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Abstract

We have measured the asymmetry A′

LT associated with the fifth structure func-
tion of the deuteron σLT ′ using the reaction 2H(~e, e′p)n in quasi-elastic kinematics
with CLAS. The hadronic model of nuclear physics is not complete in the GeV region
and the theoretical mixture of relativistic corrections, final-state interactions, meson-
exchange currents, and isobar configurations is unknown. These data provide a baseline
for conventional nuclear physics to meet so that deviations from the hadronic model
at higher Q2 can be attributed to quark-gluon effects with greater confidence. The
structure function was extracted by measuring the moments of the out-of-plane pro-
duction in CLAS. This analysis was performed on the E5 data set that covers the range
Q2 = 0.2−5.0 (GeV/c)2. It is part of a CLAS Approved Analysis entitled ‘Out-of-Plane
Measurements of the Structure Functions of the Deuteron’.
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1 Introduction

This CLAS Analysis Note presents the results of a measurement of the asymmetry A′

LT

associated with the fifth structure function σLT ′ of the 2H(~e, e′p)n reaction in quasi-elastic
(QE) kinematics. The motivation of the measurement is to study the transition from a
description of nuclei based on hadronic degrees of freedom to one based on quarks and
gluons. To quantitatively understand that transition requires a solid understanding of the
hadronic model to identify where its breakdown will occur. The structure functions are an
essential meeting ground of theory and experiment and this measurement of the so-called
‘fifth’ structure function extracts this little-known component of the deuteron in a model-
independent way.

Understanding the deuteron tests our ability to construct a ‘consistent and exact de-
scription’ of few-body nuclei (2H, 3H, 3He, 4He) [1]. For example, it is an open question
whether a single interaction or current operator can account for the attributes of all these
nuclei. Calculations using hadronic effects like meson-exchange currents (MEC), isobar con-
figurations (IC), and final-state interactions (FSI) are under development, but have yet to
be fully challenged by data in the GeV region [1, 2]. The influence of relativity is also being
studied [1, 2, 3, 4, 5]. Previous results at lower Q2 reveal the onset of many of these effects
so a complete, modern calculation is needed to compare with data across the full range of
Q2 to test and understand the hadronic model in this region. These issues were raised as
‘Key Questions’ at the Jefferson Laboratory PAC14 Few-Body Workshop [1].

Improvements in the hadronic model will enable us to clearly map out the transition
to quark-gluon degrees of freedom; an essential goal of nuclear physics [1, 6]. The basic idea
is that if we cannot describe observations with all of the pieces mentioned above, then we
would see genuine quark-gluon effects in the nucleus. Clearly, we cannot make that leap
without getting firm control of the calculations using the hadronic degrees of freedom. It is
expected the transition may occur in the GeV region or higher and some expect the region
1 (GeV/c)2 < Q2 < 6 (GeV/c)2 to be an ideal one for investigating this transition [2, 6, 7, 8].
The mixture of physics effects that influence the transition also depends on the transferred
energy. For quasi-elastic scattering that we study here, FSI and relativistic corrections are
important for the structure functions, but MEC and IC are less so [9].

In this CLAS Analysis Note we first present some necessary background defining the
asymmetry used as the main analysis tool and describe the context of other measurements
of the fifth structure function of the deuteron. We then describe the experiment and how
events were selected from the data set. Corrections to the analysis are discussed and then
the results are shown including uncertainties. An Appendix contains many details so we
could use the main text to focus on the physics.

2 Necessary Background

We now develop some of the necessary background for our discussion of the structure func-
tions. The fivefold differential cross section for the quasielastic 2H(~e, e′p)n reaction can be
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Figure 1: Kinematic quantities used in this analysis.

written as [10]

d5σ

dQ2dpmdφpqdΩedΩp

= σ± = c[ρLfL + ρT fT + ρLTfLT cosφpq+

ρTTfTT cos 2φpq + hρLT ′fLT ′ sin φpq] (1)

where the superscript on σ± refers to the helicity, φpq is the angle between the plane defined
by the incoming and outgoing electron momenta and the plane defined by the ejected proton
and neutron (see Figure 1), the ρi’s depend only on the electronic kinematics, fi are the
hadronic structure functions, and h is the helicity of the electron beam (h = ±1). The
constant c is

c =
αE ′

6π2EQ4
(2)

where α is the fine structure constant, E is the beam energy, E ′ is the scattered electron
energy, and Q2 is the square of the 4-momentum transfer. The kinematic quantities are
shown in Figure 1. For compactness we write the cross section as

d5σ

dQ2dpmdφpqdΩedΩp

= σL + σT + σLT cosφpq + σTT cos 2φpq + hσLT ′ sinφpq (3)

where the σi’s are the partial cross sections for each component. Consider the helicity
asymmetry [10]

Ah(Q
2, pm, φpq) =

σ+ − σ−

σ+ + σ−
(4)

where the superscripts refer to the helicity of the electron beam and pm is the missing
momentum defined as

~pm = ~q − ~pp (5)

where ~q is the momentum transfer and ~pp is the measured proton momentum. In the plane-
wave impulse approximation this missing momentum is the opposite of the initial momentum
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of the proton. The magnitude of pm grows with increasing θpq where θpq is the angle between
the momentum transfer ~q and the proton 3-momentum ~pp (see Figure 1). The relationship
between the two quantities is described in Ref. [11]. If we pick φpq = 90◦ the asymmetry
becomes (see Section 6.1 for more details)

Ah(Q
2, pm, φpq = 90◦) = Afa

LT ′ =
σ+

90 − σ−

90

σ+
90 + σ−

90

=
σLT ′

σL + σT − σTT

. (6)

where we call Afa

LT ′ the fixed-angle asymmetry. This form of the asymmetry is used in previous
experiments discussed below and is often called simply ALT ′ in the literature. However, we
have used a slightly different form of the helicity asymmetry that enables us to take full
advantage of the large acceptance of CLAS. It is the following (see Section 6.1 for more
details).

A′

LT =
σLT ′

σL + σT

(7)

The difference between Equations 6 and 7 is only in the subtraction of σTT in the denominator
of Equation 6 which is usually small. Within the uncertainties in our measurement we will
show in Section 6.3.2 the two are identical.

3 Previous Measurements

Existing measurements of σLT ′ and its associated amplitude fLT ′ are sparse. For quasi-elastic
kinematics they have only been made at Q2 = 0.22 (GeV/c)2 and Q2 = 0.13 (GeV/c)2 at
Bates [9, 12, 13]. An example of the results is shown in Figure 2. The bottom panel shows
the dependence of the amplitude fLT ′ on θpq (see Figure 1) on the bottom scale. The angle
θpq is between the transferred 3-momentum ~q and ~pp the ejected proton momentum. The
top scale shows the magnitude of the missing momentum ~pm. The middle panel shows the
results for the asymmetry which is equivalent to the fixed-angle asymmetry Afa

LT ′ in Equation
6 and labeled A′

LT in the figure. The top panel shows Σ which is is the non-beam-helicity-
dependent part of the cross section. That work demonstrated the feasibility of out-of-plane
measurements and the calculations show that relativity already plays a significant role even
at this low value of Q2 [5]. The effect of final-state interactions is dramatic and can be seen
in the bottom and middle panels of Figure 2. The dashed lines at fLT ′ = 0 and ALT ′ = 0
are from a Plane-Wave Born Approximation calculation which does not include FSI. In
general, Afa

LT ′ and A′

LT are non-zero only in the presence of final-state interactions. The
other calculation (solid curve) does include FSI and is significantly different from zero in
the bottom and middle panels of Figure 2. Unfortunately, the large uncertainties of the
measurements prevent one from distinguishing among different phenomena like relativistic
corrections, MEC, FSI, and IC or between different potentials. The success of the Bates
work at low Q2 is an invitation to extend the measurements with CLAS.
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Figure 2: Measurements of fLT ′ and its associated cross section and asymmetry from Refer-
ence [9] at Q2 = 0.13 (GeV/c)2.

4 Experimental Details

4.1 Data Sets

We are investigating the 2H(~e, e′p)n reaction by detecting the scattered electron and the
ejected proton with CLAS and using missing mass to identify the neutron. The data were
collected during the E5 run period (spring, 2000) and consist of runs 24020–24588 at two
beam energies: 2.56 GeV and 4.23 GeV. About 2.3 billion triggers were collected under three
sets of run conditions shown in Table 1 where normal polarity refers to inbending electrons
and reversed polarity is for outbending electrons. We focus most of our attention on the two

Data Set Beam Energy (GeV) Torus Current (A) Polarity
1 4.23 3375 normal
2 2.56 2250 normal
3 2.56 2250 reversed

Table 1: Running conditions for E5.

2.6-GeV data sets because the statistics for the helicity asymmetry are limited at 4.2 GeV.
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4.2 Dual-Cell Target

The target for each data set was a dual, co-linear, liquid hydrogen-deuterium cell which
enabled us to collect calibration data simultaneously with production data [14]. We used the
proton target to check the beam helicity sign, measure the beam charge asymmetry, and to
determine momentum corrections. The deuterium cell was 5 cm long and located upstream
from the nominal CLAS target position. The hydrogen cell was also 5 cm long and centered
on the nominal CLAS target position. There were 4.7 cm between the cells. Figure 3 is an
engineering drawing of the target. The cells were constructed of aluminum with thin (20

Figure 3: An engineering drawing of the E5 dual-cell cryotarget.

micron) windows on each end. Figure 4 shows the z-component of the electron (black) and
proton (red) vertex positions and the clear separation of the deuterium and hydrogen cells.

5 Event Selection of 2H(~e, e′p)n

5.1 Event Reconstruction

The reconstruction of the E5 data is described in [14]. We summarize that material here. The
analysis of the E5 data was performed with a modified version of the CLAS reconstruction
software, derived from the ‘release-4-3’ code. The detectors were calibrated (EC timing and
energy, SC timing and energy, DC drift time to drift distance conversion) using the standard
packages. Because of the unique, dual-cell target, a set of special ‘road files’ generated for the
E5 target and magnetic field configurations was used as an input template to the RECSIS
event reconstruction code. RECSIS returned particle charge, momentum, and position values
for charged particles in the drift chamber. Details of the tracking code can be found in [15].
Information from other detector packages, such as hit locations and times in the EC and SC,
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Figure 4: Position of the electron and proton vertex along the beamline for the e5 target for
ep events.

were matched to the DC tracks by the SEB package. The reconstructed events were written
to BOS files, along with some of the raw event information, to the JLab tape silo.

5.2 Run Selection

Run files were selected for analysis by examining the ratio of protons to electrons originating
in the hydrogen target cell, and the ratio of time-based tracks to hit-based tracks. The cuts
were selected to remove files in which either of these quantities differed too much from the
average. See [14]. Figure 5 shows a sample of those two ratios for the 2.6 GeV, normal-
torus-polarity data sets from Ref [14].

