Hunting for Quarks

Out-of-plane Measurements of the Structure Functions

of the Deuteron

Jerry Gilfoyle,¹ *et al.*, (the CLAS Collaboration) 1 *University of Richmond*

1. Physics Motivation

2. Experiments at Jefferson Lab

3. Measuring Structure Functions

4. Preliminary Results and Conclusions

What Do We Know?

 The Universe is made of quarks and leptons and the force carriers.

- The atomic nucleus is made of protons and neutrons bound by the strong force.
- The quarks are confined inside the protons and neutrons.
- Protons and neutrons are NOT confined.

F	ERMI	ONS	matter constituents spin = 1/2, 3/2, 5/2,		
Leptons spin = 1/2			Quarks spin = 1/2		
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge
ν_{e} electron neutrino	<1×10 ⁻⁸	0	U up	0.003	2/3
e electron	0.000511	-1	d down	0.006	-1/3
ν_{μ} muon neutrino	<0.0002	0	C charm	1.3	2/3
μ muon	0.106	-1	S strange	0.1	-1/3
$ u_{\tau}^{\text{tau}}_{\text{neutrino}}$	<0.02	0	t top	175	2/3
au tau	1.7771	-1	b bottom	4.3	-1/3

How Well Do We Know It?

We have a working theory of strong interactions: quantum chromodynamics or QCD.
B.Abbott, *et al.*, Phys. Rev. Lett., 86, 1707 (2001).

- The coherent hadronic model (the standard model of nuclear physics) works too.
 - L.C.Alexa, *et al.*, Phys. Rev. Lett., **82**, 1374 (1999).

How Well Do We Know It?

We have a working theory of strong interactions: quantum chromodynamics or QCD.
B.Abbott, *et al.*, Phys. Rev. Lett.,
86, 1707 (2001).

effective area of the target

- The coherent hadronic model (the standard model of nuclear physics) works too.
 - L.C.Alexa, *et al.*, Phys. Rev. Lett., **82**, 1374 (1999).

4-momentum transfer squared

What Don't We Know?

- We can't get QCD and the hadronic model to line up.
 D. Abbott, *et al.*, Phys. Rev Lett. **84**, 5053 (2000).
- 2. We have to find the hadronic model 'baseline' to see the transition to QCD.
- 3. The deuteron is the simplest case.
 - S. Jeschonnek, Phys. Rev. C,

63, 034609 (2001).

Experiments at Jefferson Lab

- Jefferson Lab is a US Department of Energy national laboratory and the newest 'crown jewel' of the US.
- The centerpiece is a 7/8-mile-long, racetrack-shaped electron accelerator that produces unrivaled beams.
- The electrons do up to five laps around the Continuous Electron Beam Accelerator Facility (CEBAF) and are then extracted and sent to one of three experimental halls.
- All three halls can run simultaneously.

The CEBAF Large Acceptance Spectrometer (CLAS)

- CLAS is a 45-ton, \$50-million radiation detector.
- It covers almost all angles.
- It has about 40,000 detecting elements in about 40 layers.
- Drift chambers map the trajectory of the collision. A toroidal magnetic field bends the trajectory to measure momentum.
- Plastic scintillators measure the time-of-flight.
- Cerenkov counters identify particles.
- The electromagnetic calorimeter measures energy.

Some Necessary Jargon

- Kinematics:
 - $\vec{ed} \to e' p(n)$
- 4-momentum transfer:

$$Q^2 = (\vec{p}_{beam} - \vec{p}_e)^2 -$$

$$(E_{beam} - E_e)^2$$

• Cross section for a given Q^2 , energy transfer ω , and θ_{pq} :

 $\sigma^{\pm} = \sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) + h\sigma'_{LT} \sin(\phi_{pq})$

- σ'_{LT} is the interference between parts of the deuteron wave function.
- The quantity $h = \pm 1$ is the beam helicity.

