Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation

Jerry Gilfoyle Physics Department, University of Richmond, Virginia

Outline: 1. Some Bits of History.

- 2. Nuclear Weapons 101.
- 3. The Comprehensive Test Ban Treaty.
- 4. Testing The Test Ban Treaty.
- 5. Why should you care? and Conclusions.

US develops and uses nuclear weapons on Japan at the end of World War II (1945). Other countries follow; current count is nine.

- US develops and uses nuclear weapons on Japan at the end of World War II (1945). Other countries follow; current count is nine.
- President Truman proposes Baruch Plan to dismantle US arsenal and eliminate nuclear weapons (1953). Vetoed by the Soviets.

- US develops and uses nuclear weapons on Japan at the end of World War II (1945). Other countries follow; current count is nine.
- President Truman proposes Baruch Plan to dismantle US arsenal and eliminate nuclear weapons (1953). Vetoed by the Soviets.
- Nuclear Non-Proliferation Treaty (NPT) enters into force (1970).
 - Prevent the spread of nuclear weapons, fissile materials, and technology.
 - Reduce or eliminate nuclear weapons.
 - Support the right to peacefully use nuclear technology

- US develops and uses nuclear weapons on Japan at the end of World War II (1945). Other countries follow; current count is nine.
- President Truman proposes Baruch Plan to dismantle US arsenal and eliminate nuclear weapons (1953). Vetoed by the Soviets.
- Nuclear Non-Proliferation Treaty (NPT) enters into force (1970).
 - Prevent the spread of nuclear weapons, fissile materials, and technology.
 - Reduce or eliminate nuclear weapons.
 - Support the right to peacefully use nuclear technology
- US Nonproliferation activities
 - Signatory to the NPT.
 - Nunn-Lugar threat reduction.
 - The Comprehensive Test Ban Treaty NOT ratified by the US Senate in 2000. President Obama will try again.

Nuclear Weapons 101 - Fission and Fusion

- Fissile materials (235 U, 239 Pu) release enormous energies.
- \checkmark As each nucleus splits, it emits 2 or so neutrons plus lots of energy $pprox 180~{
 m MeV}$).
- If density is high, a 'chain reaction' will cause other fissions in a self-propagating process.

- As a fission bomb explodes deuterium and tritium can fuse releasing neutrons and even more energy; ${}^{2}H + {}^{3}H \rightarrow {}^{4}He + n + 17.6 \text{ MeV}$.
- Only about 8 kg of plutonium or 25 kg of highly-enriched uranium (HEU) is needed is needed to produce a weapon.

Nuclear Weapons 101 - Basic Weapons Designs

- Uranium, gun-type weapon High explosive fires highly-enriched uranium slug down the gun tube and into the uranium target. The density increases enough to sustain the chain reaction.
- Plutonium implosion device High explosive crushes the plutonium primary to a density where fission can occur.
- Two-stage, thermonuclear weapon Fission weapon crushes secondary containing deuterium and tritium gas and/or a fissile 'spark plug'.
- Uranium and plutonium in the secondary burn and increase the temperature so fusion starts. The fusion energy further raises the temperature more fission fuel burns.

Nuclearfireball1msafterdeto-nation(TumblerSnapper).Thefireballisabout20m across.

Nuclear Weapons 101 - Effects

- Energy released in the form of light, heat and blast.
- **Blast** \approx 40-50% of total energy.
- Thermal radiation \approx 30-50% of total energy.
- Ionizing radiation \approx 5% of total energy.
- Residual radiation ≈5-10% of total energy.
- Figure shows effect of a 15 kiloton bomb (about the size of the Hiroshima bomb) exploded over Hannan Hall at Catholic University, Washington, DC.

Nuclear Weapons 101 - Nuclear Forensics

- Nuclear explosions leave behind a mixture of atomic nuclei that can reveal the fissile materials used and design features.
- Figure shows the fission yield in % for 235U, 238U and 239Pu, for fission induced by fission spectrum neutrons (f) and high energy neutrons (HE) (14.7 MeV).*
- Xenon is a noble gas that is chemically inert.