5.3 Electron Selection

Electrons were identified as negative tracks from the EVNT bank (produced by SEB) in co-
incidence with hits in the Cerenkov counters, the TOF scintillators, and the electromagnetic
calorimeter. A cut on the number of photo-electrons of greater than 2.5 from the Cerenkov
counters was imposed to reduce the number of negative pions mis-identified as electrons
[16]. The deuterium target was selected by requiring the electron vertex vz lie in the range
−11.5 cm < vz < −8.0 cm. See Figure 4. A summary of the criteria for identifying electrons
is shown in Table 2. More details can be found below and in [14].

We have studied the 2H(~e, e′p)n reaction in quasielastic kinematics. To select those
kinematics for each CLAS torus polarity setting we first calculated Wn, the mass of the
residual hadron for the 2H(~e, e′p)n reaction. We calculate Wn using

Wn =
√

M2
d − 2MdEp +m2

p + 2(Md − Ep)ν −Q2 + 2|~pp||~q| cos θpq (8)

where Md is the deuteron mass, mp is the proton mass, pp is the magnitude of the proton
3-momentum, Ep =

√

p2p +m2
p is the proton energy, ν = E − E ′ is the energy transfer
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Figure 5: The ratio of the number of protons to the number of electrons for events originating
in the hydrogen target versus run number is shown in the left-hand-side panel. The data are
from the 2.6-GeV normal-torus-polarity data set. The cuts applied are shown in red. The
ratio of the number of time-based tracks to the number of hit-based tracks versus run number
is shown in the right-hand-side panel. The data are from the 2.6-GeV, normal-torus-polarity
data set. The cuts applied are shown in red. Both plots are from Ref [14].

Description of cut Parameters

Good CC, EC, SC, status cc > 0, ec > 0, sc > 0, stat > 0

Energy-momentum match 0.325pe − 0.13 < Etotal < 0.325pe + 0.06

Reject pions ec ei ≥ 0.100 and nphe ≥ 25

EC track coordinates fiducial |dc ysc| ≤ 165(dc xsc− 80)/280

EC fiducial No tracks within 10 cm of the end of a strip

Egiyan threshold cut pe ≥ (214 + 2.47 · ec threshold) · 0.001

Quasi-elastic scattering Wn ≤ 1.02 GeV

Select deuterium target −11.5 cm < vz < −8.0 cm

Table 2: Electron Identification Parameters.

where E is the beam energy and E ′ is the scattered electron energy, Q2 = 4EE ′ sin2 θ
2

is the square of the electron 4-momentum transfer and θ is the electron scattering angle,
q = |~q| =

√

Q2 + ν2 is the magnitude of the electron 3-momentum transfer, and θpq is the
angle between the proton 3-momentum ~pp and the 3-momentum transfer ~q. The distributions
for the two sets of E5 running conditions at E = 2.6 GeV are shown in Figure 6. Both panels
show a sharp peak at the neutron mass and higher mass inelastic events.

We now discuss choosing the position of the cut on the Wn spectrum to select QE
events. If we measured Wn with perfect resolution we would see a spike at the neutron
mass (mn = 0.94 GeV) with no other events around it until the pion threshold is reached
(mthreshold = mn + mπ = 1.08 GeV) which would mark the low-mass limit of a broad
Nπ distribution. With a real detector, that distribution is smeared by the experimental
resolution so some of the Nπ events could contaminate the region below the pion threshold.
To remove those events we first determine the mass resolution of the Wn spectrum by fitting
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Figure 6: Spectra of Wn for the normal (left-hand panel) and reversed (right-hand panel)
polarity data sets at 2.6 GeV. The red arrow marks the position of the cut used to eliminate
background events from pion production and higher mass reactions.

the neutron peak for each data set. We obtained nearly the same result for the resolution σ
for each data set (σ = 19 MeV for the 2.6-GeV, reversed-torus-field data and σ = 18 MeV
for the 2.6-GeV, normal-torus-field data set). To form the cut we subtracted 3σ from the
pion threshold and call events with Wn below this value quasielastic. The position of the
cut for the two data sets is shown as the red arrow in each panel in Figure 6.

We generated fiducial cuts for the electron sample to restrict the acceptance to regions
where it is expected to be well-behaved. The azimuthal part of the electron solid angle
is determined by the range of the electron’s azimuthal angle φe in each sector. These φe

limits are, in turn, defined by the drop in efficiency in the optical collection of the Cerenkov
detector mirrors. See Figure 7 for an example of the φe dependence. To focus our analy-
sis on the regions of uniform proton acceptance we have largely followed the technique of
D.Protopopescu, et al. in [17] and summarize the method in Appendix A. The results are
shown in Appendix B. One of the benefits of the procedure is to make the fiducial cuts
smoothly varying functions of particle momentum and position and reduce the chances of
experimental artifacts appearing in the analysis. An example of the final CLAS electron
acceptance is shown in Figure 8 for the 2.6-GeV data for both torus polarity settings.

Radiative effects create a long tail so the scattered electron momentum is less than
expected for a QE event at that scattering angle. To show this feature consider Figure 9.
It shows the scattered electron momentum pe versus scattering angle θe for QE events and
reversed torus polarity. The black curve is for electrons elastically scattered from a proton.
There is a large ridge in the data which follows the trend of this curve (broadened by the
Fermi motion) and a long ‘tail’ of events that lie at pe below what is expected for QE events.
We will correct for events in the ridge lost to radiation (see Section 6.2.4). To exclude the tail,
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Figure 7: Electron azimuthal dependence for sector 3, 2.6-GeV, normal polarity run. The
electron momentum and polar angle θe are given on each plot. The black curve is the result
a fit to a trapezoidal function described in Appendix A.
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Figure 8: CLAS acceptance for electrons at E = 2.56 GeV and normal torus polarity (left-
hand panel) with fiducial cuts turned on (blue points) and off (red points). The right-hand
panel shows the same result for the E = 2.56 GeV, reversed torus polarity data.

we first calculate the scattered electron momentum pcalce using only the scattered electron
angle from the CLAS reconstruction and, second, take the difference between this calculated
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Figure 9: Scattered electron momentum pe versus scattering angle θe for QE events and
reversed torus polarity. The black curve shows the kinematics for elastic scattering off the
proton.

value and the one from the reconstruction ∆pe = pcalce −pe. The ∆pe distributions are shown
for both data sets in Figure 10. The right-hand panel has the distribution for the reversed
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Figure 10: Distribution of ∆pe for normal (left) and reversed (right) polarity data for QE
events (Wn < 1.02 GeV) and electron/proton fiducial cuts turned on.
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torus data. There is a peak centered at zero as expected and a large tail that dominates
the spectrum above ∆pe > 0.15 GeV. The 2.6-GeV, normal polarity data (left-hand panel)
shows the same behavior. Based on the results in Figure 10 we require ∆pe < 0.15 GeV to
exclude events with large radiative effects.

To study the impact of this last cut we investigate the Bjorken xBj distribution. Figure
11 shows the effect of the QE cut on Wn for each 2.6-GeV data set. The black histograms

Bjx
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Figure 11: Comparison of Bjorken x with Wn < 1.02 GeV cut off (black) and on (red) and
with fiducial cuts on for the 2.6-GeV, normal-torus-polarity field (left-hand panel) and the
2.6-GeV, reversed-torus-polarity field (right-hand panel). The green histogram is the result
of adding the ∆pe < 0.15 GeV/c cut to the previous ones.

show the xBj distribution for the 2H(e, e′p)X reaction with electron and proton fiducial cuts
turned on. There is a clear QE peak in each panel at xBj ≈ 1 (obscured by the green
histograms that we discuss below) and a large inelastic contribution at lower xBj . Turning
on the quasielastic requirement that Wn < 1.02 GeV generates the red histograms (also
partially obscured by the green ones). The inelastic part of the spectrum is drastically
reduced and the distribution is roughly symmetric about one except for a shoulder at low
xBj in the 2.6-GeV, reversed torus polarity data (right-hand panel). When we apply the ∆pe
cut to the distribution of Bjorken xBj we obtain the green histograms shown in Fig 11. In
the right-hand panel with the reversed polarity data, the shoulder has disappeared while the
data around the peak near xBj = 1 are unchanged. The same effect is seen for the normal
polarity data in the left-hand panel. The low-xBj events have gone away while the regions
near the peak and above are not affected. The impact of the ∆pe cut on A′

LT is limited and
we study that below when we turn to the systematic uncertainty on the cut.

We also investigated the impact of another kinematic constraint on the residual mass
W left behind by the scattered electron. This constraint was motivated by past experiments
at Bates measuring the asymmetry Afa

LT ′ (recall Section 2) over a narrow range in Q2 and
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energy transfer ν [9]. The kinematics in Ref [9] correspond to a bin ∆ν = 17 MeV centered
where the residual mass W is equal to the nucleon mass. Our data cover a much wider range
in W as shown in Figure 12. To explore any differences with our results in the region close
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Figure 12: Distributions of the residual mass W for events that pass the cuts on Wn and
∆pe for the reversed (left-hand side) and normal (right-hand side) torus polarity data sets.

to the nucleon mass we applied a narrow cut near the top of the distributions in Figure 12.
We could not use the same small width used in Ref [9] because the statistics were poor so
we used a wider cut. We selected the limits of the cut by first fitting the central region of
the W distribution with a Gaussian (blue curves in Figure 12) and extracting the width σ.
We then placed the cut at ±σ relative to the average value of the fit. This cut was then
added to the previous electron selection criteria described above and shown in Table 2. We
discuss the impact of this cut in Sections 5.5 and in more detail in 6.5.

5.4 Proton Selection

Proton candidates were selected from positively-charged tracks in the EVNT bank in co-
incidence with a good electron. An additional mass cut 0.90 GeV < mp < 1.05 GeV was
required where mp is the proton mass derived from tracking and two more cuts were applied
to the electron and proton track vertices. The proton vertex vz(p) was required to lie in the
same range as the electron −11.5 cm < vz(p) < −8.0 cm (see Figure 4) and the electron and
proton vertices were required to be within 1.5 cm of one another |vz(e)− vz(p)| ≤ 1.5 cm.

Proton fiducial cuts are necessary to eliminate e − p coincidences where the proton is
in a region near the cryostat holding the coils used to generate the CLAS magnetic field.
The field in these regions is sensitive to the distance from the coils and not as well-known as
the field in the more central region between the coils. We have largely followed the method
described in [18] which is analogous to the technique used to determine the electron fiducials.
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The details of the method are described in Appendix C and results are shown in Appendix
D. The final hadron acceptance is shown in Figures 13 and 14. A summary of the criteria

Figure 13: Hadron acceptance is shown with hadron fiducial cuts on (right-hand panel) and
off (left-hand panel) for 2.6-GeV, normal-torus-polarity data set.

for identifying protons is shown in Table 3.

