
Hi Sebastian,

Responses below.

1) Could you make a figure like Fig. 2 in your response, but with the angle theta nq (Lab)
on the vertical axis? In other words, plot the distribution of events in both angle (relative to
q) and magnitude of the missing momentum in the lab frame, after all your cuts (the ones
you propose to use, which I assume does NOT include the W cut anymore, just on W n). I
just have a very hard time relating the mix of lab and cm variables you plotted to something
my brain can grasp. Ideally I’d like to see 2 versions of the plots - with and without the cut
on p(e’). It might be helpful (but not necessary) if you could also produce the plots showing
lines of constant xBj on the same 2-D space (p miss vs. theta nq) that you described to me
in words.

The first two plots below shows the effect of the ∆pe < 0.015 GeV/c cut on the θpq

versus pm distribution (where θpq is in the lab) for the reversed torus polarity data. The ∆pe
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Figure 1: Comparison of θpq versus pm distribution with (left-hand panel) and without
(right-hand panel) the ∆pe cut for the reversed torus polarity data.

cut removes electrons with momenta below the value expected with no radiative effects so
the measured momentum transfer ~q = ~pbeam − ~pe is greater than expected with no radiation.
The missing momentum is ~pm = ~q − ~pp where ~pp is the proton 3-momentum and pm tends
to have a greater magnitude than expected with no radiation. In the left-hand panel of Fig
1, the high-pm side of the distribution for a particular value of θpq is reduced when the ∆pe

cut is used. Fig. 2 shows the same attributes for the normal torus polarity data.

To demonstrate the kinematic range of our data we plotted lines of constant xBj on
the 2-dimensional, θpq-pm distributions with the full set of cuts (Figs 3-4. The curves in
the left-hand panel of Fig. 3, for example, mark the low-pm side of the main ‘ridge’ in the
θpq-pm distribution. The xBj = 1 curve (solid) starts at θpq = 0◦, follows the low-pm limit of
the measured distribution up to θpq ≈ 50◦ and then the cross section for these kinematics
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Figure 2: Same as previous plot except for the normal torus polarity data.
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Figure 3: Distribution of θpq versus pm showing kinematic relationship at the Q2 and xBj

limits of the 2.6-GeV, reversed torus polarity data

goes away. The xBj = 0.75 curve (dashed) marks the high-pm limit for this value of Q2.
Kinematics with xBj > 1.0 lie in between the the solid and dashed curves in each panel.
The high-Q2 behavior of the kinematics is shown in the right-hand panel. The xBj = 1
curve (solid) starts at θpq = 0◦ and passes through the high-pm tail at large θpq and pm.
The xBj = 0.6 curve roughly marks out the high-pm limit of the distribution for a particular
value of θpq. Fig. 4 shows the same attributes for the normal torus polarity data. In this
plot we did choose different values of Q2 and xBj because those distributions are different
for the kinematics here.

2) Only if it is not too much work: As I said, I would prefer a calculation where both the
numerator and the denominator of the Born asymmetry as well as of the radiated asymmetry
are simulated as a function of ALL variables (Q2, p miss, cos th, phi) over a 4-D grid within
the envelope of your cuts, and then averaged for each of your bins (weighted by data) to
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Figure 4: Same as the previous plot except normal torus polarity data and different kinematic
curves.

calculate the model Born Asymmetry and the model radiated asymmetry for each of your
p m bins (you obviously already do this for the Born asymmetry, using WvO’s model).
Then, I would apply just the difference between the two (born - radiated) to your measured
asymmetry to get the Born asymmetry. This way, you avoid possible divisions by zero
and also the unequal weighting of events which is an unavoidable consequence of event-by-
event corrections. As a minimum, it would be very illustrative to see if the answer comes
out differently than with your method - such a difference could be a good estimate of this
particular systematic uncertainty.

The first step in doing the radiative corrections (RCs) this way is to essentially change
variables. The RC code we use called EXCLURAD calculates the correction as a function of
W , Q2, cos θpq, and φpq. I think you want that calculation to be a function of pm, Q2, cos θpq,
and φpq. To do that we need to calculate W as a function of pm, Q2, cos θpq, and φpq. I have
included an appendix below that shows the relevant equations taken mostly from Ref. 11 of
the analysis note along with a plot of the functions relating pm to W for different choices of
cos θpq and Q2 = 0.2 GeV2.

If I understand what you are asking, you would like to see a GSIM simulation using
an event generator based on (1) WVO’s model and (2) WVO’s model modified by radiation
calculated in EXCLURAD. The output of each simulation would be passed through our
analysis chain to produce A′

LT and the difference between the two would be added to our
measured A′

LT . It’s worth pointing out that the radiative corrections as calculated now are
small compared to the statistical uncertainty of our data. Figure 5 shows the difference
between A′

LT extracted with and without radiative corrections and then divided by the
statistical uncertainty on the measured A′

LT . The ratio is small across the full range of pm

even at low missing momenta where the measured A′

LT and the statistical uncertainty are
typically small. If the plan I have outlined above is correct, that will take some time to do,
but if you and the committee think it’s needed, then we will do it.
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Figure 5: Ratio of the difference between A′

LT with and without radiative corrections divided
by the statistical uncertainty of the measured A′

LT .