* P.R.J. Saey, ESARDA Bulletin, 36 (2007) 42.

Nucleus	Radiations (energy)	Half-life
^{131m} Xe	$\gamma~(0.164~{ m MeV})$	11.9 d
^{133m} Xe	$\gamma~(0.233~{ m MeV})$	2.2 d
¹³³ Xe	$eta~(0.346~{ m MeV})$, $\gamma~(0.081~{ m MeV})$	5.2 d
135 Xe	eta (0.910 MeV), γ (0.250 MeV)	9.1 h

The Comprehensive Test Ban Treaty (CTBT)

- The CTBT bans all nuclear explosions to limit the proliferation of nuclear weapons.
- A network of seismological, hydroacoustic, infrasound, and radionuclide sensors will monitor compliance.
- On-site inspection will be provided to check compliance.
- The US has signed the CTBT, but not ratified it.

Green - ratified Blue - signed Red - outside treaty

The CTBT Verification Regime

- The International Monitoring System (IMS), consists of 337 facilities that constantly monitor for signs of nuclear explosions. Around 70% are already collecting data.
- Detection technologies:
 - Seismic: 50 primary and 120 auxiliary seismic stations monitor shock waves.
 - Hydroacoustic: 11 hydrophone stations 'listen' for sound waves in the oceans.
 - Infrasound: 60 stations on the surface can detect ultra-low frequency sound waves (inaudible to the human ear) that are emitted by large explosions.
 - Radionuclide: 80 stations measure radioactive particles in the atmosphere, 40 also pick up noble gases.
- On-site-Inspection: If IMS data from the IMS show a nuclear test has ocurred, a Member State can request an on-site-inspection subject to

a vote.

On October 9, 2006 the Democratic People's Republic of Korea detonated a nuclear bomb underground in the vicinity of P'unggye in the northeast part of North Korea.

- On October 9, 2006 the Democratic People's Republic of Korea detonated a nuclear bomb underground in the vicinity of P'unggye in the northeast part of North Korea.
- The seismic signature of the blast was detected by more than 20 IMS seismic monitoring stations. The yield was less than a kiloton (a fizzle?).

- On October 9, 2006 the Democratic People's Republic of Korea detonated a nuclear bomb underground in the vicinity of P'unggye in the northeast part of North Korea.
- The seismic signature of the blast was detected by more than 20 IMS seismic monitoring stations. The yield was less than a kiloton (a fizzle?).
- Radioactive xenon nuclei were detected at an IMS station in Yellowknife, NWT, Canada, two weeks after the blast (and 4700 miles away) and attributed to the test.

- On October 9, 2006 the Democratic People's Republic of Korea detonated a nuclear bomb underground in the vicinity of P'unggye in the northeast part of North Korea.
- The seismic signature of the blast was detected by more than 20 IMS seismic monitoring stations. The yield was less than a kiloton (a fizzle?).
- Radioactive xenon nuclei were detected at an IMS station in Yellowknife, NWT, Canada, two weeks after the blast (and 4700 miles away) and attributed to the test.

Detecting Seismic Signatures of Nuclear Tests

- The Problem
 - Use tremors created by underground explosions to detect treaty violations.
 - Big backgrounds! 600-700 earthquakes/day plus hundreds of mining explosions; about 25 events/day with magnitude > 4.
 - Can we identify a nuclear test among all this noise?
- Some seismology.
 - Surface waves slow, transverse, low attenuation.
 - Body waves fast, longitudinal (P) and transverse (S).
 - P waves emitted first.
 - Teleseismic detected far from source; basis for National Technical Means (NTM) during Cold War.
 - Regional detected close to epicenter; basis for CTBT IMS.

Identifying Nuclear Tests

- Ratio of amplitude of surface waves to body waves is small for explosions (Annu. Rev. Earth Planet. Sci. 2009. 37:209).
- \blacksquare Ratio of S waves to P waves is small for explosions.
- Source depth and epicenter
 - Explosions are near the surface ...
 - ... and in the right place (S&TR, Mar, 2009).

apritinde 41°N

129°E

130°E

Longitude

128°E

129°E

130°E

- Regional data crucial.
 - Surface wave amplitudes can be small.
 - \blacksquare S waves blocked by liquid outer core.
 - P/S ratio altered by medium.
- Need accurate 3D maps of geology
 - Correct regional data.
 - Test source hypotheses.
- Need high-performance computing.

