Hunting for Quarks

Out-of-plane Measurements of the Structure Functions

of the Deuteron

Jerry Gilfoyle, 1 et al., (the CLAS Collaboration) 1 University of Richmond

1. Physics Motivation

2. Experiments at Jefferson Lab

3. Measuring Structure Functions

4. Preliminary Results and Conclusions

What Do We Know?

• The Universe is made of quarks and leptons and the force carriers.

- The atomic nucleus is made of protons and neutrons bound by the strong force.
- The quarks are confined inside the protons and neutrons.
- Protons and neutrons are NOT confined.

How Well Do We Know It?

• We have a working theory of strong interactions: quantum chromodynamics or QCD. B.Abbott, et al., Phys. Rev. Lett., **86**, 1707 (2001).

- The coherent hadronic model (the standard model of nuclear physics) works too.
	- L.C.Alexa, et al., Phys. Rev. Lett., **82**, 1374 (1999).

How Well Do We Know It?

-

• We have a working theory of strong interactions: quantum chromodynamics or QCD. B.Abbott, *et al.*, Phys. Rev. Lett., **86**, 1707 (2001). nodynamics or QCD.
pott, *et al.*, Phys. Rev. Lett.,
707 (2001).
effective area of the target

- The coherent hadronic model (the standard model of nuclear physics) works too.
	- L.C.Alexa, et al., Phys. Rev. Lett., **82**, 1374 (1999). 4-momentum transfer squared

What Don't We Know?

- 1. We can't get QCD and the hadronic model to line up. D. Abbott, et al., Phys. Rev Lett. **84**, 5053 (2000).
- hadronic model 'baseline' to see the transition to QCD.
- 3. The deuteron is the simplest case.
	- S. Jeschonnek, Phys. Rev. C,

63, 034609 (2001).

Experiments at Jefferson Lab

- Jefferson Lab is a US Department of Energy national laboratory and the newest 'crown jewel' of the US.
- The centerpiece is a 7/8-mile-long, racetrack-shaped electron accelerator that produces unrivaled beams.
- The electrons do up to five laps around the Continuous Electron Beam Accelerator Facility (CEBAF) and are then extracted and sent to one of three experimental halls.
- All three halls can run simultaneously.

The CEBAF Large Acceptance Spectrometer (CLAS)

- CLAS is ^a 45-ton, \$50-million radiation detector.
- It covers almost all angles.
- It has about 40,000 detecting elements in about 40 layers.
- Drift chambers map the trajectory of the collision. A toroidal magnetic field bends the trajectory to measure momentum.
- Plastic scintillators measure the time-of-flight.
- Cerenkov counters identify particles.
- The electromagnetic calorimeter measures energy.

Some Necessary Jargon

- Kinematics: .
.
. ֧֧֖֧֖֚֚֚֚֝֝֝
֧֚֝
֧֖֖֖֚֚֚֚֝<u>֚</u>
- $\vec{e}d \rightarrow e'p(n)$ $\begin{bmatrix} 1 & 1 \\ 1 &$ $\frac{1}{n}$
- 4-momentum transfer:

4-momentum transfer:
\n
$$
Q^2 = (\vec{p}_{beam} - \vec{p}_e)^2 -
$$

$$
e)^2 -
$$

$$
(E_{beam} - E_e)^2
$$

 $\bullet~$ Cross section for a given Q^2 , energy transfer ω , and θ_{pa} : Cross section for a gi \mathfrak{t}
transfer ω , and θ_{pq} :
 $\sigma^{\pm}=\sigma_L+\sigma_T+\sigma_T$

 $\sigma^{\pm} = \sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) + h \sigma'_{LT} \sin(\phi_{pq})$ transfer ω , and θ_{pq} :
 $\sigma^{\pm} = \sigma_L + \sigma_T + \sigma_{LT}\cos(\phi_{pq}) + \sigma_{TT}\cos(2\phi_{pq}) + h\sigma'_{LT}\sin(\phi)$
 \bullet σ'_{LT} is the interference between parts of the deuteron wave function.

-
- The quantity $h=\pm 1$ is the beam helicity.

• Recall the expression for the cross section.