• Recall the expression for the cross section.

$$\sigma^{\pm} = \sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) + h \sigma'_{LT} \sin(\phi_{pq})$$

where $h = \pm 1$ depending on the spin of the beam.

• Recall the orthogonality of sines and cosines.

$$\frac{1}{\pi} \int_{-\pi}^{\pi} \sin mx \sin nx dx = \delta_{mn} \qquad \frac{1}{\pi} \int_{-\pi}^{\pi} \cos mx \cos nx dx = \delta_{mn}$$
$$\int_{-\pi}^{\pi} \sin mx \cos nx dx = 0$$
$$\int_{-\pi}^{\pi} \sin mx dx = 0 \qquad \int_{-\pi}^{\pi} \cos mx dx = 0$$

• Recall the expression for the cross section.

 $\sigma^{\pm} = \sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) + h\sigma'_{LT} \sin(\phi_{pq})$

• How do we get σ'_{LT} ?

• Recall the expression for the cross section.

$$\sigma^{\pm} = \sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) + h\sigma'_{LT} \sin(\phi_{pq})$$

• How do we get σ'_{LT} ? Start with σ^{\pm} and construct an asymmetry.

$$A'_{LT}(Q^2, \omega, \theta_{pq}) = \frac{\sigma_{90}^+ - \sigma_{90}^-}{\sigma_{90}^+ + \sigma_{90}^-} = \frac{\sigma'_{LT}}{\sigma_L + \sigma_T - 2\sigma_{TT}} \approx \frac{\sigma'_{LT}}{\sigma_L + \sigma_T}$$

Subscripts on σ^{\pm} refer to ϕ_{pq} .

• Recall the expression for the cross section.

$$\sigma^{\pm} = \sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) + h\sigma'_{LT} \sin(\phi_{pq})$$

• How do we get σ'_{LT} ? Start with σ^{\pm} and construct an asymmetry.

$$A'_{LT}(Q^2, \omega, \theta_{pq}) = \frac{\sigma_{90}^+ - \sigma_{90}^-}{\sigma_{90}^+ + \sigma_{90}^-} = \frac{\sigma'_{LT}}{\sigma_L + \sigma_T - 2\sigma_{TT}} \approx \frac{\sigma'_{LT}}{\sigma_L + \sigma_T}$$

Subscripts on σ^{\pm} refer to ϕ_{pq} .

• For a given Q^2 , θ_{pq} , and energy transfer consider

$$\langle \sin \phi_{pq} \rangle_{\pm} = \frac{\int_{-\pi}^{\pi} \sigma^{\pm}(\phi_{pq}) \sin \phi_{pq} d\phi}{\int_{-\pi}^{\pi} \sigma^{\pm}(\phi_{pq}) d\phi}$$

• The numerator is

~

$$\int_{-\pi}^{\pi} [\sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) + h\sigma_{TT} \sin(\phi_{pq})] \sin \phi_{pq} d\phi =$$

• The denominator is

$$\int_{-\pi}^{\pi} [\sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) + h\sigma_{TT} \sin(\phi_{pq})] d\phi = h\sigma_{LT}' \sin(\phi_{pq}) d\phi =$$

• The numerator is

$$\int_{-\pi}^{\pi} [\sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) + h\sigma'_{LT} \sin(\phi_{pq})] \sin \phi_{pq} d\phi = \pi h \sigma'_{LT} \qquad (h = \pm 1)$$

• The denominator is

$$\int_{-\pi}^{\pi} [\sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) + h\sigma_{TT} \sin(\phi_{pq})] d\phi = h\sigma_{LT}' \sin(\phi_{pq}) d\phi =$$

• The numerator is

$$\int_{-\pi}^{\pi} [\sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) + h\sigma'_{LT} \sin(\phi_{pq})] \sin \phi_{pq} d\phi = \pi h \sigma'_{LT} \qquad (h = \pm 1)$$