Radioactive isotopes of xenon are produced directly in the fission fragments from nuclear explosion and from in-feeding from the decay of iodine isotopes also produced in the explosion.

- Radioactive isotopes of xenon are produced directly in the fission fragments from nuclear explosion and from in-feeding from the decay of iodine isotopes also produced in the explosion.
- Xenon is a noble gas so it is chemically inert and does not combine with rock, minerals, water, and other materials in the chamber of an underground test.

- Radioactive isotopes of xenon are produced directly in the fission fragments from nuclear explosion and from in-feeding from the decay of iodine isotopes also produced in the explosion.
- Xenon is a noble gas so it is chemically inert and does not combine with rock, minerals, water, and other materials in the chamber of an underground test.
- It can be vented intentionally or not through cracks in the surrounding rock or through an access tunnel that is inadequately sealed.

- Radioactive isotopes of xenon are produced directly in the fission fragments from nuclear explosion and from in-feeding from the decay of iodine isotopes also produced in the explosion.
- Xenon is a noble gas so it is chemically inert and does not combine with rock, minerals, water, and other materials in the chamber of an underground test.
- It can be vented intentionally or not through cracks in the surrounding rock or through an access tunnel that is inadequately sealed.
- The xenon isotopes in the table are entirely man-made so they must come from reactors and explosions.

Nucleus	Radiations (energy)	Half-life
^{131m} Xe	$\gamma~(0.164~{ m MeV})$	11.9 d
$^{133\mathrm{m}}\mathrm{Xe}$	$\gamma~(0.233~{ m MeV})$	2.2 d
133 Xe	eta (0.346 MeV), γ (0.081 MeV)	5.2 d
135 Xe	eta (0.910 MeV), γ (0.250 MeV)	9.1 h

Looking for the Smoking Gun

Atmospheric gas is collected for 24 hours in 2hour cycles and xenon extracted through a series of permeation membranes and absorbers/desorbers. Can detect ¹³³Xe at $1.5 \times 10^{-4} Bq/m^3$.

Vent Z

Looking for the Smoking Gun

Background studies of known sources are required to eliminate false positives.

- Background studies of known sources are required to eliminate false positives.
- Atmospheric transport modeling (ATM) is done to determine the effect of known backgrounds and hypothesized nuclear explosions.

- Background studies of known sources are required to eliminate false positives.
- Atmospheric transport modeling (ATM) is done to determine the effect of known backgrounds and hypothesized nuclear explosions.
- Comparison between ATM prediction and measurement of ¹³³Xe activity concentration in mBq/m³ from the Yellowknife IMS station (γ detection).

P.R.J.Saey et al. Geophys. Res. Lett. 34, L20802 (2007).

- Background studies of known sources are required to eliminate false positives.
- Atmospheric transport modeling (ATM) is done to determine the effect of known backgrounds and hypothesized nuclear explosions.
- Comparison between ATM prediction and measurement of ^{133}Xe activity concentration in mBq/m^3 from the Yellowknife IMS station (γ detection).

Consistent with venting about 10% of the 133 Xe.

P.R.J.Saey et al. Geophys. Res. Lett. 34, L20802 (2007).

NOT Getting the Wrong Gun

- A reactor at the Chalk River Laboratory in Ontario is used to produce radiopharmaceuticals that form a background to the ¹³³Xe measurement.
- Top panel in figure below shows the ¹³³Xe concentration before the detection of the North Korean 2006 test (from P.R.J.Saey *et al.* Geophys. Res. Lett. 34, L20802 (2007)).

The 2006 North Korea test was the smoking gun of remote detection of nuclear explosions. Everybody is happy (except maybe the North Koreans).