Description of cut Parameters

Proton mass (mp) 0.90 GeV < mp < 1.05 GeV

Select deuterium target (cm) −11.5 cm < vz < −8.0 cm

e− p vertex separation (cm) ≤ 1.5 cm

Missing mass cut (normal polarity) 0.84 GeV2 < MM2 < 0.92 GeV2

Missing mass cut (reversed polarity) 0.83 GeV2 < MM2 < 0.91 GeV2

Table 3: Hadron Identification Parameters.

5.5 Preliminary Results

We present here our preliminary results for A′

LT for data sets 2-3 from Table 1. We excluded
data set 1 because the statistics for A′

LT are poor (see Figure 23 in Section 6.2.5 below).
Figure 15 shows A′

LT defined in Equation 7 for the 2.6-GeV, normal-torus-polarity data
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Figure 14: Hadron acceptance is shown with hadron fiducial cuts on (left-hand panel) and
off (right-hand panel) for 2.6-GeV, reversed-torus-polarity data set.

(left-hand panel) and the reversed-torus-polarity (right-hand panel). The uncertainties on
each point are statistical ones only. The details of extracting A′

LT are discussed in Sections
6.1-6.2.5. The right-hand panel of Figure 15 shows a clear, statistically significant dip in
A′

LT centered at pm ≈ 0.22 GeV/c. The reversed-torus-polarity data cover a lower Q2 than
the normal torus polarity data. The left-hand panel shows evidence of the same dip in A′

LT ,
but with lower statistics.

In Figure 16 we show A′

LT with the additional cut to select events with residual mass
W near the nuclear mass (see Section 5.3). For the reversed torus polarity data (right-hand
panel) there is little difference with or without this narrow W cut. Compare the right-hand
panels in Figures 15 and 16. For the normal torus polarity data (left-hand panels in Figures
15 and 16) there is a significant change. The dip in A′

LT has grown by more than a factor of
three. We will return to these differences in Section 6.5.

6 Experiment Results

6.1 Extracting Asymmetries

In this section we discuss in more detail the method for extracting the asymmetry A′

LT

discussed in the Section 1. The method we use is based on measuring the weighted moments
of the data to take full advantage of the large acceptance of CLAS. Recall that we wrote the
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Figure 15: Preliminary results for helicity asymmetry A′

LT for the 2H(ẽ, e′p)n reaction at
2.6 GeV with normal-polarity torus field (left-hand panel) and reversed-polarity torus field
(right-hand panel).

fivefold differential cross section for the quasielastic 2H(~e, e′p)n reaction as

d5σ

dQ2dpmdφpqdΩedΩp

= σ± = σL + σT + σLT cos φpq + σTT cos 2φpq + hσLT ′ sin φpq (9)

where the superscript on σ± refers to the helicity, φpq is defined in Figure 1, and the σi’s
are the partial cross sections for each component. First, we want to make contact with the
form of the asymmetry used in Ref [9, 13, 12, 19] and shown in Figure 2. Recall the helicity
asymmetry.

Ah(Q
2, pm, φpq) =

σ+ − σ−

σ+ + σ−
(10)

Substituting Equation 9 into Equation 10 one obtains the following result.

Ah(Q
2, pm, φpq) =

σLT ′ sin φpq

σL + σT + σLT cosφpq + σTT cos 2φpq

(11)

If we then pick φpq = 90◦ we obtain the fixed angle asymmetry discussed in Section 2.

Ah(Q
2, pm, φpq = 90◦) = Afa

LT ′ =
σ+

90 − σ−

90

σ+

90 + σ−

90

=
σLT ′

σL + σT − σTT

. (12)

This is the form of the asymmetry used in Ref [9, 13, 12, 19] and shown as ALT ′ in Figure
2. It depends on measurements at a few select angles. With CLAS we want to take full
advantage of the large acceptance so we take a different approach.
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Figure 16: Helicity asymmetry A′

LT with the cut on the residual mass W applied in addition
to the cuts discussed in Section 5.3.

Consider taking the sinφpq moment of the cross section for the two different choices of
helicity.

〈sinφpq〉± =

∫ 2π

0
σ± sin φpqdφpq
∫ 2π

0
σ±dφpq

(13)

=

∫ 2π

0
(σL + σT + σLT cos φpq + σTT cos 2φpq + hσLT ′ sinφpq) sinφpqdφpq
∫

2π

0
(σL + σT + σLT cos φpq + σTT cos 2φpq + hσLT ′ sinφpq)dφpq

(14)

By the orthogonality of sines and cosines all of the terms disappear except for the σLT ′ term
in the numerator and the φpq-independent terms in the denominator. The result is

〈sinφpq〉± =
±σLT ′

2(σL + σT )
=

A′

LT

2
≈ ±

Afa
LT ′

2
(15)

where we have used h = ±1, and made the approximation that σTT is small compared to σL

or σT as has been observed [12, 20, 21]. We now use the definition of the asymmetry A′

LT in
Equation 7 where the denominator differs from the one in Refs [9, 13, 12, 19] (see Equation
6) by neglecting the additional σTT term. For practical purposes as we will discuss later,
there is no significant difference between the two definitions because σTT is small relative
the σL and σT .

We now present a useful feature of 〈sinφpq〉
± that can be exploited to reduce acceptance

effects. In Equation 15, σLT ′ depends on Q2, pm or θpq, and one expects to see behavior like
that shown in Figure 17 below. The curve for one helicity is the opposite of the curve for
the other helicity as a function of pm. However, acceptance effects can distort the expected
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Figure 17: Schematic drawing showing the possible results for 〈sinφpq〉
± with no acceptance

effects.

distributions of Equation 15 if the CLAS acceptance has a component that varies as sin φpq.
In such a case this experimental artifact will survive the integration in Equation 14 when it
is multiplying the constant portion of the cross section (σL and σT terms in Equation 14).
Such an acceptance effect is additive and shifts 〈sinφpq〉± up or down, so

〈sinφpq〉± = ±
σLT ′

2(σL + σT )
+ α (16)

where α is the additive acceptance correction. See Appendix E for more details. If one has
measured this sin φpq moment for each helicity then the results can be combined so

〈sinφpq〉+ − 〈sinφpq〉− =
σLT ′

σL + σT

= A′

LT (17)

and
〈sinφpq〉+ + 〈sinφpq〉−

2
= α . (18)

The asymmetry A′

LT can be extracted with reduced sensitivity to acceptance effects and the
sinφpq-dependent acceptance effects have been measured from the data. This technique has
been used by others for the p(~e, e′π+)n and p(~e, e′p)π0 reactions [22, 23].

Finally, to extract A′

LT we will use the sinφpq-weighted moments of the data corrected
for the beam polarization Pe and beam charge asymmetry AQ so

A′

LT =
1

PeAQ

(

〈sinφpq〉
m
+ − 〈sinφpq〉

m
−

)

(19)

and 〈sinφpq〉± is defined by Equation 13 and subject to the cuts described in Section 5.
To determine 〈sinφpq〉± from the data for a given bin in Q2 consider Equation 13. The

denominator is proportional to the number of events one observes and the numerator is
proportional to the sum of all the values of sinφpq. In other words,

〈sinφpq〉± =
1

N±

N±
∑

i=1

sinφi (20)
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Sector Uncorrected (GeV2) Corrected(Lachniet) (GeV2)
〈W 2〉 ∆(W 2) 〈W 2〉 ∆(W 2)

1 0.866 0.023 0.879 0.028
2 0.853 0.027 0.875 0.032
3 0.829 0.043 0.866 0.018
4 0.860 0.027 0.877 0.027
5 0.861 0.025 0.877 0.024
6 0.864 0.025 0.876 0.029

Average 0.855 0.029 0.875 0.027

Table 4: Effect of momentum corrections on the average value and width of W 2 peak for ep
elastic scattering for the 2.6-GeV, reversed-torus-polarity data.

where the sum is over the φpq distribution of the data, i’s refer to individual events, and N±

refers to the number of events of each helicity.

6.2 Corrections

6.2.1 Momentum Corrections

Misalignments of the CLAS drift chambers in each sector and uncertainties in the magnetic
field produced by the CLAS torus can lead to inaccuracies in measuring the momentum
of charged particles. To correct for these inaccuracies, we used the method described by
J.Lachniet in Ref [14] and pioneered by V. Burkert. This technique relies on elastic scattering
from the proton in the E5, dual target. For elastically scattered electrons we determine θe
for the electron and calculate W 2, the square of the mass of the residual object which is a
proton here. The difference between W 2 and the square of the proton mass is minimized to
determine a correction factor to the electron momentum as a function of the electron θe and
φe and for each data set.

The effect of the momentum corrections for the 2.6-GeV, reversed-torus-polarity data
on the centroid and width of the proton peak in the W 2 spectrum is shown in Table 4
sector by sector. The first feature of Table 4 to notice is the E5 data are well calibrated to
start. The uncorrected proton peak is, on average, 3% below the expected value. Applying
the momentum corrections, the proton peak moves to 0.6% below the expected value. The
Lachniet method reduces the width of the proton peak by 7%.

The effect of the momentum corrections on the 2.6-GeV, normal-torus-polarity data
on the centroid and width of the proton peak in the W 2 spectrum is shown in Table 5.
Again, the E5 data is well calibrated; the uncorrected proton peak is only about 1% below
the expected value. The Lachniet method improves the agreement with the proton mass to
0.2% and reduces the width of the distribution by about 18%.

For completeness we show the results for the 4.2-GeV data set in Table 6. As we show
in Figure 23, we found the statistical uncertainty on the fifth structure function asymmetry
ALT ′ is poor. The E5 data is again well calibrated; the uncorrected proton peak is only
about 2% below the expected value. The Lachniet method improves the agreement with the
proton mass to 0.8% and reduces the width of the distribution by 25%.
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Sector Uncorrected (GeV2) Corrected(Lachniet) (GeV2)
〈W 2〉 ∆(W 2) 〈W 2〉 ∆(W 2)

1 0.870 0.034 0.879 0.028
2 0.839 0.045 0.877 0.027
3 0.887 0.033 0.881 0.028
4 0.872 0.030 0.879 0.028
5 0.874 0.031 0.879 0.029
6 0.889 0.029 0.881 0.030

Average 0.871 0.034 0.879 0.028

Table 5: Effect of momentum corrections on the average value and width of W 2 peak for ep
elastic scattering for the 2.6-GeV, normal-torus-polarity data.

Sector Uncorrected (GeV2) Corrected(Lachniet) (GeV2)
〈W 2〉 ∆(W 2) 〈W 2〉 ∆(W 2)

1 0.849 0.048 0.874 0.033
2 0.832 0.053 0.865 0.033
3 0.893 0.037 0.877 0.034
4 0.858 0.041 0.873 0.030
5 0.864 0.042 0.872 0.030
6 0.885 0.035 0.875 0.031

Average 0.863 0.043 0.873 0.032

Table 6: Effect of momentum corrections on the average value and width of W 2 peak for ep
elastic scattering for the 4.2-GeV, normal-torus-polarity data.

