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Scientific Motivation of the EIC

Precision Study of the Gluon Distribution of the

Nucleon.

The Nucleon Spin Structure.

What are the properties of high-density

partonic matter?

A High-Luminosity, High-Energy, Electron-Ion-Collider, The Electron Ion Collider Working Group,

White Paper prepared for the NSAC Longe-Range Plan, April, 2007.
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Interferometry with Identical Particles

Bose-Einstein Correlations (Hanbury Brown and Twiss or HBT

effect) between two or more identical particles can be used to

explore space-time features of production mechanisms.

Intensity interferometry developed for astronomy in 1950’s to

measure angular size of stars.

Adopted by particle and nuclear physics since the 1960’s.

Many measurements in heavy

ion community through last 3

decades.

Can also use non-identical

particles!
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Interferometry with Identical Particles

The interference between two waves/particles establishes a
correlation between them

The correlation in momentum-energy space gives information about
position-time distributions

The correlation function can be defined as

R(Q12) =
P (Q12)

P0(Q12)

where Q12 =
√

−(p1 − p2)2, P (Q12) is
the two-particle density, and P0(Q12) is the
two-particle density in the absence of BEC.

The reference spectrum P0(Q12) is gen-
erated by mixing particles from different
events, Monte Carlo calculations, etc.
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Interferometry with Identical Particles

Theoretical calculation: Pions in sphere of radius R.

q = p1 − p2

C2(p1,p2) =
P2(p1,p2)
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Interferometry with Identical Particles

Two-pion correlations in 1.54 GeV/nucleon Ni+Ni Chacon et
al., Phys. Rev. C 43, 2670 (1991)

C2(~p1, ~p2) = 1 + |ρ(~q, q0)|2

where

q = p2 − p1 q0 = |E2 − E1|

and

ρ(~q, q0) =

Z Z

ei(~q·~x−q0t)ρ(~x, t)d3xdt

(the Fourier transform of ρ(~x, t)).
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Lisa, Pratt, Soltz, Wiedemann, Ann. Rev. Nucl. Part.
Sci.55:357-402,2005; M. Luzum, J. G. Cramer, G. A. Miller,
Phys. Rev. C78:054905,2008
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A(e, e′pp) for 3He, 4He, 12C, and 56Fe

A. Stavinsky et al. (CLAS Collaboration) Phys. Rev.
Lett.93:192301,2004
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SIDIS, charged particles, pions, DESY/Zeus

The measured Bose-Einstein correlation function,
R(Q12), together with the Gaussian and the expo-
nential fits. The error bars show the statistical un-
certainties.

Q12 =
q

−(p1 − p2)2

R(Q12) =
P (Q12)

P0(Q12)

R(Q12) = α (1 + βQ12)
“

1 + λe−r2Q2

12

”

R(Q12) = α (1 + βQ12)
“

1 + λe−rQ12

”

Physics Letters B 583 (2004) 231-246
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Data from ZEUS/DESY on kaons

http://arxiv.org/abs/0706.2538v1, Phys. Lett. B652:1-12, 2007
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CLAS preliminary data SIDIS, two positive pions
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Simulations of BECs at the EIC

Goals:

1. Will there be observable correla-
tions?

2. What can we learn?
- String tension effects?
- Fragmentation?

PL 169B,364 (1986).

e+e− from PEP4

Tools:

1. Pythia - event generator (T. Sjos-
trand et al. [hep-ph/0603175]).

2. Fragmentation models in Pythia - Lund model (B. Andersson,
Cambridge, 2005) and independent fragmentation.

3. Parameterization of BEC effect in Pythia:

R = 1 + λ exp(−(rQ12)
n) n = 1, 2
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Inputs to the Simulations

1. Study π+π+ correlations.

Large cross sections.

Compare with other
experiments.

2. Use ZEUS results for guidance
(Physics Letters B 583 (2004)
231-246).

3. r and λ constant with Q2.

4. R ≈ 0.93 fm,λ ≈ 0.87, expo-
nential form.

5. Lund model is starting point.

6. Explore effects of asymmetric
momentum distributions in inde-
pendent fragmentation.

7. Count rates - Rate = L × σ ≈ 1034 s−1cm−2 × 10−29cm2 = 105Hz.
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Results (1)

Consistency check of the simulation - ZEUS simulations.
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Our Pythia simulation underestimates the BECs.
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Results (2)

Consistency check of the simulation - EG2
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Much lower particle multiplicity at lower energies.
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Results (3)

Use ZEUS parameters at EIC kinematics.

Lund model Independent fragmentation
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Big (20%) Effect! Modest change.
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Explore LT Source Size Differences (1)

1. It is anticipated that the source will become elongated
in the direction of the initial parton (Physics Letters B
583 (2004) 231-246).

2. Different boson source sizes in the longitudinal (L) and
transverse (T) directions relative to the initial parton
direction.

3. Work in the Longitudinal Center-of-Mass System
(LCMS).

The LCMS is defined as the frame of reference in
which the sum of the longitudinal components of the
two particles momenta along the jet axis add to zero
(PL B421 (1998) 283-288).
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Explore LT Source Size Differences (2)

Effect of source size.
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Explore LT Source Size Differences (3)

Effect of source size.
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Explore LT Source Size Differences (4)

Use results from ZEUS for BEC parameters in LCMS.
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Lund Model Independent Fragmentation

Lund and default parameters for independent
fragmentation give similar results.
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Explore LT Source Size Differences (5)

Effect of Asymmetric Momentum Distribution using
Independent Fragmentation.
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BEC insensitive to asymmetries in L-T
momentum distributions.
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Explore LT Source Size Differences (6)

Effect of changing fragmentation cutoff parameter in Pythia.
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BEC insensitive to fragmentation cutoff.
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Conclusions and Questions

Conclusions

1. Two-pion correlation function independent of Q2 in EIC range (ZEUS and others).

2. We see a large (20%) correlation in our Pythia simulation at EIC kinematics.

3. Dramatic difference between longitudinal and transverse correlations in LCMS.

4. L-T correlation functions sensitive to source size and insensitive to to asymmetric
momentum distributions or fragmentation cutoffs.

5. The strong two-pion correlations observed in CLAS for deuterium, carbon, iron, and
lead targets are unaccounted for in our Pythia calculations (feature or bug?).

Questions:

1. Can we learn about the string tension, fragmentation, cold, nuclear densities??

2. Defend a program in measuring BECs?

3. What happens when you measure the same observable in a nucleus?

4. Theory input?

5. Where’s the nail?
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Additional slides
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ZEUS Results
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Interferometry with Identical Particles

High luminosity of CLAS12 will permit good statistics in
SIDIS HBT measurements

10X more rate, plus larger event multiplicities

Focusing spectrometers experiments?

Experience suggests that ultimate limit will be
systematic uncertainties - many subtle effects
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