
Lep	otons spin =1/2	2	Quar	ks spin	=1/2			
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge			
V _L lightest neutrino* e electron	(0−2)×10 ^{−9} 0.000511	0 -1	u _{up} d _{down}	0.002 0.005	2/3 -1/3			
$\mathcal{V}_{\mathbf{M}} \stackrel{ ext{middle}}{ ext{neutrino}^{*}} \mu ext{muon}$	(0.009-2)×10 ⁻⁹ 0.106	0 -1	C charm S strange	1.3 0.1	2/3 1/3			
$rac{\mathcal{V}_{H}}{neutrino^{*}}$ heaviest $ au$ tau	(0.05–2)×10 ^{–9} 1.777	0 -1	t _{top} b _{bottom}	173 4.2	2/3 -1/3			

- More than 99% of 'our mass' is in quark triplets.
- The color force binds quarks together.
 - \rightarrow Theory: QCD (2005 Nobel to Gross, Wilczek, and Politzer).

- The structure of matter. \rightarrow Table of Elements (TOE)
- The current TOE!
 - \rightarrow quarks and leptons.
- We are made mostly of triplets of quarks.
 - \rightarrow protons and neutrons
 - ightarrow the nucleons

	FERMIONS matter constituents spin = 1/2, 3/2, 5/2,							
Lep	otons spin =1/2	2	Quar	ks spin	=1/2			
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge			
V _L lightest neutrino* e electron	(0−2)×10 ^{−9} 0.000511	0 -1	u _{up} d _{down}	0.002 0.005	2/3 -1/3			
$\mathcal{V}_{\mathbf{M}} \stackrel{ ext{middle}}{ ext{neutrino}^{*}} \mu ext{muon}$	(0.009-2)×10 ⁻⁹ 0.106	0 -1	C charm S strange	1.3 0.1	2/3 1/3			
$rac{\mathcal{V}_{H}}{neutrino^{*}}$ heaviest $ au$ tau	(0.05–2)×10 ^{–9} 1.777	0 -1	t _{top} b _{bottom}	173 4.2	2/3 -1/3			

- More than 99% of 'our mass' is in quark triplets.
- The color force binds quarks together.
 - \rightarrow Theory: QCD (2005 Nobel to Gross, Wilczek, and Politzer).
 - \rightarrow Can't be solved at the energies of nuclei. Yet!

- The structure of matter. \rightarrow Table of Elements (TOE)
- The current TOE!
 - \rightarrow quarks and leptons.
- We are made mostly of triplets of quarks.
 - \rightarrow protons and neutrons
 - ightarrow the nucleons

	FERMIONS matter constituents spin = 1/2, 3/2, 5/2,							
Lep	otons spin =1/2	:	Quar	ks spin	=1/2			
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge			
V _L lightest neutrino* e electron	(0−2)×10 ^{−9} 0.000511	0 -1	u _{up} d _{down}	0.002 0.005	2/3 -1/3			
$v_{_{ m M}}$ middle neutrino* μ muon	(0.009–2)×10 ^{–9} 0.106	0 -1	C charm S strange	1.3 0.1	2/3 1/3			
$rac{\mathcal{V}_{H}}{neutrino^{*}}$ heaviest $ au$ tau	(0.05–2)×10 ^{–9} 1.777	0 -1	t _{top} b _{bottom}	173 4.2	2/3 -1/3			

- More than 99% of 'our mass' is in quark triplets.
- The color force binds quarks together.
 - \rightarrow Theory: QCD (2005 Nobel to Gross, Wilczek, and Politzer).
 - \rightarrow Can't be solved at the energies of nuclei. Yet!
- Need new data to guide and challenge theory.