Measuring the Fifth Structure Function
$$
\sigma'_{LT}
$$
 in CLAS
\nRecall the expression for the cross section.
\n
$$
\sigma^{\pm} = \sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) + h \sigma'_{LT} \sin(\phi_{pq})
$$

where $h=\pm 1$ depending on the spin of the beam.

Recall the orthogonality of sines and cosines. \overline{a}

$$
\sigma^{\pm} = \sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) + h \sigma'_{LT} \sin(\phi_{pq})
$$

where $h = \pm 1$ depending on the spin of the beam.
Recall the orthogonality of sines and cosines.

$$
\frac{1}{\pi} \int_{-\pi}^{\pi} \sin mx \sin nx dx = \delta_{mn} \qquad \frac{1}{\pi} \int_{-\pi}^{\pi} \cos mx \cos nx dx = \delta_{mn}
$$

$$
\int_{-\pi}^{\pi} \sin mx \cos nx dx = 0
$$

$$
\int_{-\pi}^{\pi} \sin mx dx = 0 \qquad \int_{-\pi}^{\pi} \cos mx dx = 0
$$

• Recall the expression for the cross section.

Measuring the Fifth Structure Function σ'_{LT} **in CLAS**
Recall the expression for the cross section.
 $\sigma^{\pm}=\sigma_L+\sigma_T+\sigma_{LT}\cos(\phi_{pq})+\sigma_{TT}\cos(2\phi_{pq})+h\sigma'_{LT}\sin(\phi_{pq})$ $\sigma^{\pm} = \sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) + h \sigma'_{LT} \sin(\phi_{pq})$

• How do we get σ'_{LT} ?

• Recall the expression for the cross section.

Measuring the Fifth Structure Function
$$
\sigma'_{LT}
$$
 in CLAS
\n• Recall the expression for the cross section.
\n
$$
\sigma^{\pm} = \sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) + h \sigma'_{LT} \sin(\phi_{pq})
$$
\n• How do we get σ'_{LT} ? Start with σ^{\pm} and construct an asymmetry.

Now do we get
$$
\sigma'_{LT}
$$
?

\nStart with σ^{\pm} and construct an asymmetry.

\n
$$
A'_{LT}(Q^2, \omega, \theta_{pq}) = \frac{\sigma_{90}^+ - \sigma_{90}^-}{\sigma_{90}^+ + \sigma_{90}^-} = \frac{\sigma'_{LT}}{\sigma_L + \sigma_T - 2\sigma_{TT}} \approx \frac{\sigma'_{LT}}{\sigma_L + \sigma_T}
$$

\nSubscripts on σ^{\pm} refer to ϕ_{pq} .

• Recall the expression for the cross section.

Measuring the Fifth Structure Function
$$
\sigma'_{LT}
$$
 in CLAS
\n• Recall the expression for the cross section.
\n
$$
\sigma^{\pm} = \sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) + h \sigma'_{LT} \sin(\phi_{pq})
$$
\n• How do we get σ'_{LT} ? Start with σ^{\pm} and construct an asymmetry.

low do we get
$$
\sigma'_{LT}
$$
? Start with σ^{\pm} and construct an asymmetry.
\n
$$
A'_{LT}(Q^2, \omega, \theta_{pq}) = \frac{\sigma_{90}^+ - \sigma_{90}^-}{\sigma_{90}^+ + \sigma_{90}^-} = \frac{\sigma'_{LT}}{\sigma_L + \sigma_T - 2\sigma_{TT}} \approx \frac{\sigma'_{LT}}{\sigma_L + \sigma_T}
$$
\nSubscripts on σ^{\pm} refer to ϕ_{pq} .
\nFor a given Q^2 , θ_{pq} , and energy transfer consider

- Subscripts on σ^\pm refer to $\phi_{pq}.$
- $\bullet\,$ For a given Q^2 , $\theta_{pq},$ and energy transfer consider \overline{a}

$$
\langle \sin \phi_{pq} \rangle_{\pm} = \frac{\int_{-\pi}^{\pi} \sigma^{\pm}(\phi_{pq}) \sin \phi_{pq} d\phi}{\int_{-\pi}^{\pi} \sigma^{\pm}(\phi_{pq}) d\phi}
$$