To conclude, we find the E5 data set is well calibrated at the start. The Lachniet method
reduces the discrepancy with the proton mass in the W 2 spectrum from 1-3% depending on
which data set is used down to 0.8% or less. The width of the proton peak in the W 2

distribution is reduced by 7-25%.

6.2.2 Beam Charge Asymmetry

To measure the helicity-dependent charge asymmetry of the electron beam we used the ratio
of inclusive, elastic ep scattering from the E5 proton target to measure the quantity

AQ =
N+

N−
(21)

where N± is the number of elastic scattering events from the proton target for each helicity.
The inclusive cross section has no helicity dependence and is more reliable than the Faraday
cup readings [24]. All electron selection cuts were applied. We selected elastic events by
requiring that 0.89 GeV < W < 0.99 GeV and took the ratio of the results for the different
beam helicity states. The results are shown in Table 7. The half-wave plate which determines
the beam helicity was fixed during the E5 run period and, as expected, no shifts were observed
in the helicity during the run.
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Data set AQ

2.6-GeV, reversed torus polarity 0.9936± 0.0007
2.6-GeV, normal torus polarity 0.9954± 0.0007
4.2-GeV, normal torus polarity 0.9987± 0.0009

Table 7: Beam charge asymmetries for different helicity states for the E4 data set.
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Figure 18: Comparison of helicity asymmetry for p(~e, e′p)π0 measured previously in CLAS
(left-hand panel) by Joo and Smith ([23]) and during the E5 run (right-hand panel)

6.2.3 Beam Polarization

The beam polarization was monitored during the E5 run using the Hall B Moeller polarime-
ter. The polarization is measured by observing asymmetries in the yields of beam electrons
scattered from electrons in a polarized iron target with polarization components parallel and
anti-parallel to the beam direction. This method was used seven times during the E5 run
and an average polarization Pe = 0.736± 0.017 was obtained.

To check the sign of the beam helicity we extracted the helicity asymmetry A′

LT from
the p(~e, e′p)π0 reaction from the proton target. This reaction has a large asymmetry and
has been measured in CLAS [23] so it serves as a clear test of understanding of the sign of
the helicity. The results are shown in Figure 18. Our results agree with the ones from Joo
and Smith in sign and magnitude [23].

6.2.4 Radiative Corrections

The measurements of the 2H(~e, e′p)n reaction in this analysis are subject to radiative correc-
tions. We are using a version of the program EXCLURAD written by Afanasev, et al. and
modified for the 2H(~e, e′p)n reaction to perform those calculations [25]. This code applies a
more sophisticated method than the usual approach of Mo and Tsai or Schwinger and takes
into account the exclusive nature of our measurements [26, 27]. This work is described in
Ref [28, 29] and in Appendix F. It was expected that the difference between the polarized
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Figure 19: Ratio of polarized to unpolarized radiative correction at Q2 = 1.7 GeV2 calculated
with EXCLURAD.

and unpolarized radiative corrections (RC) would be small (RCpol/RCunpol ≈ 1) so that in
the ratio used to extract A′

LT there would be little difference and the correction could be
ignored. This was observed in the analysis of the Gn

M experiment using the same data [30].
However, in this case that is not completely true in certain kinematic regions. Figure 19
shows the ratio RCpol/RCunpol for Q

2 = 1.7 GeV2. At cos θpq ≈ 1 and φpq close to 180◦ the
difference between the two RCs is almost a factor of two. Even when averaging these ratios
over φpq we find differences of the order of 4-8% as shown in Figure 20. Because of these
differences we corrected A′

LT for radiative effects.
The radiative corrections were performed in the following way (1) Radiative corrections

were calculated for polarized and unpolarized events as a function of cos θpq and φpq with EX-
CLURAD at the following values of Q2: 0.2, 0.5, 0.8, 1.1, 1.4, 1.7 (GeV2). These calculations
cover the full data range for the 2.6−GeV data sets (see right-hand panel of Fig. 23 below)
where there is a significant cross section. (2) The dependence on cos θpq was converted to
pm using the method described in Ref. [31]. (3) These pm − φpq surfaces were stored in two,
three-dimensional histograms (polarized and unpolarized) in our ROOT analysis code. (4)
We applied each correction as a weight on an event-by-event basis for a given Q2, pm, and
φpq when we incremented the analysis histograms used to extract the helicity asymmetry.
This weight was the inverse of the correction calculated by EXCLURAD and the values
of the corrections were interpolated between the Q2 points in the histograms. The polar-
ized correction was applied in the histogram used to extract the numerator in Equation 20.
The unpolarized correction was applied to the histogram used to extract the denominator in
Equation 20. The effect of the correction on A′

LT for the normal-torus-polarity data is shown
in the left-hand panel of Figure 21 which displays the asymmetry with (red) and without
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Figure 20: Radiative correction for A′

LT averaged over φpq for different values of Q2. A full
set of plots for all Q2 are in Appendix G.

(black) the correction in the left-hand panel. The effect is much smaller than the statistical
uncertainty. In the right-hand panel of Figure 21 the difference between the corrected and
uncorrected asymmetries is shown.

The same corrections were applied to the 2.6-GeV, reversed-torus-polarity data. The
left-hand panel of Figure 22 shows the helicity asymmetry with (red) and without (black)
the radiative correction applied. The difference between the two asymmetries in shown in
the right-hand panel of Figure 22. The effect of the radiative correction turns out to be small
in the ratio.

6.2.5 Results for Asymmetries

In Fig 23 we show our results for the asymmetry ALT ′ for all three sets of running conditions
from the E5 running period. The data are integrated over the full Q2 range for each set
of running conditions to get adequate statistics so we have included the Q2 distribution in
parallel with the asymmetry for each data set. The 2.6-GeV, reversed torus field data show
a very clear dip to A′

LT ≈ −0.025 at pm = 0.23 GeV/c followed by a rise back to zero at
larger missing momentum. The same general features are seen in the 2.6-GeV, normal torus
field data at higher Q2 with larger statistical uncertainties. The 4.2-GeV has large statistical
uncertainties over most of the pm range (note the change of scale) and so there are few
conclusions to be drawn from these data.

In Figure 24 we show our results for the background asymmetry α defined in Equation
18. The background asymmetries are about the same magnitude as the features in the
ALT ′ distributions which emphasizes the importance of the use of the difference between the
asymmetries extracted from the opposite helicities to eliminate this background.
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data.
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Figure 23: The left-hand column shows the results for A′

LT for the 2.6-GeV, reversed torus
polarity data (top panel), the 2.6-GeV, normal torus polarity data (middle panel), and the
4.2-GeV, normal torus polarity data (bottom panel). The right-hand column shows the Q2

spectrum for each data set. The asymmetries were summed over all Q2. The uncertainties
are statistical only.

6.3 Consistency Checks of the Analysis

We now present the results of a series of consistency checks of our results to test our analysis
algorithms.

6.3.1 Asymmetry at pm ≈ 0

The first test is the behavior of A′

LT at small missing momentum pm or small θpq. We
expect the asymmetry to go to zero in this region. To understand this recall the helicity
asymmetry Ah(Q

2, pm, φpq) in Equation 11. For fixed Q2, W 2, and pm, the only kinematic
dependence is on sin φpq (the φpq-dependent parts in the denominator are small compared
to the constant ones) and the asymmetry will disappear if one averages over all φpq. Now
consider Ah(Q

2, pm, φpq) at small pm. The sinusoidal dependence is compressed into a small
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Figure 24: The background asymmetry α for the 2.6-GeV, reversed torus polarity data
(top panel), the 2.6-GeV, normal torus polarity data (middle panel), and the 4.2-GeV,
normal torus polarity data (bottom panel). The asymmetries were summed over all Q2. The
uncertainties are statistical only.

cone around the 3-momentum transfer ~q. In the limit of small pm and the finite resolution
of our detector, we will be averaging over the entire sinφpq part which will go to zero.
The amplitude of Ah(Q

2, pm, φpq) is A′

LT as long as the σLT and σTT components in the
denominator of Equation 11 are small relative to σL and σT (we show this later). In addition,
since we are taking the difference between 〈sinφpq〉 for different beam helicities, the low pm
behavior is also a test of the accuracy of the beam charge asymmetry.

Our data are consistent with this behavior within the statistical uncertainty. See Figure
23 and focus on the first bin in each distribution of A′

LT (left-hand column). In Table 8 we list
the results in that first bin. The results overlap with zero within the uncertainties except the
2.6-GeV, normal torus polarity result which is about two standard deviations low. To study
this issue more carefully we examined A′

LT in finer steps at small pm for the 2.6-GeV data.
The results for the normal-torus-polarity data are shown in the left-hand panel of Figure
25. At the smallest pm, we have limited statistics, but the small pm behavior is consistent
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Data Set A′

LT

2.6 GeV, reversed polarity 0.0016± 0.0017
2.6 GeV, normal polarity −0.0068± 0.0030
4.2 GeV, normal polarity −0.003± 0.019

Table 8: Asymmetry in the first pm bin for each data set. In each case this bin covers the
range pm = 0.0− 0.05 GeV.
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Figure 25: Helicity asymmetry for the 2.6-GeV, normal (left-hand panel) and reversed (right-
hand panel) torus polarity data at small pm where the asymmetry is expected to go to zero.

with zero within the experimental uncertainties. The average of the first three points in the
left-hand panel of Figure 25 (the normal torus polarity data) is −0.0057 ± 0.0052 versus
0.0013± 0.0016 for the right-hand panel (the reversed torus polarity data).

To further study this question one needs better statistics. We can add statistics here
by removing the electron and proton fiducial cuts. These restrictions eliminate events that
are suspect because they are in an angular region near the edge of the sector where the
magnetic field is changing rapidly and is not well known. The reconstructed momenta are
not trustworthy. This implies the identification of quasielastic events may not be valid, but
the helicity asymmetry extracted from those events should still go to zero at low pm. We
show the 2.6-GeV, normal helicity asymmetry with the fiducial cuts off in Figure 26. At
the lowest missing momentum bin the asymmetry is 0.0009 ± 0.0022; consistent with zero.
Within the experimental uncertainties the asymmetry A′

LT shows the correct behavior near
pm = 0 for both 2.6-GeV data sets.

6.3.2 Extracting A′

LT by Fitting the φpq Dependence

We investigated another method for extracting A′

LT that also takes advantage of the large
acceptance of CLAS. Recall the expression for Ah(Q

2, pm, φpq) (see Equation 11) which is
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Figure 26: Helicity asymmetry for the 2.6-GeV, normal torus polarity data with electron
and proton fiducial cuts off.

reproduced here.