- The structure of matter. \rightarrow Table of Elements (TOE)
- The current TOE!
 - \rightarrow quarks and leptons.
- We are made mostly of triplets of quarks.
 - \rightarrow protons and neutrons
 - ightarrow the nucleons

	FERMIONS matter constituents spin = 1/2, 3/2, 5/2,							
Lep	otons spin =1/2		Quar	ks spin	=1/2			
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge			
V _L lightest neutrino* e electron	(0−2)×10 ^{−9} 0.000511	0 -1	u _{up} d _{down}	0.002 0.005	2/3 1/3			
\mathcal{V}_{M} middle neutrino* μ muon	(0.009-2)×10 ⁻⁹ 0.106	0 -1	C charm S strange	1.3 0.1	2/3 -1/3			
$rac{\mathcal{V}_{H}}{neutrino^{*}}$ heaviest $ au$ tau	(0.05–2)×10 ^{–9} 1.777	0 -1	t _{top} b _{bottom}	173 4.2	2/3 -1/3			

- More than 99% of 'our mass' is in quark triplets.
- The color force binds quarks together.
 - \rightarrow Theory: QCD (2005 Nobel to Gross, Wilczek, and Politzer).
 - \rightarrow Can't be solved at the energies of nuclei. Yet!
- Need new data to guide and challenge theory.
- Worldwide effort to unravel QCD in nuclei.

How Do We Turn on the Lights Inside a Nucleus?

- Build the newest US national lab Jefferson Lab (JLab) in Newport News, VA
- The accelerator CEBAF is a mile-long, racetrack-shaped, superconducting linear accelerator.
- Rapidly varying electric fields push electrons to 12 GeV.
- Electron beam distributed to four halls.
- Just completing a \$330M Upgrade.

How Do We Turn on the Lights Inside a Nucleus?

- Build the newest US national lab Jefferson Lab (JLab) in Newport News, VA
- The accelerator CEBAF is a mile-long, racetrack-shaped, superconducting linear accelerator.
- Rapidly varying electric fields push electrons to 12 GeV.
- Electron beam distributed to four halls.
- Just completing a \$330M Upgrade.

It's a QCD laboratory!

- Build a large (3-story, 45-ton) particle detector called CLAS12 in Hall B.
- Many layers measure the debris from electron-target collisions.
- Over 100,000 readouts in pprox 40 layers.
- Large magnet bends charged particles to measure 4-momenta of the debris.
- Will write 5-10 TByte to disk each day.

- Build a large (3-story, 45-ton) particle detector called CLAS12 in Hall B.
- Many layers measure the debris from electron-target collisions.
- Over 100,000 readouts in pprox 40 layers.
- Large magnet bends charged particles to measure 4-momenta of the debris.
- Will write 5-10 TByte to disk each day.

First production data spring, 2018!

- Build a large (3-story, 45-ton) particle detector called CLAS12 in Hall B.
- Many layers measure the debris from electron-target collisions.
- Over 100,000 readouts in pprox 40 layers.
- Large magnet bends charged particles to measure 4-momenta of the debris.
- Will write 5-10 TByte to disk each day.

First production data spring, 2018!

- Build a large (3-story, 45-ton) particle detector called CLAS12 in Hall B.
- Many layers measure the debris from electron-target collisions.
- Over 100,000 readouts in pprox 40 layers.
- Large magnet bends charged particles to measure 4-momenta of the debris.
- Will write 5-10 TByte to disk each day.

First production data spring, 2018!

Additional Slides

• The proton is 2 ups + 1 down; the neutron is 1 up + 2 downs.

	FERMIONS matter constituents spin = 1/2, 3/2, 5/2,						
Lep	otons spin =1/2	Quar	ks spin	=1/2			
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge		
\mathcal{V}_{L} lightest neutrino*	(0-2)×10 ⁻⁹	0	u _{up}	0.002	2/3		
e electron	0.000511	-1	d down	0.005	-1/3		
$\mathcal{V}_{\mathbf{M}}$ middle neutrino*	$(0.009-2) \times 10^{-9}$	0	C charm	1.3	2/3		
μ muon	0.106	-1	S strange	0.1	-1/3		
$\mathcal{V}_{H} _{\operatorname{heaviest}}$	(0.05-2)×10 ⁻⁹	0	t top	173	2/3		
τ _{tau}	1.777	-1	b bottom	4.2	-1/3		

- The proton is 2 ups + 1 down; the neutron is 1 up + 2 downs.
- A quiz: How much does the proton weigh?