• The numerator is

$$
\int_{-\pi}^{\pi} [\sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) +
$$

$$
h \sigma'_{LT} \sin(\phi_{pq}) \] \sin \phi_{pq} d\phi =
$$

• The denominator is

$$
\int_{-\pi}^{\pi} [\sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) +
$$

$$
h \sigma'_{LT} \sin(\phi_{pq})] d\phi =
$$

• The numerator is

 \sim π

$$
\int_{-\pi}^{\pi} [\sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) +
$$

$$
h\sigma'_{LT} \sin(\phi_{pq}) \sin(\phi_{pq} d\phi = \pi h \sigma'_{LT} \qquad (h = \pm 1)
$$

• The denominator is

$$
\int_{-\pi}^{\pi} [\sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) +
$$

$$
h \sigma'_{LT} \sin(\phi_{pq})] d\phi =
$$

• The numerator is

 \sim \sim

$$
\int_{-\pi}^{\pi} [\sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) +
$$

$$
h\sigma'_{LT} \sin(\phi_{pq}) \sin(\phi_{pq} d\phi = \pi h \sigma'_{LT} \qquad (h = \pm 1)
$$

• The denominator is

$$
\int_{-\pi}^{\pi} [\sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) +
$$

$$
h \sigma'_{LT} \sin(\phi_{pq})] d\phi = 2\pi (\sigma_L + \sigma_T)
$$

The numerator is

 α π

$$
\int_{-\pi}^{\pi} [\sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) +
$$

$$
h \sigma'_{LT} \sin(\phi_{pq}) \] \sin \phi_{pq} d\phi = \pi h \sigma'_{LT} \qquad (h = \pm 1)
$$

• The denominator is

$$
\int_{-\pi}^{\pi} [\sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) +
$$

$$
h \sigma'_{LT} \sin(\phi_{pq})] d\phi = 2\pi (\sigma_L + \sigma_T)
$$

• Put all this together and the result is $\langle \sin \phi_{pq} \rangle_{\pm} = \frac{\pi h \sigma'_{LT}}{2\pi (\sigma_L + \sigma_T)} = \pm \frac{\sigma'_{LT}}{2(\sigma_L + \sigma_T)} \approx \pm \frac{A'_{LT}}{2}$

 $\bullet \,$ To get $\langle \sin\phi_{pq}\rangle_{\pm}$ out of real event data use the following.

$$
\text{or the function of real event data use the f}
$$
\n
$$
\langle \sin \phi_{pq} \rangle_{\pm} = \frac{\sum_{i}^{\pm} \sin \phi_{i}}{N^{\pm}}
$$

where N^{\pm} is the number of events for each beam helicity and the sum is over the different helicities. This is for a given bin in $Q^{\scriptscriptstyle \angle}$, θ_{pq} , and energy transfer.

By dividing we reduce our vulnerability to detector artifacts.

Preliminary Results (not for distribution)

● For 2.6 GeV,

reversed field.

For 2.6 GeV, normal field.

Conclusions

- We are hunting for quarks (and gluons) hidden inside the nucleus.
- Strong physics motivation to test the nuclear 'coherent hadronic model' in ^a new energy range and push it to its limits.
- Establish ^a baseline for observing the onset of quark-gluon effects.
- in a new energy range and push it to its limits.
• Establish a baseline for observing the onset of quark-gluon effects.
• The preliminary A'_{LT} results show this structure function is close to zero at low Q^\angle . This is a surprising difference with previous results and theoretical calculations. At higher Q^{ω} the agreement is better.
- Talking about the deuteron is a good reason to hit South Beach in Miami Beach in February.

What is the Force?

• QCD looks like the right way to get the force at high energy.

• The hadronic model uses a phenomenological force fitted to data at low energy. This 'strong' force is the residual color force.

What is the Force?

• QCD looks like the right way to get the force at high energy. 1.5 22 tons

• The hadronic model uses a phenomenological force fitted to data at low energy. This 'strong' force is the residual color force.

Experimental Status

Some measurements have already been made for - $\approx 0.1-0.3~(GeV/c)^2,$ but suffer from limited statistics or angular range. The plot is from S.Gilad, et al., NP **A631**, 276c, 1998. $\frac{1}{0}$ $\frac{1}{20}$ $\frac{1}{40}$ $\frac{60}{60}$ $\frac{80}{60}$ -0.04 -0.02 Ω

Measurements of deuteron electrodisintegration were made in 2000 with one of the large particle detectors (CLAS) at JLab.