- The 2006 North Korea test was the smoking gun of remote detection of nuclear explosions. Everybody is happy (except maybe the North Koreans).
 3-Component Records at MDJ (Mudanjiang, China) from Underground Nuclear Tests
- On May 25, 2009 the North Koreans test again. The yield is a few kilotons and it's detected by 61 IMS stations.

- The 2006 North Korea test was the smoking gun of remote detection of nuclear explosions. Everybody is happy (except maybe the North Koreans).
 3-Component Records at MDJ (Mudanjiang, China) from Underground Nuclear Tests
- On May 25, 2009 the North Koreans test again. The yield is a few kilotons and it's detected by 61 IMS stations.

No radioxenons are detected at any of the IMS stations!

- The 2006 North Korea test was the smoking gun of remote detection of nuclear explosions. Everybody is happy (except maybe the North Koreans).
 3-Component Records at MDJ (Mudanjiang, China) from Underground Nuclear Tests
- On May 25, 2009 the North Koreans test again. The yield is a few kilotons and it's detected by 61 IMS stations.

No radioxenons are detected at any of the IMS stations!

What went wrong?

Did the IMS fail? The plume should have reached three IMS radioxenon stations.

- Did the IMS fail? The plume should have reached three IMS radioxenon stations.
- Did the North Koreans fake it? No 'engineering' signatures of such a large effort.

- Did the IMS fail? The plume should have reached three IMS radioxenon stations.
- Did the North Koreans fake it? No 'engineering' signatures of such a large effort.
- Was the underground site sealed? Maybe. Not all underground tests have vented noble gases. From 1971 to 1992 only six out of 335 US nuclear tests released radiation.*

* J. Medalia, North Korea's 2009 Nuclear Test: Containment, Monitoring, Implications, Congressional Research Service, R41160, April 2, 2010.

- Did the IMS fail? The plume should have reached three IMS radioxenon stations.
- Did the North Koreans fake it? No 'engineering' signatures of such a large effort.
- Was the underground site sealed? Maybe. Not all underground tests have vented noble gases. From 1971 to 1992 only six out of 335 US nuclear tests released radiation.*
 - Higher yield bomb could have sealed the rock from venting.
 - There is abundant, public information on containing gases from nuclear blasts.
 - The North Koreans learned from the first test.

* J. Medalia, North Korea's 2009 Nuclear Test: Containment, Monitoring, Implications, Congressional Research Service, R41160, April 2, 2010.

Another Test for the Test Ban

- Did the IMS fail? The plume should have reached three IMS radioxenon stations.
- Did the North Koreans fake it? No 'engineering' signatures of such a large effort.
- Was the underground site sealed? Maybe. Not all underground tests have vented noble gases. From 1971 to 1992 only six out of 335 US nuclear tests released radiation.*
 - Higher yield bomb could have sealed the rock from venting.
 - There is abundant, public information on containing gases from nuclear blasts.
 - The North Koreans learned from the first test.
- The seismometers captured the event easily. Are seismic sensors enough?

* J. Medalia, North Korea's 2009 Nuclear Test: Containment, Monitoring, Implications, Congressional Research Service, R41160, April 2, 2010.

Another Test for the Test Ban

- Did the IMS fail? The plume should have reached three IMS radioxenon stations.
- Did the North Koreans fake it? No 'engineering' signatures of such a large effort.
- Was the underground site sealed? Maybe. Not all underground tests have vented noble gases. From 1971 to 1992 only six out of 335 US nuclear tests released radiation.*
 - Higher yield bomb could have sealed the rock from venting.
 - There is abundant, public information on containing gases from nuclear blasts.
 - The North Koreans learned from the first test.
- The seismometers captured the event easily. Are seismic sensors enough?

The American Geophysical Union and the Seismological Society of America have stated the IMS will detect all explosions down to 1 kiloton (and much less in some areas) and within a radius of 35 km (October, 2009).

* J. Medalia, North Korea's 2009 Nuclear Test: Containment, Monitoring, Implications, Congressional Research Service, R41160, April 2, 2010.

Another Test for the Test Ban

Catholic University - April 6, 2011 - p. 1

Can an Opponent Cheat on the CTBT?