	FERMIONS matter constituents spin = 1/2, 3/2, 5/2,							
Lep	otons spin =1/2	:	Quar	ks spin	=1/2			
Flavor Mass Electric GeV/c ² charge			Flavor	Approx. Mass GeV/c ²	Electric charge			
V _L lightest neutrino* e electron	(0-2)×10 ⁻⁹ 0.000511	0 -1	u _{up} d _{down}	0.002 0.005	2/3 1/3			
\mathcal{V}_{M} middle neutrino* μ muon	(0.009-2)×10 ⁻⁹ 0.106	0 -1	C charm S strange	1.3 0.1	2/3 1/3			
\mathcal{V}_{H} heaviest neutrino* au tau	(0.05–2)×10 ^{–9} 1.777	0 -1	t _{top} b _{bottom}	173 4.2	2/3 1/3			

- The proton is 2 ups + 1 down; the neutron is 1 up + 2 downs.
- A quiz: How much does the proton weigh?

	FERMIONS matter constituents spin = 1/2, 3/2, 5/2,						
Lep	otons spin =1/2	Quar	ks spin	=1/2			
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge		
\mathcal{V}_{L} lightest neutrino*	(0-2)×10 ⁻⁹	0	u _{up}	0.002	2/3		
e electron	0.000511	-1	d down	0.005	-1/3		
$\mathcal{V}_{\mathbf{M}}$ middle neutrino*	(0.009-2)×10 ⁻⁹	0	C charm	1.3	2/3		
μ muon	0.106	-1	S strange	0.1	-1/3		
$\mathcal{V}_{\mathrm{H}} _{\substack{ \mathrm{heaviest} \\ \mathrm{neutrino}^{*}}}$	(0.05-2)×10 ⁻⁹	0	t top	173	2/3		
au _{tau}	1.777	-1	b bottom	4.2	-1/3		

$$m_p = 2m_{up} + m_{down}$$

- The proton is 2 ups + 1 down; the neutron is 1 up + 2 downs.
- A quiz: How much does the proton weigh?

 $m_p = 2m_{up} + m_{down} = 2(0.002 \ GeV/c^2) + 0.005 \ GeV/c^2$ = 0.009 GeV/c^2

Where does mass come from? - UH-OH!

- The proton is 2 ups + 1 down; the neutron is 1 up + 2 downs.
- A quiz: How much does the proton weigh?

 $m_p = 2m_{up} + m_{down} = 2(0.002 \ GeV/c^2) + 0.005 \ GeV/c^2$ = 0.009 GeV/c^2

 $= 0.939 \ GeV/c^2 \quad OOOPS!!!????$

• The color charge of a quark produces a strong field, *e.g.* a charged particle.

- The color charge of a quark produces a strong field, *e.g.* a charged particle.
- Between and around bound quarks the energy density is high.

- The color charge of a quark produces a strong field, *e.g.* a charged particle.
- Between and around bound quarks the energy density is high.

- The color charge of a quark produces a strong field, *e.g.* a charged particle.
- Between and around bound quarks the energy density is high.
- Most of the mass we see comes from the quark color fields → gluon cloud!

- The color charge of a quark produces a strong field, *e.g.* a charged particle.
- Between and around bound quarks the energy density is high.
- Most of the mass we see comes from the quark color fields → gluon cloud!

- The color charge of a quark produces a strong field, *e.g.* a charged particle.
- Between and around bound quarks the energy density is high.
- Most of the mass we see comes from the quark color fields → gluon cloud!
- At JLab we probe the nucleon interior with high-momentum electrons.
- The momentum/wavelength (λ) of the electrons sample different sizes.

- The color charge of a quark produces a strong field, *e.g.* a charged particle.
- Between and around bound quarks the energy density is high.
- Most of the mass we see comes from the quark color fields → gluon cloud!
- At JLab we probe the nucleon interior with high-momentum electrons.
- The momentum/wavelength (λ) of the electrons sample different sizes.
- At high momentum you probe close to the quarks → bare quark mass.

- The color charge of a quark produces a strong field, *e.g.* a charged particle.
- Between and around bound quarks the energy density is high.
- Most of the mass we see comes from the quark color fields → gluon cloud!
- At JLab we probe the nucleon interior with high-momentum electrons.
- The momentum/wavelength (λ) of the electrons sample different sizes.
- At high momentum you probe close to the quarks \rightarrow bare quark mass.
- At low momentum you probe the whole cloud.