• The denominator is

$$\int_{-\pi}^{\pi} [\sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) + h\sigma_{TT} \sin(\phi_{pq})] d\phi = 2\pi (\sigma_L + \sigma_T)$$

• The numerator is

oπ

$$\int_{-\pi}^{\pi} [\sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) + h\sigma_{TT} \sin(\phi_{pq})] \sin \phi_{pq} d\phi = \pi h\sigma_{LT}' \quad (h = \pm 1)$$

• The denominator is

$$\int_{-\pi}^{\pi} [\sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) + h\sigma_{TT} \sin(\phi_{pq})] d\phi = 2\pi (\sigma_L + \sigma_T)$$

• Put all this together and the result is $\langle \sin \phi_{pq} \rangle_{\pm} = \frac{\pi h \sigma'_{LT}}{2\pi (\sigma_L + \sigma_T)} = \pm \frac{\sigma'_{LT}}{2(\sigma_L + \sigma_T)} \approx \pm \frac{A'_{LT}}{2}$

• To get $\langle \sin \phi_{pq} \rangle_{\pm}$ out of real event data use the following.

$$\langle \sin \phi_{pq} \rangle_{\pm} = \frac{\sum_{i}^{\pm} \sin \phi_{i}}{N^{\pm}}$$

where N^{\pm} is the number of events for each beam helicity and the sum is over the different helicities. This is for a given bin in Q^2 , θ_{pq} , and energy transfer.

• By dividing we reduce our vulnerability to detector artifacts.

Preliminary Results (not for distribution)

-0.1

-0.15^{LL}

10 20 30

40

50

60

70 80

 $\theta_{pq}^{cm} \text{ (deg)}$

• For 2.6 GeV,

• For 2.6 GeV,

normal field.

reversed field.

Conclusions

- We are hunting for quarks (and gluons) hidden inside the nucleus.
- Strong physics motivation to test the nuclear 'coherent hadronic model' in a new energy range and push it to its limits.
- Establish a baseline for observing the onset of quark-gluon effects.
- The preliminary A'_{LT} results show this structure function is close to zero at low Q^2 . This is a surprising difference with previous results and theoretical calculations. At higher Q^2 the agreement is better.
- Talking about the deuteron is a good reason to hit South Beach in Miami Beach in February.

What is the Force?

 QCD looks like the right way to get the force at high energy.

 The hadronic model uses a phenomenological force fitted to data at low energy. This 'strong' force is the residual color force.

What is the Force?

 QCD looks like the right way to get the force at high energy.

 The hadronic model uses a phenomenological force fitted to data at low energy. This 'strong' force is the residual color force.

Experimental Status

• Some measurements have already been made for $Q^2 \approx 0.1 - 0.3 (GeV/c)^2$, but suffer from limited statistics or angular range. The plot is from S.Gilad, *et al.*, NP A631, 276c, 1998.

 Measurements of deuteron electrodisintegration were made in 2000 with one of the large particle detectors (CLAS) at JLab.

Experimental Status

- proportional to σ'_{LT} Some measurements have already been made for A_{1T} x40% 0 $Q^2 \approx 0.1 - 0.3 \, (GeV/c)^2$, but suffer from limited -0.02statistics or angular range. -0.04The plot is from S.Gilad, -0.06 et al., NP A631, 276c, 1998. 20 60 80 40 0
- Measurements of deuteron electrodisintegration were made in 2000 with one of the large particle detectors (CLAS) at JLab.

 θ_{pq}^{cm}

Measuring Electrodisintegration of the Deuteron

- Running conditions: $E = 4.23 \ GeV$ $E = 2.6 \ GeV$ deuteron target polarized beam $\vec{ed} \rightarrow e'p(n)$
- Detect the scattered electron and proton.
- Use conservation laws to identify what's left over to find the neutron (missing mass).