- U.S. and Russian experiments have demonstrated that seismic signals can be muffled, or decoupled, for a nuclear explosion detonated in a large underground cavity.
- Such technical scenarios are credible only for yields of at most a few kilotons.
- Other scenarios require mine-masking, multiple explosions, hide-in-an-earthquake.
- The IMS is expected to detect all seismic events of about magnitude 4 or larger corresponds to an explosive yield of approximately 1 kiloton (the explosive yield of 1,000 tons of TNT).

What can be learned from low-yield, surreptitious blasts?

Can it extrapolated to full-up tests?

Demonstration of size of cavity needed to decouple a 5 kT blast.

US Congress, Office of Technological Assessment, *Verification of Nuclear Testing Treaties*, OTA-ISC-361, (Washington, DC; US Government Printing Office; May, 1988).

Why Should You Care?

The President is committed to bringing the CTBT to a vote for ratification in the Senate.

Why Should You Care?

- The President is committed to bringing the CTBT to a vote for ratification in the Senate.
- In clandestine nuclear tests could not be verified (by the IMS). In even when Pyongyang declared that it would conduct a nuclear-weapons test and announced where and when it would occur, this monitoring system failed to collect necessary radioactive gases and particulates to prove that a test had occurred.

Senator Jon Kyl - R, Arizona: *Why We Need to Test Nuclear Weapons*, Wall Street Journal, October 20, 2009.

Why Should You Care?

- The President is committed to bringing the CTBT to a vote for ratification in the Senate.
- In clandestine nuclear tests could not be verified (by the IMS). In even when Pyongyang declared that it would conduct a nuclear-weapons test and announced where and when it would occur, this monitoring system failed to collect necessary radioactive gases and particulates to prove that a test had occurred.

Senator Jon Kyl - R, Arizona: *Why We Need to Test Nuclear Weapons*, Wall Street Journal, October 20, 2009.

The worst-case scenario under a no-CTBT regime poses far bigger threats to U.S. security - sophisticated nuclear weapons in the hands of many more adversaries - than the worst-case scenario of clandestine testing in a CTBT regime, within the constraints posed by the monitoring system.

National Academy of Sciences (NAS), *Technical Issues Related to the Comprehensive Nuclear-Test-Ban Treaty*, Washington, D.C., National Academy Press, 2002, pp. 10.

Conclusions

- Diverse, interdisciplinary technologies have demonstrated that detection and identification of nuclear explosions is possible.
- Seismic detection will remain the primary tool of the IMS for monitoring underground nuclear explosions with additional methods like radioxenon detection supporting it.
- 3. The fate of the CTBT relies, in part, on the quality of the science supporting it and how well that message is transmitted to policy makers.
- 4. There is exciting, important physics to be done here.

Research Opportunities

- Congress recently passed the Nuclear Forensics and Attribution Act (Feb, 2010).
 - Creates the National Technical Nuclear Forensics Center within the Domestic Nuclear Detection Office (DNDO) of the Department of Homeland Security (DHS).
 - Establishes fellowships for undergraduates (summer research) and graduate students and awards for their advisors.
- Examples of DNDO research.
 - Hope College Cathodoluminescent Signatures of Neutron Irradiation.
 - CUNY Infrared Studies of CdMgTe as the Material of Choice for Room Temperature Gamma-Ray Detectors
 - Stanford Improved Transparent Ceramic Fabrication Techniques for Radiological and Nuclear Detectors
- US National Labs
 - PNNL Triple Coincidence Radioxenon Detector
 - Office of Defense Nuclear Nonproliferation (part of NNSA).

Additional Slides

Radioxenon decay chains.

Catholic University - April 6, 2011 - p. 2

Cs-135

Radioxenon $\gamma\text{-Rays}$

Finding the Smoke

- 131m Xe can γ decay to its ground state ($E_{\gamma} = 0.164 \text{ MeV}$) or internally convert emitting an electron ($E_e = 0.129 \text{ MeV}$) and a coincident X-ray ($E_X = 0.030 \text{ MeV}$).
- 135 Xe will mostly β decay to an excited state of 135 Cs(0.250 MeV) which emits a γ -ray in coincidence.
- Solution Values for the minimum detectable concentrations for the radioxenons are $1-2 \text{ mBq/m}^3$.

```
1-2 events every 1000 seconds per m^3 of air!
```


A. Ringbom et al. Nucl. Instr. Meth., A 508 (2003) 542.

Assessing Risk

What should you stay awake worrying about at night?