Experimental Status

- proportional to σ'_{LT} Some measurements have already been made for A_{LT} x40% Ω $\approx 0.1-0.3~(GeV/c)^2,$ but suffer from limited -0.02 statistics or angular range. -0.04 The plot is from S.Gilad, et al., NP **A631**, 276c, 1998. $\frac{1}{0}$ $\frac{1}{20}$ $\frac{1}{40}$ $\frac{60}{60}$ $\frac{80}{60}$
- Measurements of deuteron electrodisintegration were made in 2000 with one of the large particle detectors (CLAS) at JLab.

 θ_{pq}^{cm}

 $\frac{1}{L}$

Measuring Electrodisintegration of the Deuteron

- Running conditions: $E = 4.23 \text{ GeV}$ $\frac{1}{\sin \theta}$ $E=2.6\ GeV$ $\frac{1}{\pi}$ and $\frac{1}{\alpha}$ and $\frac{1}{\alpha}$ and $\frac{1}{\alpha}$ and $\frac{1}{\alpha}$ and $\frac{1}{\alpha}$ and $\frac{1}{\alpha}$ deuteron target polarized beam .
.
. $\vec{e}d \rightarrow e'p(n)$.
.
.
. $\begin{array}{l} \mathbf{curl} \ \mathbf{cond} \ \mathbf{23} \ G \ \mathbf{line} \ \mathbf{diag} \$
- Detect the scattered electron and proton.
- Use conservation laws to identify what's left over to find the neutron (missing mass).

Living in an Imperfect World

• The CLAS acceptance distorts the cross section with a sinusoidally-varying component so $\ddot{}$ **Imperfect World**
the cross section with a
t so
 $\sigma^{\pm} \sin \phi_{pq} (1 + a \sin \phi_{pq}) d$

Living in an Imperfect World
acceptance distorts the cross section with a
y-varying component so

$$
\langle \sin \phi_{pq} \rangle_{\pm} = \frac{\int_{-\pi}^{\pi} \sigma^{\pm} \sin \phi_{pq} (1 + a \sin \phi_{pq}) d\phi}{\int_{-\pi}^{\pi} \sigma^{\pm} (1 + a \sin \phi_{pq}) d\phi}
$$
al in the numerator is

$$
+ \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq})
$$

 $\bullet\,$ The integral in the numerator is $\ddot{}$

$$
\langle \sin \phi_{pq} \rangle_{\pm} = \frac{J_{-\pi} \sigma^{3} \sin \phi_{pq} (1 + a \sin \phi_{pq}) a \phi}{\int_{-\pi}^{\pi} \sigma^{\pm} (1 + a \sin \phi_{pq}) d\phi}
$$

ne integral in the numerator is

$$
\int_{-\pi}^{\pi} [\sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) + h \sigma'_{LT} \sin(\phi_{pq})] \sin \phi_{pq} (1 + a \sin \phi_{pq}) d\phi
$$

$$
= \pm \pi \sigma'_{LT} + a \pi (\sigma_L + \sigma_T)
$$

and the one in the denominator is

$$
\int_{-\pi}^{\pi} [\sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq})
$$

+ $h \sigma'_{LT} \sin(\phi_{pq})](1 + a \sin \phi_{pq}) d\phi$
= $2\pi (\sigma_L + \sigma_T) \pm a\pi \sigma'_{LT}$

Living in an Approximate, Imperfect World

• Now combine these results so

$$
\text{hese results so}
$$
\n
$$
\langle \sin \phi_{pq} \rangle_{\pm} = \frac{\pm \pi \sigma_{LT}' + a\pi (\sigma_L + \sigma_T)}{2\pi (\sigma_L + \sigma_T) \pm a\pi \sigma_{LT}'}
$$

and we can punt the second term in the denominator since ϵ $\tau_{LT}\ll\sigma_L+\sigma_T$ and $a\ll 1.$ This gives us

$$
\langle \sin \phi_{pq} \rangle_{\pm} = \frac{\pm \pi \sigma_{LT}' + a\pi (\sigma_L + \sigma_T)}{2\pi (\sigma_L + \sigma_T) \pm a\pi \sigma_{LT}'}
$$