Ah(Q
2, pm, φpq) =

σLT ′ sin φpq

σL + σT + σLT cosφpq + σTT cos 2φpq

(22)

The numerator in Equation 22 is proportional to sin(φpq) and the denominator is approxi-
mately constant as long as σLT and σTT are small. If one forms the following ratio of different
helicities

A(Q2, pm, φpq) =
σ+ − σ−

σ+ + σ−
=

N+ −N−/AQ

N+ +N−/AQ

=
σ′

LT sinφpq

σL + σT + σLT cosφpq + σTT cos 2φpq

(23)

where AQ is the beam charge asymmetry, then the distribution should have a sinusoidal
dependence on φ if σLT and σTT are small relative to σT and σL. In other words,

A(Q2, pm, φpq) ≈
σ′

LT sinφpq

σL + σT

= A′

LT sin φpq (24)

so the amplitude of the asymmetry is A′

LT . We can fit this distribution and compare that
fit with our results using the sin φi-weighted distributions. We have calculated this ratio
and the results are shown in Figure 27 for four different bins in θpq in the range Q2 =
0.8− 1.0 (GeV/c)2 for the 2.6-GeV, normal torus polarity data set. The distributions were
fitted with a sine curve without the small LT and TT contributions and the results are shown
on the figure. The fits all have acceptable reduced χ2. We also tried fitting a more complex
function that included the cosφpq and cos 2φpq terms in the denominator of Equation 11.
We found the contributions from σLT and σTT were consistent with zero and there was no
significant improvement to the fit.

We compared the two different methods for measuring A′

LT and show the results in
Figure 28. The top panel shows the angular distribution in θcmpq measured using the sin φpq
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Figure 27: Results for φ dependence of A′

LT using the helicity ratio technique.

moments of the distribution and the lower panel is from the fits to A(Q2, θpq, φpq). The results
in Figure 28 are for the range Q2 = 0.8− 1.0 (GeV/c)2. The two results are consistent with
each other. The values of A′

LT in each angle bin agree for both methods as well as the size of
the uncertainties in each angle bin. It is worth noting how A′

LT goes from small and positive
for θcmpq = 0◦−10◦ to large and negative for θ′pq = 20◦−30◦. This is clearly seen in the shapes
of the φpq distributions in Figure 27 in the upper-left and lower-left panels. We expect the
sinφpq moments and the A(φpq) methods to be consistent; they represent the same quantity
extracted from the same data set. We conclude that these methods are consistent and the
sinφpq moments analysis and the fit to A(φpq) are equivalent methods. We have used the
sinφpq moments results throughout this Analysis Note.

6.3.3 Monte Carlo Simulations

We have tested our analysis codes in simulation to validate their accuracy and support
the expectation that using a ratio to extract A′

LT should be independent of acceptance
corrections. We put a known asymmetry similar to the observed one into the event generator,
ran the CLAS standard simulation GSIM, and then analyzed the results with the same codes
we used to analyze the data. If we recover the original, known asymmetry, we validate our
analysis. We started with the event generator QUEEG [14] which includes elastic scattering
and the effect of the Fermi motion of the nucleons in deuterium. The code is described
in Appendix H. We modified the original code to include a part that depended on sin φpq
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Figure 28: Comparison of A′

LT extracted using different analysis techniques.

with an amplitude controlled by the user. The goal here is to control the size of the sin(φpq)
dependent part of the 2H(e, e′p)n cross section so we can compare the value used in the event
generator with the final results of the analysis chain. Here, we summarize how QUEEG
generates events with no asymmetry.

1. The magnitude of the Fermi momentum of the proton is picked from the Hulthen
distribution and given a random direction in the laboratory frame.

2. Transform to the (now moving) rest frame of the proton and calculate a new beam
energy for the incoming electron relative to this new rest frame of the proton.

3. The angle of the scattered electron is selected based on the cross section for elastic
scattering at this new electron energy.

4. The momentum of the scattered electron is transformed from the proton rest frame
into the lab frame.

5. To maintain energy conservation determine the scattered electron energy for the 2H(e, e′p)n
reaction using the known momentum of the neutron (i.e. the negative of the Fermi
momentum of the proton chosen in step 1 above). The neutron is treated as a spectator.

6. Calculate ~q (3-momentum transfer) and pp (proton 3-momentum) in the lab for this
quasi-elastic scattering.
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7. Randomly select the lab azimuthal angle of the electron (φe) and rotate the 3-vectors
for the momentum transfer, proton, and scattered electron momenta.

To include a known asymmetry the selection of the angle φpq is altered. The angle φpq

is between the scattering plane (defined by the incoming and outgoing electron 3-momenta)
and the reaction plane (defined by the proton and momentum transfer 3-vectors) (see Figure
1). The modifications are made to step 7 above. They are described below.

1. The direction of the momentum transfer, the magnitude of the proton 3-vector, and
the angle θpq are unchanged.

2. The missing momentum is calculated based on the known momentum of the beam,
scattered electron and proton. This is the same as the neutron momentum mentioned
in step 5 above.

3. The coordinates are rotated so that the z-axis is now in the direction of the 3-momentum
transfer ~q. The y-axis stays the same for this new coordinate system and the lab sys-
tem.

4. A new φpq is randomly generated based on a sinusoidal distribution with an amplitude
that depends on the magnitude of the missing momentum. The amplitude is a function
of pm derived from a fit to the measured asymmetry A′

LT as shown in Figure 29. The
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Figure 29: Plots of measured helicity asymmetry A′

LT and fitted curves for normal torus
polarity (left-hand panel) and reversed torus polarity (right-hand panel).

fits are to the equation

A′in
LT =

a1p
2
m + a2p

4
m

1 + a3pm + a4p2m + a5p4m + a6p6m
(25)

where for the normal and reversed torus polarities are shown in Table 9.
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Data set a1 a2 a3 a4 a5 a6
normal torus polarity -0.0344 0.3204 -11.15 35.47 -119.2 227.0
reversed torus polarity 0.0653 0.5031 -11.03 36.09 -126.7 256.1

Table 9: Best-fit coefficients for Equation 25 for normal and reversed torus magnet polarity.

5. A new missing momentum 3-vector is calculated with the same magnitude as in part
1, but with a different φpq using the result of part 4.

6. The coordinate system is now rotated back to the lab coordinate system with the z-axis
along the beam.

7. A new, proton 3-vector is calculated using momentum conservation and the original
beam, target, and scattered electron momenta and the modified neutron momentum.

Figure 30 below shows the results from using this modified version of QUEEG and ex-
tracting A′

LT from simulated events analyzed with the same codes used for the data analysis.
The fits A′ in

LT to the measured asymmetries are the red curves in each panel of Figure 30 and
serve as the inputs for A′

LT in the simulation. These curves can be compared to the results
extracted from the simulation with that original function (the black ‘data’ points in Figure
30). To make a better comparison between the input to GSIM and the simulated results,
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Figure 30: Comparison of GSIM-simulated A′

LT with ‘true’ asymmetry used as input to the
code for 2.6-GeV, reversed torus polarity (left panel) and 2.6-GeV, normal torus polarity
(right-hand panel). The red curve is the input function derived from a fit to the measured
A′

LT . The blue points calculated with the same input function and averaged over the bins.
The black points are the product of the simulation.

we averaged the input functions (red curves in Figure 30) over the same bins used in the
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analysis so

〈A′ in
LT 〉 =

∫

bin
A′ in

LT (pm)dpm

∆pm
(26)

where A′ in
LT is the input fit function. The bin-averaged asymmetries are the blue points in

Figure 30. There is good agreement over the range of pm within the statistical uncertainties of
the Monte Carlo calculation between the bin-averaged input asymmetry and the asymmetry
extracted from the simulation. The results validate our analysis codes and support the
hypothesis that the asymmetry A′

LT is independent of acceptance corrections within our
uncertainties.

6.4 Systematic Uncertainties

We now consider systematic uncertainties in our extraction of A′

LT . The sinφpq-averaged
asymmetry can be written as

A′

LT (pm) = A′

LT (pm;
~f) (27)

where ~f is the set of parameters defining our extraction of A′

LT . The standard propagation
of uncertainties is used so

(∆A′

LT )
2
=

∑

i

(

∂A′

LT

∂fi

)2

(δfi)
2 (28)

where the index i is over the parameter set ~f . The primary contributions to the systematic
uncertainty are shown in Table 10 along with the maximum value. Additional cuts like
the electron EC fiducial cut and the Egiyan electron momentum threshold had no effect on
the final value of the helicity asymmetry. The results for quantities 1-10 in Table 10 as a

Row Quantity δA′

LT

1 Wn cut < 0.003
2 ∆pe cut < 0.002
3 EC track coordinate cut < 0.002
4 EC sampling fraction < 0.002
5 EC pion threshold < 0.002
6 Number of Photoelectrons < 0.005
7 Beam Polarization < 0.001
8 Beam charge asymmetry < 0.002
9 mp cut < 0.003
10 RC correction < 0.004
11 electron/proton fiducial cuts < 0.002

Table 10: Inventory of systematic uncertainties (maximum magnitudes for pm-dependent
quantities).

function of pm for the normal and reversed torus polarity runs were extracted and are shown
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in Figures 81-90 of Appendix I. The measurement of the uncertainties on the fiducial cuts
is discussed below.

The systematic uncertainty on the Wn cut was determined starting with the uncertainty
on the width σ from the Gaussian fit to the nucleon peak in the Wn distribution (see Figure
6). Recall the position of the Wn cut was set at 3σ below the pion threshold. We took half
the difference between A′

LT extracted with the maximum and minimum values of the Wn

cut (see Figure 81). The value for the ∆pe cut was found by first using the width of the
region where the slopes in Figure 10 change value. The uncertainty is taken to be half the
difference between A′

LT calculated using these extremes (see Figure 82).
The results in Rows 3-6 of Table 10 were determined by (1) changing the position of the

cut by ±10% (e.g, the EC pion threshold and number of photoelectrons) or by increasing
and decreasing the width of a cut by ±10% (e.g., the EC sampling fraction cut). (2) The
uncertainty for each data set (normal or reversed torus polarity) and pm bin was determined
by the following expression.

δA′

LT =
A′

LT (1.1× fi)− A′

LT (0.9× fi)

2
(29)

The results are shown in Figures 83-86.
The results in rows 7-11 of Table 10 were determined individually. For the beam po-

larization uncertainty (row 7 in Table 10) the measurements of the beam polarization using
the Moeller polarimeter during the experiment were used (0.736 ± 0.017). We multiplied
A′

LT for each data set by the uncertainty on the polarization. See Figure 87 in Appendix I.
For the beam charge asymmetry (row 8 in Table 10), the ratio of elastic proton scattering
for the two different beam helicities was used. We calculated the systematic uncertainty by
multiplying A′

LT by the statistical uncertainty on the beam charge asymmetry for each data
set. See Table 7 and Figure 88 in Appendix I. The effect of the proton mass cut (row 10
in Table 10) was taken to be half the difference between the helicities asymmetries for the
two, 2.6-GeV data with and without the cut applied (see Figure 89 in Appendix I). For the
uncertainty on the radiative corrections(row 10 in Table 10) we took half of the difference
between the corrected and uncorrected asymmetry (see Figures 21, 22, and 90).

