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What Do We Know?
� The Universe is made of

quarks and leptons and

the force carriers.

� The atomic nucleus is made

of protons and neutrons bound

by the strong force.

� The quarks are confined inside

the protons and neutrons.

� Protons and neutrons are NOT confined.



How Well Do We Know It?
� We have a working theory of

strong interactions: quantum

chromodynamics or QCD.

B.Abbott, et al., Phys. Rev. Lett.,

86, 1707 (2001).
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� The coherent hadronic

model (the standard model

of nuclear physics) works too.

L.C.Alexa, et al., Phys. Rev. Lett.,

82, 1374 (1999).
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What Don’t We Know?

1. We can’t get QCD and the

hadronic model to line up.

D. Abbott, et al., Phys. Rev

Lett. 84, 5053 (2000).

�� � � � �2. We have to find the

hadronic model ‘baseline’

to see the transition to

QCD.

3. The deuteron is the

simplest case.

S. Jeschonnek, Phys. Rev. C,

63, 034609 (2001).

�� � � � � ��� �



Experiments at Jefferson Lab
� Jefferson Lab is a US Department of

Energy national laboratory and the

newest ‘crown jewel’ of the US.

� The centerpiece is a 7/8-mile-long,

racetrack-shaped electron accelerator

that produces unrivaled beams.

� The electrons do up to five laps

around the Continuous Electron Beam

Accelerator Facility (CEBAF) and

are then extracted and sent to one

of three experimental halls.

� All three halls can run simultaneously.



The CEBAF Large Acceptance Spectrometer (CLAS)
� CLAS is a 45-ton, $50-million radiation

detector.

� It covers almost all angles.

� It has about 40,000 detecting elements

in about 40 layers.
CLAS

� Drift chambers map the trajectory of the

collision. A toroidal magnetic field bends

the trajectory to measure momentum.

� Plastic scintillators measure the time-of-flight.

� Cerenkov counters identify particles.

� The electromagnetic calorimeter measures

energy.
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Some Necessary Jargon
� Kinematics:

�� � � � � � ��� �
Scattering Plane
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� 4-momentum transfer:

��� � �
�

�� ��� 	 �
� � �� 	

��
 � ��� 	 
 � ��

� Cross section for a given � � , energy

transfer � , and 
 �� :

��� � � �� � � � � � ��� �� �� �� �� � � ��� �� ��� � �� �� � � � � � �� � �� �� �

� � � � � is the interference between parts of the deuteron wave function.

� The quantity � � � is the beam helicity.



Measuring the Fifth Structure Function ��� �� in CLAS
� Recall the expression for the cross section.

� � � � �� � � � � � �� �� �� �� �� � � �� � � �� � �� �� � � � � � �� � �� �� �

where � � � depending on the spin of the beam.

� Recall the orthogonality of sines and cosines.
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Measuring the Fifth Structure Function ��� �� in CLAS

� To get

�
�� � � �� �� out of real event data use the following.

�
�� � � �� �� �

�
� �� � � �

� �

where � � is the number of events for each beam helicity and the sum

is over the different helicities. This is for a given bin in � � , 
 �� , and

energy transfer.

� By dividing we reduce our vulnerability to detector artifacts.



Preliminary Results (not for distribution)
� For 2.6 GeV,

reversed field.
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� For 2.6 GeV,

normal field.
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Conclusions
� We are hunting for quarks (and gluons) hidden inside the nucleus.

� Strong physics motivation to test the nuclear ‘coherent hadronic model’

in a new energy range and push it to its limits.

� Establish a baseline for observing the onset of quark-gluon effects.

� The preliminary � � � � results show this structure function is close to zero

at low ��� . This is a surprising difference with

previous results and theoretical calculations.

At higher � � the agreement is better.

� Talking about the deuteron is a good reason to

hit South Beach in Miami Beach in February.



What is the Force?
� QCD looks like the right way

to get the force at high energy.

22 tons

� The hadronic model uses a

phenomenological force fitted

to data at low energy. This

‘strong’ force is the

residual color force.
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Experimental Status

� Some measurements have

already been made for

��� � �� 	 � � � ��� � � ��� �� ,

but suffer from limited

statistics or angular range.

The plot is from S.Gilad,

et al., NP A631, 276c, 1998. 60 8040200
0.06

0.04

0.02

0

θcm
pq

proportional to

� Measurements of deuteron electrodisintegration were made in 2000

with one of the large particle detectors (CLAS) at JLab.
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Measuring Electrodisintegration of the Deuteron
� Running conditions:
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 � � � � � � �
deuteron target

polarized beam

�� � � � � � �� �

� Detect the scattered

electron and proton.

� Use conservation laws

to identify what’s left

over to find the neutron

(missing mass).
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Living in an Imperfect World

� The CLAS acceptance distorts the cross section with a

sinusoidally-varying component so
�
�� � � �� �� �

�� � � � �� � � �� � � � �� � � �� �� ��� � � � � � � �� � � �� �� �

� The integral in the numerator is

�
� � �
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and the one in the denominator is
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Living in an Approximate, Imperfect World

� Now combine these results so

�
�� � � �� �� � � � � � � � � � � � � �� � � �

� � � � � � � � � � � � � � � �

and we can punt the second term in the denominator since

� � � � � �� � � and �  . This gives us

�
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We’re there!

� Consider
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� �� � �� ��� Moments Analysis For � ��

� For a sinusoidally-varying

component to the acceptance �
�� � � �� �� � � � � � �

� � � �

� Preliminary results for 2.56 GeV, normal field, not acceptance corrected,
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 ��� 
  � � � � � � � � �� , �� �� 
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Helicity Asymmetry Analysis for � ��

� Define � � � � in a more general way.
� � 	 �
�

� � � �
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� �� � � � � � �� � � �� �� �� � � ��� �� ��� � �� �

� Less sensitive to acceptance

corrections, but analysis

may be more complex since

denominator depends on� �� .

� Preliminary results for

2.56 GeV, normal field, not

acceptance corrected,
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Comparison of Different Analysis Methods for � ��

� The shapes and uncertainties

are consistent. We can measure

small � � � � .
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Analysis Cross Checks for � � �

� � � � � � � � �

� Test our analysis against the known results from ‘Single � �

Electroproduction in the � � � � � � Resonance from E1A Data’ by K. Joo

and C. Smith (CLAS Analysis 2001-008).

� Check the helicity signal on a run-by-run basis.

� Takes advantage of the in situ hydrogen calibration target.

� Similar data selection, but requires Bethe-Heitler suppression to use

missing mass to measure the � � .



Comparison of Asymmetries Run By Run.
� K. Joo and C. Smith

for 1.52 GeV (upper panel).

� This analysis for

2.6 GeV, reversed

field (lower panel).
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� Our results for � � � � are

consistent with K. Joo and

C. Smith in sign (the two

experiments use different

� and ��� ranges) and

with helicity sign recorded in

the elog.