- The cross section reflects the effective size of the target in a scattering experiment.
- The form factors *G_E* and *G_M* are two components of the cross sections we measure.

- The cross section reflects the effective size of the target in a scattering experiment.
- The form factors *G_E* and *G_M* are two components of the cross sections we measure.
- The ratio of the form factors G_E/G_M for the proton is sensitive to the shape of the mass function.

- The cross section reflects the effective size of the target in a scattering experiment.
- The form factors *G_E* and *G_M* are two components of the cross sections we measure.
- The ratio of the form factors G_E/G_M for the proton is sensitive to the shape of the mass function.

We are probing how mass emerges from QCD color fields.

A Connection With Ted

A Connection With Ted

Some of the Nuclear Physics at the University of Richmond

- The usual suspects: Keegan Sherman, Omair Alam, Alexander Balsamo, David Brakman, Peter Davies, old gray-haired guy.
 Omair's Target
- Software is important! We are writing code for:
 - methods to align the 33,792 elements of the silicon vertex tracker to within 40 50 μm .
 - extracting the magnetic form factor G_M^n from the $eD \rightarrow e'p(n)$ and $eD \rightarrow e'n(p)$ reactions.
 - measuring the neutron detection efficiency needed for $eD \rightarrow e'n(p)$ with $ep \rightarrow e'\pi^+n$.
 - \bullet monitoring and operating a cryogenic LD_2-LH_2 target.
- Rely now on simulation of CLAS12 and cosmic ray data until 2017.
- Four student posters in Vancouver in October.

Jerry Gilfoyle

- JLab is at the frontier of our understanding of the basic properties of matter including most of the known mass.
- First measurement of the nucleon mass curve?
- CLAS12 is a large, complex particle detector about to see first beam.
- Our group is preparing feverishly to understand the deluge of data that is coming first beams in April!

- The color force binds quarks together via gluon exchange.
- The quarks are never alone.
 - $\rightarrow \text{ confinement}$
- At high energy the force is weak.
 - \rightarrow asymptotic freedom

- The color force binds quarks together via gluon exchange.
- The quarks are never alone.
 - $\rightarrow \text{ confinement}$
- At high energy the force is weak.
 - ightarrow asymptotic freedom
- Quantum Chromodynamics QCD nails it.
 - \rightarrow 2005 Nobel to Gross, Wilczek, and Politzer.
 - \rightarrow Only at high energy where the color force is weak.

- The color force binds quarks together via gluon exchange.
- The quarks are never alone.
 - $\rightarrow \text{ confinement}$
- At high energy the force is weak.
 - \rightarrow asymptotic freedom
- Quantum Chromodynamics QCD nails it.
 - \rightarrow 2005 Nobel to Gross, Wilczek, and Politzer.
 - \rightarrow Only at high energy where the color force is weak.

- The color force binds quarks together via gluon exchange.
- The quarks are never alone.
 - $\rightarrow \text{ confinement}$
- At high energy the force is weak.
 - \rightarrow asymptotic freedom
- Quantum Chromodynamics QCD nails it.
 - \rightarrow 2005 Nobel to Gross, Wilczek, and Politzer.
 - \rightarrow Only at high energy where the color force is weak.

• The cross section reflects the effective size of the target in a scattering experiment.

- The cross section reflects the effective size of the target in a scattering experiment.
- This cross section can be expressed here in electric and magnetic form factors G_E and G_M .

$$rac{d\sigma}{d\Omega} = rac{\sigma_{Mott}}{\epsilon(1+\tau)} \left(\epsilon G_E^2 + \tau G_M^2 \right)$$

- The cross section reflects the effective size of the target in a scattering experiment.
- This cross section can be expressed here in electric and magnetic form factors G_E and G_M .
- The ratio G_E/G_M for the proton has a zero crossing sensitive to the shape of the mass function.

- The cross section reflects the effective size of the target in a scattering experiment.
- This cross section can be expressed here in electric and magnetic form factors G_E and G_M .
- The ratio G_E/G_M for the proton has a zero crossing sensitive to the shape of the mass function.
- So does G_E/G_M for the neutron.