The electron and proton fiducial cuts are not amenable to the procedure described above
because of their more complex dependence on angles and particle momenta. We studied their
impact on the analysis by probing the changes to the asymmetry when they were turned off.
This procedure must be done carefully since changing the fiducial cuts can change the Q2

distribution that contributes to the sample and could alter the asymmetry. To avoid this
effect we added a cut on the normal-torus-polarity data analysis because the Q2 distribution
with the fiducial cuts turned off extended to lower values of Q2. This cut made the lower
limit of Q2 the same with fiducials cuts on and off. We also turned off the cut on Wn (which
selects quasielastic events) to increase the size of the event sample. The uncertainty due to
the electron/proton fiducial cuts (row 11 in Table 10) was then taken to be the standard
deviation of the average value of the difference between A′

LT extracted with the fiducial
cuts switched on and off. We call this quantity ∆A′fid

LT . The results for the two data sets are
shown in Figure 31. These points were averaged for each data set and the standard deviation
taken to be the uncertainty. We note here that the statistical uncertainties shown in the
figures are accurate; they are determined by constructing ∆A′fid

LT from the event sample that



CLAS-Analysis-NOTE 2012-Draft - October 26, 2012 36

 (GeV/c)
m

p
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

LT
 A

’
∆

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
2.6 GeV

Normal torus polarity

 cut off; QE cut off2MM
2 > 0.7 GeV2Q

 0.0015±> = 0.0010 LT A’∆<

 (GeV/c)
m

p
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

LT
 A

’
∆

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

2.6 GeV

Reversed torus polarity

 cut off; QE cut off2MM

 0.0008±> = 0.0011 LT A’∆<

Figure 31: The left-hand panels shows the difference ∆A′fid
LT between the asymmetry ex-

tracted with the electron and proton fiducial cuts on and off for the normal torus polarity
data. The right-hand panel shows the same quantity for the reversed torus polarity data.

passed all the cuts except the fiducial ones. They are not extracted by adding the statistical
uncertainties for the A′

LT distributions for fiducial cuts on and off. That method is incorrect
because the two samples (fiducial cuts on and off) are not independent ones.

The uncertainties from Table 10 were added in quadrature. The final results are shown
in Figure 32. The maximum value of each quantity was determined and entered in Table 10.
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Figure 32: Systematic uncertainty on A′

LT as a function of Q2 for the normal torus polarity
data (red) and the reversed polarity data (blue).
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The systematic uncertainty is everywhere less than 10−2.

6.5 Results and Comparison with Theory

Preliminary results with statistical and systematic uncertainties are shown in Figures 33 and
34. The error bars on the points are for statistical uncertainties and systematic uncertainties
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Figure 33: Preliminary results for helicity asymmetry A′

LT for the 2H(ẽ, e′p)n reaction at 2.6
GeV with normal torus polarity.

are represented by the bar graphs. For each torus setting, the helicity asymmetry A′

LT starts
near zero as expected and there is a dip at pm = 0.23 GeV/c. At higher missing momentum
A′

LT is consistent with zero. Within the statistical uncertainties both asymmetries are about
the same.

In Figure 35 we compare our preliminary results with several calculations. The black
curves are from Arenhövel [32]. The starting point for this calculation is the non-relativistic
Schrödinger equation and other effects are added: relativistic corrections, meson exchange
currents, isobar currents, and final state interactions. The black curves here are averaged over
the CLAS acceptance. There is reasonable agreement between the reversed-torus-polarity
data at lower average Q2 and the calculation for pm < 0.2 GeV/c, but at higher pm they
diverge. For the normal-torus-polarity data at higher average Q2 the calculations predict a
much deeper asymmetry than observed. The green curves are from Laget [33]. He follows a
diagrammatic approach for Q2 = 1.1 GeV2 (lower panel) and Q2 = 0.7 GeV2 (upper panel).
The curves in each panel are for a single value of Q2. For the lower Q2 data (upper panel),
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Figure 34: Preliminary results for helicity asymmetry A′

LT for the 2H(ẽ, e′p)n reaction at 2.6
GeV with reversed torus polarity.

the calculation produces a more pronounced dip that extends to larger missing momentum
than the data. For the higher Q2 results (lower panel), the dip has shrunk closer to zero and
agrees well with the data for pm < 0.35 GeV/c.

The red curves are from Jeschonnek and Van Orden [31, 34]. They use a fully relativistic
calculation in the impulse approximation, the Gross equation for the deuteron ground state,
and the SAID parameterization of the NN scattering amplitude for FSI. The off-shell form
factor cutoff is set to ΛN = 1.0 GeV. The red curves are averaged over the CLAS acceptance.
There is agreement here on the position and depth of the dip centered at pm = 0.23 GeV/c
for the low-Q2 range (reversed torus polarity data). For pm > 0.4 GeV/c the calculation
is more negative than the data which may be a sign of the increased influence of meson
exchange currents. For the normal torus data at higher average Q2, the calculation produces
a much deeper dip than observed. No parameters were adjusted in the calculations shown
here.

Recall that we also investigated a cut to restrict the range of the residual mass W to be
near the nucleon mass. This step is made so this analysis is more in keeping with previous
work at Bates [9]. A comparison with the same set of calculations is shown in Figure 36. For
the low-Q2 data (reversed torus polarity) shown in the upper panel in Figure 36 the effect
of the additional cut on the shape of the asymmetry is limited so the comparison with the
theory curves is much the same as discussed above. For the higher Q2 data (normal torus
polarity data) there is a significant change in the asymmetry at around pm = 0.23 GeV/c
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Figure 35: Preliminary results for helicity asymmetry A′

LT for the 2H(ẽ, e′p)n reaction at
2.6 GeV with reversed torus polarity (upper panel) and normal torus polarity (lower panel).
The curves are from Arenhövel [32] (black), Laget [33] (green), and Jeschonnek and Van
Orden [31, 34]

where the magnitude of the dip increases by a factor of three. There is also now good
agreement between the data and the calculation by Jeschonnek and Van Orden across the
full range of the missing momentum. The use of this constraint on the data is not well
justified, but the result is an intriguing one. Our main results remain the ones shown in
Figure 35.

This work is supported by US Department of Energy grant DE-FG02-96ER40980 and
Jefferson Science Associates.
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Figure 36: Preliminary results for helicity asymmetry A′

LT for the 2H(ẽ, e′p)n reaction at
2.6 GeV with reversed torus polarity (upper panel) and normal torus polarity (lower panel).
These asymmetries differ from the ones in Figure 35 by including the additional cut on the
residual mass W described in Section 5.3. The curves are from Arenhövel [32] (black), Laget
[33] (green), and Jeschonnek and Van Orden [31, 34]
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A Electron Fiducial Cuts

To focus our analysis on the regions of uniform proton acceptance we have largely followed the
technique of D.Protopopescu, et al. in [17]. One of the benefits of the procedure described
below is to make the fiducial cuts smoothly varying functions of particle momentum and
position and reduce the chances of experimental artifacts appearing in the analysis.

1. Two-dimensional histograms of φe versus θe in momentum bins of 100 MeV/c are
extracted first. This was done starting with a three-dimensional histogram in ROOT
of pe versus θe versus φe for electron singles events and then projecting out the φe − θe
histogram for each electron momentum bin. Figure 37 is a sample of the φe − θe
distribution for pe = 2.2− 2.3 GeV/c and a beam energy of 4.2 GeV.
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Figure 37: Distribution of φe versus θe for electrons for all sectors and E = 4.2 GeV.

2. A series of one-dimensional histograms of φe in one-degree bins in θe are projected out
for each electron momentum bin. These distributions are then fitted with a trapezoidal
function. We refer to these fits as first generation fits. Some typical results are shown
in Figure 38.

3. The edges of the central, flat region of the φe distribution for each θe bin at this value
of the electron momentum are extracted from the fits and plotted versus θe. See Figure
39. The distribution is then fitted with a function that can be asymmetric about the
central φe angle of the sector. The function used for the upper branch in Figure 39 is

φedge = φmid + blt

(

1−
1

1 + (θe − tl0)/alt

)

(30)
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Figure 38: Electron azimuthal dependence for sector 3, 2.6-GeV, normal polarity run. The
electron momentum and polar angle θe are given on each plot. The black curve is the result
a fit to a trapezoidal function described in the text.

Figure 39: Fits to the position of the edges of the plateau of the trapezoids used in the first
generation fits. The horizontal axis is the electron polar angle in degrees.

where blt, φmid, tl0, and alt are fit parameters. For the lower branch in Figure 39, we
use

φedge = φmid − brt

(

1−
1

1 + (θe − tl0)/art

)

(31)
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where brt, φmid, t0, and art are fit parameters. The average of φmid is taken from the
separate fits to each branch and then the fits are done again with φmid fixed. An
example of the results is shown as the black curve in Figure 39 . These curves are
called second generation fits.

4. The last step in generating the electron fiducial cuts is to take the results of the second
generation fits to the φe versus θe distributions as a function of electron momentum pe
and fit these results for each sector. The parameter t0 is fitted with a power function
and the other fit parameters (alt, blt, art, brt) are fitted with a fifth-order polynomial.
These curves are third generation fits. Plots of these fits for all sectors are shown in
Appendix B. An example of the final CLAS electron acceptance is shown in Figure 40
for the 4.2-GeV data set.