\nIn punt the second term in the denominator since
\n
$$
L + \sigma_T \text{ and } a \ll 1. \text{ This gives us}
$$

\n
$$
\langle \sin \phi_{pq} \rangle_{\pm} = \frac{\pm \pi \sigma_{LT}'}{2\pi (\sigma_L + \sigma_T)} + \frac{a\pi (\sigma_L + \sigma_T)}{\pi (\sigma_L + \sigma_T)}
$$

\n
$$
= \pm \frac{A_{LT}'}{2} + a
$$

We're there!

• Consider

$$
\langle \sin \phi_{pq} \rangle_{+} - \langle \sin \phi_{pq} \rangle_{-} = (\frac{A'_{LT}}{2} + a) - (-\frac{A'_{LT}}{2} + a)
$$

$$
= A'_{LT}
$$

and

$$
\langle \sin \phi_{pq} \rangle_+ + \langle \sin \phi_{pq} \rangle_- = \left(\frac{A'_{LT}}{2} + a \right) + \left(-\frac{A'_{LT}}{2} + a \right)
$$

$$
= 2a
$$

$\langle \sin \phi_{pq} \rangle_{\pm}$ Moments Analysis For .

• For a sinusoidally-varying $\langle \sin\phi_{pq}\rangle_{\pm}$ Moments Analysis For A'_{LT}
For a sinusoidally-varying $\langle \sin\phi_{pq}\rangle_{\pm}=\pm\frac{A'_{LT}}{2}+a$

$$
\langle \sin \phi_{pq} \rangle_{\pm} = \pm \frac{A'_{LT}}{2} + a
$$

• Preliminary results for 2.56 GeV, normal field, not acceptance corrected, $0. \circ \lt \varphi \; < \; 1.0 \ (GeV/C) \;$, $0.95 \lt \textit{TB} \lt \text{1.05}$. -

Helicity Asymmetry Analysis for

- **Helicity Asymmetry
• Define** A'_{LT} **in a more general way.** $N^+ - N$ ֦ **Helicity Asymmetry Analysis for** A'_{LT}
e A'_{LT} in a more general way.
 $\frac{N^+ - N^-}{N^+ + N^-} = \frac{\sigma'_{LT} \sin \phi_{pq}}{\sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq})}$ $\ddot{}$ $\overline{}$ σ'_{LT} sin ϕ_{pq}
- Less sensitive to acceptance corrections, but analysis may be more complex since denominator depends on $\phi_{pq}.$
- Preliminary results for 2.56 GeV, normal field, not acceptance corrected, $0.0 \leq Q_{\rm c} \leq 1.0~(GeV/C)$, $_{\rm a,15}^{\rm out}$ - .

Comparison of Different Analysis Methods for \overline{a}

- The shapes and uncertainties are consistent. We can measure The shapes
are consist
small $A_{LT}^{\prime}.$
- 2.56 GeV, normal field, not acceptance corrected, $0.0 \leq Q \leq 1.0~(\text{GeV}/C)$, - \cdots \sim \sim D \sim \cdots

Analysis Cross Checks for $\frac{1}{L}$

- $e^{\prime}e^{\prime}p\pi^{0}$ p1
- Test our analysis against the known results from 'Single π^0 Electroproduction in the $\Delta(1232)$ Resonance from E1A Data' by K. Joo and C. Smith (CLAS Analysis 2001-008).
- Check the helicity signal on a run-by-run basis.
- Takes advantage of the *in situ* hydrogen calibration target.
- Similar data selection, but requires Bethe-Heitler suppression to use missing mass to measure the π^0 .

Comparison of Asymmetries Run By Run.

- K. Joo and C. Smith for 1.52 GeV (upper panel).
- This analysis for 2.6 GeV, reversed field (lower panel). 2.0 Gev, reversed
field (lower panel).
• Our results for A'_{LT} are
- consistent with K. Joo and C. Smith in sign (the two experiments use different ϵ and Q^2 ranges) and with helicity sign recorded in the elog.