Beyond that, I am still unconvinced that you need the cut on p(e’) - if radiative corrections
are small and well done, why avoid that region? On the other hand, I would think that
the measured asymmetry might well depend on cos(theta nq) quite significantly (which is
what we found for A——) - ideally, I would have preferred a binning of the data in three
cos(theta nq) bins (backward, e.g. < -0.3; sideways, -0.3 < cos < 0.3; forward, > 0.3). But
I understand I may be asking for too much here

For the first question: The long tail in Fig 9 of the analysis note (and reproduced below)
can come from events with low momentum AND low angle. Collisions where photons are
radiated after the collision (so the electron is going at least roughly in the unradiated electron
direction) will have lower-than-expected momentum. Events that radiate a photon before the
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Figure 6: Scattered electron momentum pe versus scattering angle θe for QE events and
reversed torus polarity. The black curve is for elastic scattering off the proton.
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collision will produce electrons with lower-than-expected momenta AND distorted angles.
The EXCLURAD calculation corrects for both cases including the interference between them.
If we took off the ∆pe cut and integrated over all pe we would be mixing in events from
the wrong momentum or angle bins due to events where the photon was radiated before
the collision with the target. As the photon energies get larger, we have to rely more on
the calculations of the radiative corrections which rely, in turn, on our understanding of the
nuclear physics at increasingly different kinematics from quasielastic scattering. The ∆pe cut
reduces ambiguities in the interpretation of the results at kinematics far from the quasielastic
peak and has limited effect on the quality of our statistics. In other words, your suggestion
may work for events where the photon was radiated after the collision with the target so the
electron angle is closer to the one expected for a scattered electron with no radiated photons.
However, things are different when the photon is radiated before the collision with the target
because both angle and momentum are now different from their values for unradiated events.

For the second question: I agree that we should see a strong dependence in the asymme-
try on θpq. However, for a quasielastic event with a given Q2, xBj and pm there is only a small
range of θpq that is allowed. Consider the solid curves in Figures 3 and 4. They show the
value of θpq as a function of pm for a particular value of Q2 and two choices of xBj . Nearly all
of the quasielastic events for each Q2 lie in the region between those two curves. Consider,
for example, the right-hand panel of Figure 4. Events with Q2 = 0.2 GeV2 and missing
momentum in the range pe = 0.3 − 0.4 GeV/c have to come in the range θpq = 8◦ − 12◦.
Once you have the missing momentum at some Q2, there is not much choice in what you
have for θpq. To build a bit more on this point consider Fig. 7. We extracted A′

LT with
cuts on the value of cos θpq. For cos θpq > 0.3 as recommended in the comment there was no
change in A′

LT . We did not seen any significant impact until cos θpq was close to one, the
effect of a cos θpq > 0.95 cut is shown. The missing momentum and cos θpq (and θpq) are
tightly correlated with one another see Figs 3-4). As you remove events with ‘small’ cos θpq

(corresponding to large θpq and pm) you are removing only large pm events. The low-pm A′

LT

in Fig. 7 is unchanged while the large-pm A′

LT changes significantly and loses events making
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Figure 7: Impact of cuts on cos θpq on A′

LT .
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the statistical uncertainties much larger.

APPENDIX: Getting W as a function of pm, Q2, cos θpq, and φpq.

At the risk of repeating ourselves we start with the equation for pm (Equation 2.19 in
Ref. 11)

pm =

√

(

qL

2
+ p

EW

W
cos θcm

pq

)2

+ p2 sin2 θcm
pq . (1)

The components of pm are p (proton/neutron 3-momentum in the center of mass)

p =

√

[W 2 − (mp + mn)2] [W 2 − (mp − mn)2]

4W 2
, (2)

where mp and mn are the proton and neutron masses respectively and

EW = Md + ν = Md +
W 2 + Q2

− M2

d

2Md

(3)

where Md is the deuteron mass and

qL =
√

E2

W − W 2 . (4)

We want the angles in the lab so we start with

tan θlab
pq =

sin θcm
pq

γ( vcm

vcm
p

+ cos θcm
pq )

(5)

and invert this to obtain a quadratic equation in sin θcm
pq which yields

sin θcm
pq =

2vcm

γvcm
p

tan θpq

±

√

(

2vcm

γvcm
p

tan θpq

)2

− 4
(

1 + 1

γ2 tan2 θpq

)(

( vcm

vcm
p

)2 − 1
)

2
(

1 + 1

γ2 tan2 θpq

) (6)

where

γ =
EW

W
vcm

p =
p

√

p2 + m2
p

vcm =
qL

EW

(7)
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cosΘpq: 1.0,0.99,0.98,0.97,0.95,0.93,0.90,0.85
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Figure 8: Plot of curves showing relationship between W , cos θpq, and pm for Q2 = 0.2 GeV2.
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