Figure 40: CLAS acceptance for electrons at E = 4.2 GeV with fiducial cuts turned on (red
points) and off (blue points).
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B Electron Fiducial Fits

Third Generation Fits, 2.6 GeV, normal polarity.
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Figure 41: Sector 1.
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Third Generation Fits, 2.6 GeV, normal polarity.
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Figure 43: Sector 3.
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Third Generation Fits, 2.6 GeV, normal polarity.
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Figure 45: Sector 5.
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Figure 46: Sector 6.
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Third Generation Fits, 2.6 GeV, reversed polarity.
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Figure 47: Sector 1.
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Third Generation Fits, 2.6 GeV, reversed polarity.
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Figure 49: Sector 3.
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Figure 50: Sector 4.
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Third Generation Fits, 2.6 GeV, reversed polarity.
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Figure 51: Sector 5.
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Figure 52: Sector 6.
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C Proton Fiducial Cuts

The procedure we used to produce the proton fiducial cuts is described here. First, one has to
locate the region of flat acceptance in the center of each region to perform the first-generation,
trapezoidal fits to the azimuthal distribution. This proved more of a challenge here than
for the electron fiducials. Figure 53 shows the CLAS acceptance for protons that are in
coincidence with electrons. Much of the acceptance is flat except for a rounded ‘peninsula’

Figure 53: CLAS acceptance for protons in coincidence with electrons.

in the range θp = 50◦−70◦. This feature distorts the flat acceptance of CLAS and makes our
trapezoidal fit (see Appendix A) unusable. This feature is a product of quasielastic events
where the proton is strongly correlated with the electron and the forward angle electron
acceptance of CLAS; forward-angle, quasielastic electron events have a large-angle proton.
Thus, the proton ‘peninsula’ reflects the shape of the forward-angle electron acceptance in
CLAS. The protons in the peninsula come from e − p coincidences where the electron is
detected in the forward portion of the opposite sector (i.e. an electron in sector 4 will have
a correlated proton in sector 1). The shape of the azimuthal distribution is produced by
the CLAS, forward-angle, electron acceptance in the opposite sector. To demonstrate this
effect more clearly we eliminated all electron events with θe < 40◦, but only in sector 4. If
our explanation is correct, then the protons correlated with those electrons (i.e., the protons
that will be detected in quasielastic kinematics in the opposite sector (sector 1)) will be
eliminated along with the peninsula. Figure 54 shows this effect. The region θp = 50◦ − 70◦

in sector 1 (φp = −30◦ − 30◦) is now flat while the peninsula can still be seen in the other
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sectors. In our final sample used for generating the proton fiducial cuts we included positive

Figure 54: Eliminating the peninsula.

pions from e−π+ events since their acceptance should be the same as the proton acceptance
[18] and including them in our sample significantly improved the statistical quality. We also
required that the mass of the recoiling system have W > 1.4 GeV to reduce the the number
of correlated quasielastic events. An example of the final event sample is shown in Figure 55.
The effect of cuts on the trapezoidal fitting procedure is shown in Figure 56. The black points
show the position of the edges found in the first generation fits without the cuts described
above to produce a more uniform azimuthal distribution. Note the dramatic shift in the
edge positions extracted from these first generation fits in the region θp = 50◦−70◦. The red
points show the positions of the edges found with the trapezoidal fitting method after the
constraints described above were included. For hadrons produced at θh < 45◦, the agreement
between the two methods is excellent. For θh > 45◦, the ‘peninsula’ has disappeared. The
positions of the edges more closely follow the CLAS acceptance.

Once the edges have been found with the trapezoidal fit method, the θp dependence
of each side of the CLAS acceptance in each sector is fitted in a manner similar to the fits
described in Appendix A (second generation electron fits). The functions used are shown
in Equations 30-31 in Appendix A. Last, the proton momentum dependence of the second
generation fits is itself fitted. The results for all sectors and running conditions are shown
in Appendix D. An example of the final hadron acceptance for the 2.6-GeV, reversed torus
polarity data set is shown in Figure 57.
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Figure 55: Final hadron sample.

Figure 56: Comparison of hadron edge positions before and after eliminating correlated
events.
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Figure 57: Final hadron acceptance for e − p coincidences for the 2.6-GeV, reversed torus
polarity data set.
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D Proton Fiducial Fits

Third Generation Fits, 2.6 GeV, normal polarity.
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Third Generation Fits, 2.6 GeV, normal polarity.

2008-09-10 21:54:08
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Third Generation Fits, 2.6 GeV, normal polarity.

2008-09-10 21:54:54

p (GeV/c)
0 0.5 1 1.5 2 2.5

0t

0
2
4
6
8

10
12
14
16
18
20
22 Sector 5 edges

2.56 GeV, normal polarity

p (GeV/c)
0 0.5 1 1.5 2 2.5

la

0

10

20

30

40

50

p (GeV/c)
0 0.5 1 1.5 2 2.5

lb

0

10

20

30

40

50

60

70

p (GeV/c)
0.5 1 1.5 2 2.5

r
a

0

10

20

30

40

50

p (GeV/c)
0 0.5 1 1.5 2 2.5

r
b

0

10

20

30

40

50

60

70

p (GeV/c)
0 0.5 1 1.5 2 2.5

1ut

10

20

30

40

50

60

70

80

90

p (GeV/c)
0 0.5 1 1.5 2 2.5

1lt

10

20

30

40

50

60

70

80

90

p (GeV/c)
0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

m
id

φ

210

220

230

240

250

260

270

Figure 62: Sector 5.

2008-09-10 21:55:35

p (GeV/c)
0 0.5 1 1.5 2 2.5

0t

0
2
4
6
8

10
12
14
16
18
20
22 Sector 6 edges

2.56 GeV, normal polarity

p (GeV/c)
0 0.5 1 1.5 2 2.5

la

0

10

20

30

40

50

p (GeV/c)
0 0.5 1 1.5 2 2.5

lb

0

10

20

30

40

50

60

70

p (GeV/c)
0.5 1 1.5 2 2.5

r
a

0

10

20

30

40

50

p (GeV/c)
0 0.5 1 1.5 2 2.5

r
b

0

10

20

30

40

50

60

70

p (GeV/c)
0 0.5 1 1.5 2 2.5

1ut

10

20

30

40

50

60

70

80

90

p (GeV/c)
0 0.5 1 1.5 2 2.5

1ut

10

20

30

40

50

60

70

80

90

p (GeV/c)
0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

m
id

φ

270

280

290

300

310

320

330
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Third Generation Fits, 2.6 GeV, reversed polarity.

2008-06-09 20:47:08
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Third Generation Fits, 2.6 GeV, reversed polarity.

2008-09-10 22:02:20
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Figure 66: Sector 3.
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Third Generation Fits, 2.6 GeV, reversed polarity.

2008-09-10 22:04:14
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Figure 68: Sector 5.
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Figure 69: Sector 6.
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E Acceptance Effects in 〈sinφpq〉
±

To more clearly understand Equations 16-17 which relate 〈sin φpq〉
± to A′

LT and the accep-
tance recall again the expression for the differential cross section for 2H(~e, e′p)n (Equations
1 and 3).

d3σ

dνdΩedΩp

= σ± = c[ρLfL + ρTfT + ρLT fLT cos(φpq) + ρTT fTT cos(2φpq)+

hρ′LT f
′

LT sin(φpq)] (32)

= σL + σT + σLT cosφpq + σTT cos 2φpq + hσ′

LT sinφpq (33)

The sinφpq moment of the data at a given Q2 and θcmpq or pm is defined by the following
expression.

〈sinφpq〉
± =

∫ 2π

0
σ± sinφpqdφ
∫ 2π

0
σ±dφ

(34)

Now let
σ± = κǫ(φpq)N

±(φpq) (35)

where N± is the number of counts for each helicity, ǫ is the CLAS acceptance and may
vary with φpq, and κ contains all the other helicity-independent, kinematic factors needed to
determine cross sections. In turn, N± is composed of different longitudinal and transverse
components so

N±(φpq) = N±

L +N±

T +N±

LT cosφpq +N±

TT cos 2φpq + hN±

LT

′
sinφpq (36)

where φpq is the angle between the scattering plane and reaction plane (See Figure 1) and
h = ±1 is the helicity. Hereafter, we will suppress the ± superscript for clarity and it will
be assumed that all N ′s depend on the helicity. Finally, the CLAS acceptance as a function
of φpq at a given Q2 and θcmpq or pm can be expressed as

ǫ(φpq) = A0 +
∞
∑

m=1

(am sinmφpq + bm cosmφpq) (37)

where we have taken advantage of the completeness of the sines and cosines. Substituting
Equations 35, 36, and 37 into Equation 34 one obtains (after doing some algebra and some
integrals) the following expression

〈sinφpq〉
± =

(NL +NT − NTT

2
)a1 +

NLT

2
a2 +

NTT

2
a3 ±N ′

LT (A0 −
b2
2
)

2(NL +NT )A0 +NLT b1 +NTT b2 ±N ′

LTa1
(38)

where we have used h = ±1. Notice that all the terms in the acceptance function ǫ(φpq)
with m > 3 have disappeared. We now take advantage of the observation that in other
measurements the cross section is dominated by the longitudinal (L) and transverse (T )
pieces. In the denominator of Equation 38, NTT , NLT , and N ′

LT are much less than NL+NT

so we can neglect their contribution. The result is the following expression.

〈sinφpq〉
± =

(NL +NT − NTT

2
)a1 +

NLT

2
a2 +

NTT

2
a3 ±N ′

LT (A0 −
b2
2
)

2(NL +NT )A0

(39)
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We now take the difference between 〈sinφpq〉
± for the different helicities, substitute Equation

39 for the moments, and obtain

〈sinφpq〉
+ − 〈sinφpq〉

− =
N ′

LT (A0 −
b2
2
)

(NL +NT )A0

. (40)

Last, we assume b2 ≪ A0 (which we discuss below) and use Equation 35 to rewrite the final
result in terms of the partial cross sections instead of the N ’s so

〈sinφpq〉
+ − 〈sinφpq〉

− =
N ′

LTA0

(NL +NT )A0

(41)

=
σ′

LT

σL + σT

(42)

= A′

LT (43)

which is the result in Equation 17. To support the assumption that b2 << A0 we have
extracted A′

LT using the weighted moments described here and by fitting the φpq dependence
of the asymmetry (see Section 6.3.2). In fitting the φpq dependence we also explored the
contribution of other terms and found them consistent with zero.

