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Scientific Motivation

e Establish a baseline for the hadronic model to meet. The deuteron is an
essential testing ground because it is the simplest nucleus. On the

theory side see also Deuteron Benchmarking Project.®

e Differing mix of relativistic corrections (RC), meson-exchange currents

(MEC), final-state interactions (FSI), and isobar
Short Range Correlaitrilolr\}ij e

configurations (IC) depending on kinematics.

Jefferson Lab

e | earn more about FSI in quasielastic kinematics. = N

* Cold Dense Nucle
‘and Neutron Stars

— The fifth structure function is zero in PWIA

and is dominated by FSI.

conferences.jlab.org/src2

— Short-Range Correlations (SRC). AR

— Deuteron as neutron target, /N*/V interaction ...

®http://hule.fi u.edu/highnp/deubenchmarking.htm




Introduction

e Goal: Measure the imaginary part of the LT interference term (the fifth
structure function) of D(€&, e'p)n at Q* ~ 1 (GeV/c)?.

® The cross section is
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where = refers to different beam helicities.

e Asymmetry requires polarized beam.
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Existing Measurements of Structure Functions of the

Deuteron

e Several results from Bates in the 1990’'s

for different structure functions and
kinematics (i.e.quasielastic, ‘dip’ region)
using the Out-Of-Plane Spectrometer.
See S.Gilad, et al., NP A631, 276c,

(1998) and references therein. 0 20 40 @ ®
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0 pa

e Existing efforts at JLab to measure deuteron structure functions in

guasielastic kinematics.

— W. Boeglin, Hall A experiment E01-020 - measure Ry .

— This report.




Data Collection with CLAS

e CEBAF is the 7/8-mile-long, racetrack-
shaped electron accelerator at JLab
that produces continuous electron

beams up to 6 GeV.

CLAS is a 45-ton, six-sector detector
covering most of 47, with drift chambers
to measure trajectories, scintillators for TOF,

Cerenkov counters to

identify electrons, and

calorimeters to measure

energy. A toroidal mag-

netic field determines

momentum.




The Data Set
Analyze data from the E5 run period in Hall B.

Two beam energies, 4.23 GeV and 2.56 GeV/, with normal torus

polarity (electrons inbending).

One beam energy 2.56 GeV with reversed torus polarity (electron

outbending) to reach lower (Q*.

Recorded about 2.3 billion triggers, Q* = 0.2 — 5.0(GeV/c¢).

Dual target cell with liquid hydrogen

) e5 Primary Target
and deuterium. g

Beam polarization: 0.736 £ 0.017




Event Selection and Corrections

R AR R AN RAE RN RREE
D(e,e’'p)X
2.6 GeV

Kinematics using a cut on the energy transfer

2  40.03
2?41\7 —0.01 GeV.

Select e — p coincidences in quasi-elastic

SOV =

Use missing mass to select neutrons

0.84 GeV? < MM?2 < 0.92 GeV?2. — ROE N |

MM? (GeV?)

Put fiducial cuts on electrons and protons.®

Corrections: acceptance,” momentum,

beam charge asymmetry.
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2See Poster 3A.00030 by Kristen Greenholt in CEU session this afternoon.
PSee Poster 3A.00012 by Rusty Burrell and Kuri Gill in CEU session this afternoon.




: /
Method for Extracting A},

To take full advantage of the nearly 47 coverage of CLAS we extract the

®pq-dependent moments of the data in each each bin in p;,. Let

W :l: [ ]
o=* sin d / /
(sin @pg)+ = f_w = i¢pq Pra — &+ oLT O e
f_WJ d¢pq 2(0‘L —I—O‘T) 2

/
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If there is a sinusoidally-varying component to the acceptance, then

/

<Sin ¢pq>:|: — Zl:% + Qgee

and we can get rid of that background by subtracting the results for the different

helicities.

(sin ¢pq>+ — (sin ¢pq>— — A/LT




Preliminary A’ ~ Results for D(€, e'p)n

D(e e p)n (Prellmlnary) D(e,e’p)n

X
I~
1©
1 w

E=2.6 GeV

Reversed torus polarity
—kJ—

E=2.6 GeV
Reversed torus polarity

E=2.6 GeV
Normal torus polarity

E=2.6 GeV
Normal torus polarity

ﬁ

E=4.2 GeV
Normal torus polarity

AT

E=4.2 GeV
Normal torus polarity

O
IS

01 02 03 04 05 06 0.7 5SS
P, (Gevic) Q? (Gevic)’

OAIII
OO




Some Consistency Checks

Effect of Fiducial Cuts ep — e’pwo Comparison
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Some Consistency Checks

Effect of Fiducial Cuts ep — e’pwo Comparison
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Some Consistency Checks

Effect of Fiducial Cuts
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ep — e'pr’ Comparison

<A’ ;>=-0.0158 + 0.0009, Q°=0.4-0.7 GeV*
K. Joo and C. Smith

<A’ >=-0.0127 £ 0.0019, Q2 =0.15-2.0 GeV*
This work




Preliminary Comparison With Theory
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Preliminary Comparison With Theory
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Preliminary Comparison With Theory

e Hartmuth Arenhovel (black) - Starts
with the non-relativistic Schrodinger
Equation and adds RC, MEC, IC, and
FSI. Averaged over the CLAS

acceptance.

Jean-Marc Laget (green) - Uses a

diagrammatic approach. Calculation
is for Q% = 1.1 GeV? (lower
panel) and Q? = 0.7 GeV?

(upper panel).
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Preliminary Comparison With Theory

e Hartmuth Arenhovel (black) - Starts

with the non-relativistic Schrodinger
Equation and adds RC, MEC, IC, and
FSI. Averaged over the CLAS

acceptance.

Jean-Marc Laget (green) - Uses a

diagrammatic approach. Calculation
is for Q% = 1.1 GeV? (lower
panel) and Q? = 0.7 GeV?

(upper panel).

Sabine Jeschonnek (red) - Calculation

is for Q2 = 1.1 GeV>2.

See Sabine’s talk!
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Preliminary Comparison With Theory

e Hartmuth Arenhovel (black) - Starts

with the non-relativistic Schrodinger
Equation and adds RC, MEC, IC, and
FSI. Averaged over the CLAS

acceptance.

Jean-Marc Laget (green) - Uses a

diagrammatic approach. Calculation
is for Q% = 1.1 GeV? (lower
panel) and Q? = 0.7 GeV?

(upper panel).

Sabine Jeschonnek (red) - Calculation

is for Q2 = 1.1 GeV>2.

See Sabine’s talk!
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Conclusions

We observe a 4% dip in A’ at p,,, & 220 MeV/cin the low Q* data

set and a 6% dip in A’ at the same p,,, in the middle ()* range. The

high-QQ? data has poor statistics for A’ .

The calculation by Jeschonnek reproduces the data in the middle Q2

range!

At low p,,,, the calculations by Arenhovel reproduce the data, but

diverge (they're too negative) above p,, = 250 MeV/c.

At low p,,,, the Laget calculations reproduce the IOW—Q2 data, but are

too small in magnitude in the middle Q? range.

The (sin ¢,,) technique works well including the subtraction of the two
different beam helicities to eliminate sinusoidal components of the

acceptance.




Asymmetry Background Results
d(é> .e’p)n (Preliminary)
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W dependence of A, at the Quasi-elastic Peak
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