Deaths	Cause	
in 2005*		
2,447,910	All causes	
853,188	Heart Disease	
45,043	Vehicle Accidents	
62,804	Influenza/Pneumonia	
31,769	Suicide	

Deaths	Cause
in 2005*	
17,694	Homicide
21,416	Poisoning
19,488	Falling
3,468	Drowning
3,144	Fire

*National Vital Statistics Reports, 56, no. 16, June 11, 2008.

Preventive Threat Reduction

- The US spends taxpayer monies to remove and reduce weapons to increase homeland security.
- The Nunn-Lugar programs in cooperation with Russia spend ≈\$1B each year dismantling and securing the Russian nuclear weapons complex and destroying chemical and biological weapons.
- Operation Sapphire in 1995 removed 1300 pounds of insecure, weapons-grade uranium from Kazakhstan.

Russian Missile Sub Dismantlement

- Removal in summer 2003 of about 90 pounds of weapons-grade uranium from Vinca Institute in Serbia (with help from Ted Turner).
- Destruction of Scud missiles in Bulgaria.

How Are We Doing?

Countries that have eliminated all weapons-usable fissile material.

Reproduced from M. Bunn, *Securing the Bomb 2010*, Harvard University and the Nuclear Threat Initiative, April 2010).

Moment Magnitude Measures Energy Released

Size	Description	Effects	Frequency
2.0-2.9	Minor	Micro earthquakes, generally not felt.	1,000 per day
3.0-3.9	Minor	Often felt, but rarely causes damage.	49,000 per year
4.0-4.9	Light	Noticeable shaking indoors. Significant damage unlikely.	6,200 per year
5.0-5.9	Moderate	Major regional damage to poorly con- structed buildings; slight damage to well- designed buildings.	800 per year
6.0-6.9	Strong	Destructive over 100 mi regions	120 per year
7.0-7.9	Major	Can cause serious damage over larger areas.	18 per year
8.0-8.9	Great	Can cause serious damage in areas sev- eral hundred kilometers across.	1 per year
9.0-9.9	Great	Devastating in areas several thousand kilometers across.	1 per 20 years
10.0+	Massive	Never recorded, widespread devastation across very large areas .	Unknown

Moment Tensor Analysis

- Assume a general model for the source (*i.e.*, double-couple model for an earthquake).
- Describe the seismic waves with a multipole expansion truncated after the first terms that do not violate conservation of linear and angular momentum; get a 3×3 tensor (the moment tensor) with six independent components.
- Extract eigenfunctions (*i.e.*, the principle axes) and eigenvalues.
- Characterize source in terms of the fraction of constant volume (shear) component T and the fraction of volume change component k.
- Plot on a scale where the probability of a source in a particular range of (T, k) is proportional to the area of the plot.

Looking for the Smoking Gun

Atmospheric gas is collected for many (6) hours and xenon extracted through a series of filters, absorbers, gas chromatograph, *etc*.

Looking for the Smoking Gun

Atmospheric gas is collected for many (6) hours and xenon extracted through a series of filters, absorbers, gas chromatograph, *etc*.

- Detection system uses $\beta \gamma$ coincidences or high-resolution γ detection.
- For $\beta \gamma$ method xenon is passed into the chamber of a hollow cylinder made of plastic scintillator inserted in a cylindrical hole inside a Nal crystal. Light produced by β and γ particles is detected with photomultiplier tubes and counted.

A. Ringbom *et al.* Nucl. Instr. Meth., A 508 (2003) 542.

One of several automated systems used by IMS.

Finding the Smoke - High-Resolution γ Method

- If the second s
- Less sensitive that $\beta \gamma$ spectrometry, but....
- Direct detection of all four radioxenons of interest can be made with high resolution.
- Robust technology well-suited to field work.
- Analysis uses standard tools.