To show how we obtained Equation 16 recall that we can neglect NLT and NTT relative
to NL and NT in the numerator of Equation 39. We retain the N ′

LT term since it will survive
when we take the difference between the moments for the different helicities. Applying this
approximation and b2 ≪ A0 to Equation 39 we obtain

〈sinφpq〉
± =

(NL +NT )a1 ±N ′

LTA0

2(NL +NT )A0

(44)

=
a1
2A0

±
N ′

LT

2(NL +NT )
(45)

= α±
σ′

LT

2(σL + σT )
(46)

which is the form of Equation 16. We have used Equation 35 again to rewrite the final result
in terms of the partial cross sections instead of the N ’s and labeled the first term α to be
consistent with the text in Section 6.1.
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F Radiative Corrections

To test our modifications to EXCLURAD we will compare them with the more traditional
approaches. Below we describe how to relate the parameters of the Schwinger-style calcula-
tion with the approach used in EXCLURAD. In the Schwinger method one calculates the
radiative correction for the scattering of an electron in a Coulomb field. This corresponds
to inclusive electron scattering. An essential step in the calculation is to integrate over the
radiative tail of the energy of a scattered electron to arrive at a correction factor for the yield
lost to the emission of photons. The parameters of that integration are defined in Figure 70
[35]. The parameter ∆E is the energy range over which the integral is performed (starting

Eresradiative 
tail

E
lo

E
hi

resE    =

choose
   E > ∆ resE    

one-half
intrinsic
resolution

E∆

Region of integration 
from E    to Elo hi

EE’

ω

E is the beam energy

E’ is the peak energy of
the scattered electron

Figure 70: Energy spectrum of scattered electron showing definitions of quantities used in
the Schwinger radiative correction calculation.

at the unradiated energy of the electron) to estimate the yield lost to radiated photons.
Afanasev, et al. follow an analogous procedure in their more sophisticated approach

[25]. They integrate over the radiative tail of the scattered electron, but they perform the
integration in terms of the covariant ‘inelasticity’ v defined as

v = Λ2 −m2
u (47)

where mu is the mass of the undetected hadron and Λ is the four-momentum of the missing
or undetected particles. The quantity v describes the missing mass due to the emission of a
bremsstrahlung photon and can be rewritten as

v = W 2 +m2

h −m2

u − 2WEh (48)

where W is the mass of the system recoiling against the electron, mh is the mass of the
detected hadron, and Eh is the center-of-mass energy of the detected hadron. To determine
the relationship between ∆E and v consider the usual expression for W 2

W 2 = M2 + 2M(E − E ′)−Q2 (49)
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where

Q2 ≈ 4EE ′ sin2
θ

2
(50)

M is the target mass, and θ is the electron scattering angle. However, for an event with a
radiated photon, the measured energy of the scattered electron is not E ′, but some lower
energy

Elo = E ′ −∆E (51)

so W for this event will not be ‘correct’. The new value of W is

W 2
rad = M2 + 2M(E −Elo)− 4EElo sin

2
θ

2
. (52)

Using Equations 51 and 52 in the expression for v in Equation 48 one obtains the following
function of ∆E.

v = M2 + 2M(E − E ′ +∆E)− 4E(E ′ +∆E) sin2
θ

2

+m2

h −m2

u − 2Eh

√

M2 + 2M(E −E ′ +∆E)− 4E(E ′ +∆E) sin2
θ

2
(53)

This expression can be re-arranged so

v = W 2
0 +m2

h −m2
u + 2∆E(M + 2E sin2

θ

2
)− 2Eh

√

W 2
0 + 2∆E(M + 2E sin2

θ

2
) (54)

where

W 2

0 = M2 + 2M(E − E ′)− 4EE ′ sin2 θ

2
(55)

and the quantities E, E ′, and θ are determined by the electron kinematics. The hadron
energy Eh is determined by the choice of the angle of the outgoing hadron relative to ~q, the
three-vector of the momentum transfer. The masses M , mh, and mu are all known.

As an example of applying Equation 54 consider the following kinematics in Table 11.
The results of the calculation are shown in Figure 71. The dependence of v on ∆E is almost

E = 2.558 GeV E ′ = 2.345 GeV θ = 14.84◦

mh = 0.938 GeV mu = 0.940 GeV θcmh = 45◦

M = 1.876 GeV Q2 = 0.52 (GeV/c)2 W = 1.93 GeV

Table 11: Kinematics for calculating v(∆E).

linear implying the importance of that term in Equation 54 over the sum of all the other
terms.

A comparison of radiative corrections calculated with EXCLURAD with ones calculated
using the Schwinger method is shown in Figure 72. We do not expect the two calculations
to be precisely the same because each one uses a different model for the response functions
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Figure 71: Dependence of v on ∆E for the kinematics listed in Table 11.
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Figure 72: Comparison of radiative corrections calculated with EXCLURAD (blue) and
using the Schwinger method (black).

(EXCLURAD uses the DEEP code [11]). The EXCLURAD calculation is, on average, about
10% higher than the Schwinger one and varies more with Q2(from about 2% less to about 14%
larger). This Q2 dependence is similar to the behavior observed in EXCLURAD calculations
for other reactions [25]. More details can be found in Ref. [28].
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G Applying Radiative Corrections
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Figure 73: Radiative corrections for polarized (upper-left) and unpolarized (upper-right)
cross sections and their ratio (lower-left) are plotted as functions of cos θ and φ at Q2 =
0.2 (GeV/c)2. The average over φ is shown in the lower-right panel.
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Figure 74: Radiative corrections for polarized (upper-left) and unpolarized (upper-right)
cross sections and their ratio (lower-left) are plotted as functions of cos θ and φ at Q2 =
0.5 (GeV/c)2. The average over φ is shown in the lower-right panel.
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Figure 75: Radiative corrections for polarized (upper-left) and unpolarized (upper-right)
cross sections and their ratio (lower-left) are plotted as functions of cos θ and φ at Q2 =
0.8 (GeV/c)2. The average over φ is shown in the lower-right panel.
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Figure 76: Radiative corrections for polarized (upper-left) and unpolarized (upper-right)
cross sections and their ratio (lower-left) are plotted as functions of cos θ and φ at Q2 =
1.1 (GeV/c)2. The average over φ is shown in the lower-right panel.
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Figure 77: Radiative corrections for polarized (upper-left) and unpolarized (upper-right)
cross sections and their ratio (lower-left) are plotted as functions of cos θ and φ at Q2 =
1.4 (GeV/c)2. The average over φ is shown in the lower-right panel.
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Figure 78: Radiative corrections for polarized (upper-left) and unpolarized (upper-right)
cross sections and their ratio (lower-left) are plotted as functions of cos θ and φ at Q2 =
1.7 (GeV/c)2. The average over φ is shown in the lower-right panel.
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H Monte Carlo Simulation of Quasielastic Scattering

in Deuterium

To simulate the quasielastic production we treat the deuteron as composed of two, on-
shell nucleons, one of which will act as a spectator in the interaction. We start with the
existing, elastic, nucleon form factors. The differential cross section for elastic electron-
nucleon scattering can then be calculated in the laboratory frame as [36]

dσ

dΩ
= σMott

[(

F 2

1 +
κ2Q2

4M2
F 2

2

)

+
Q2

2M2
(F1 + κF2)

2 tan2

(

θ

2

)]

(56)

where θ is the electron scattering angle and σMott is

σMott =
α2E ′ cos2( θ

2
)

4E3 sin4( θ
2
)

. (57)

It is preferable to define different electromagnetic form factors that are related to the charge
and magnetization density of the nucleon in the appropriate kinematics. These so-called
Sachs form factors are defined as

GE = F1 −
κQ2

4M2
F2 GM = F1 + κF2 (58)

so Equation 2 can be written as

dσ

dΩ
= σMott

(

G2

E +
τ

ǫ
G2

M

)

(

1

1 + τ

)

(59)

where

τ =
Q2

4M2
and ǫ =

1

1 + 2(1 + τ) tan2( θ
2
)

. (60)

We used Equations 56-60 and made the following assumptions about the form factors

Gp
E ≈ GD =

1

(1 +Q2/∆)2
Gp

M ≈ µpGD Gn
M ≈ µnGD Gn

E ≈ 0 (61)

where µn and µp are the neutron and proton magnetic moments and ∆ = 0.71 GeV2. The
number of quasielastic events in a particular Q2 bin is calculated from the elastic form factors.
Next, the Fermi momentum ~pf for one of the nucleons is chosen at random (the spectator
nucleon has momentum −~pf ) and we simulate the kinetics of the scattering. The nucleon
momentum ~pf inside the deuteron is chosen from the Hulthen distribution shown in Figure
79 which depends only on the pf [37].

We also have to account for the combined effect of the Fermi motion and the beam
energy dependence of the elastic cross section. A nucleon whose Fermi motion is directed
towards the incoming electron will observe a higher energy beam in its rest frame and
(because of the elastic cross section dependence on the beam energy) will have a lower
cross section for interacting. Conversely, a nucleon ‘running away’ from the beam will see
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Figure 79: Hulthen distribution representing the nucleon Fermi momentum inside the
deuteron.

a lower effective beam energy and have a higher cross section. For a given choice of Fermi
momentum pf and nucleon polar angle cos θ there is an effective beam energy in the rest
frame of the moving nucleon. The size of the cross section at this effective beam energy
in the nucleon rest frame and the Hulthen distribution will determine the relative weight
of this pf − cos θ combination. At each effective beam energy in the quasielastic case the
Brash parameterization [38] of the nucleon cross section is used to obtain the cross section
dependence on the electron scattering angle. This angular dependence is then integrated
over the CLAS angular acceptance to obtain the weighting for this effective beam energy
(and pf − cos θ point). Multiplying this effective-beam-energy weight with the Hulthen
distribution yields the weight function for electron-proton scattering shown in Figure 80.
The Hulthen distribution produces a long ridge in the range of the Fermi momentum pf ≈
0.04− 0.05 GeV/c and the cross section dependence on the effective beam energy creates a
downward slope along this ridge from forward to backward angles. The azimuthal angle φf

of the nucleon is chosen from a uniform, random distribution in the range φf = 0−2π. Once
the Fermi momentum is chosen, a relativistic boost is made to the rest frame of the nucleon
for all particles and the coordinate system is rotated so the incoming electron is along the
z axis. A new beam energy is calculated. A nucleon, rest-frame electron scattering angle
is chosen from a random distribution weighted by the Brash parameterization. Last, the
momenta of the electron and nucleon are transformed back to the laboratory frame. This
method was implemented in the program QUEEG and used to simulate quasielastic events
in Ref. [14].

To summarize, we use the Brash parameterization of the elastic cross section to choose
the number of quasielastic events in a particular Q2. The Fermi momentum for each is chosen
with the combined weights of the Hulthen distribution and the cross section dependence on
the effective beam energies at each pf−cos θ point. Once the Fermi momentum is determined,
the system is boosted to the nucleon rest frame. The final 4-vectors are chosen from the
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Figure 80: Plot of the weighting function for electron-proton scattering

Brash parameterization (quasielastic case) and the final states are then transformed back to
the laboratory frame.
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I Systematic Uncertainties
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Figure 81: Systematic uncertainties due to the Wn cut.
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Figure 82: Systematic uncertainties due to the ∆pe cut.
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Figure 83: Systematic uncertainties due to the electromagnetic calorimeter tracking coordi-
nate cut.
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Figure 84: Systematic uncertainties due to the electromagnetic calorimeter sampling fraction
cut.
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Figure 85: Systematic uncertainties due to the electromagnetic calorimeter pion threshold
cut.
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Figure 86: Systematic uncertainties due to the Cherenkov counter photoelectron cut.
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Figure 87: Systematic uncertainties due to the beam polarization.
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Figure 88: Systematic uncertainties due to the beam charge asymmetry. Note the difference
in the scale.



CLAS-Analysis-NOTE 2012-Draft - October 26, 2012 80

2.6 GeV2.6 GeV Red-Norm al torus polarity

Blue -Reversed torus polarity

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-0.005

0.000

0.005

0.010

p m HGeV�cL

D
A

LT’

System atic uncertain ty due to Proton Mass Cut

Figure 89: Systematic uncertainties due to proton mass cut.
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Figure 90: Systematic uncertainties due to the radiative corrections.