Living in an Imperfect World

• The CLAS acceptance distorts the cross section with a sinusoidally-varying component so

$$\langle \sin \phi_{pq} \rangle_{\pm} = \frac{\int_{-\pi}^{\pi} \sigma^{\pm} \sin \phi_{pq} (1 + a \sin \phi_{pq}) d\phi}{\int_{-\pi}^{\pi} \sigma^{\pm} (1 + a \sin \phi_{pq}) d\phi}$$

• The integral in the numerator is

$$\int_{-\pi}^{\pi} [\sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) + h\sigma'_{LT} \sin(\phi_{pq})] \sin \phi_{pq} (1 + a \sin \phi_{pq}) d\phi$$
$$= \pm \pi \sigma'_{LT} + a\pi (\sigma_L + \sigma_T)$$

and the one in the denominator is

$$\int_{-\pi}^{\pi} [\sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) + h\sigma'_{LT} \sin(\phi_{pq})](1 + a\sin\phi_{pq})d\phi$$
$$= 2\pi(\sigma_L + \sigma_T) \pm a\pi\sigma'_{LT}$$

Living in an Approximate, Imperfect World

• Now combine these results so

$$\langle \sin \phi_{pq} \rangle_{\pm} = \frac{\pm \pi \sigma'_{LT} + a\pi (\sigma_L + \sigma_T)}{2\pi (\sigma_L + \sigma_T) \pm a\pi \sigma'_{LT}}$$

and we can punt the second term in the denominator since $\sigma'_{LT} \ll \sigma_L + \sigma_T$ and $a \ll 1$. This gives us

$$\langle \sin \phi_{pq} \rangle_{\pm} = \frac{\pm \pi \sigma'_{LT}}{2\pi (\sigma_L + \sigma_T)} + \frac{a\pi (\sigma_L + \sigma_T)}{\pi (\sigma_L + \sigma_T)}$$
$$= \pm \frac{A'_{LT}}{2} + a$$

We're there!

• Consider

$$\langle \sin \phi_{pq} \rangle_+ - \langle \sin \phi_{pq} \rangle_- = \left(\frac{A'_{LT}}{2} + a \right) - \left(-\frac{A'_{LT}}{2} + a \right)$$
$$= A'_{LT}$$

and

$$\langle \sin \phi_{pq} \rangle_+ + \langle \sin \phi_{pq} \rangle_- = \left(\frac{A'_{LT}}{2} + a \right) + \left(-\frac{A'_{LT}}{2} + a \right)$$
$$= 2a$$

$\langle \sin \phi_{pq} \rangle_{\pm}$ Moments Analysis For A'_{LT}

• For a sinusoidally-varying component to the acceptance

$$\langle \sin \phi_{pq} \rangle_{\pm} = \pm \frac{A'_{LT}}{2} + a$$

• Preliminary results for 2.56 GeV, normal field, not acceptance corrected, $0.8 < Q^2 < 1.0 \ (GeV/c)^2$, $0.95 < x_B < 1.05$.

Helicity Asymmetry Analysis for A'_{LT}

- Less sensitive to acceptance corrections, but analysis may be more complex since denominator depends on ϕ_{pq} .
- Preliminary results for 2.56 GeV, normal field, not acceptance corrected, $0.8 < Q^2 < 1.0 \ (GeV/c)^2$, $0.95 < x_B < 1.05$.

Comparison of Different Analysis Methods for A'_{LT}

- The shapes and uncertainties are consistent. We can measure small A'_{LT}.
- 2.56 GeV, normal field, not acceptance corrected, $0.8 < Q^2 < 1.0 \ (GeV/c)^2$, $0.95 < x_B < 1.05$.

Analysis Cross Checks for A'_{Lt}

- $ep \to e'p\pi^0$
- Test our analysis against the known results from 'Single π^0 Electroproduction in the $\Delta(1232)$ Resonance from E1A Data' by K. Joo and C. Smith (CLAS Analysis 2001-008).
- Check the helicity signal on a run-by-run basis.
- Takes advantage of the *in situ* hydrogen calibration target.
- Similar data selection, but requires Bethe-Heitler suppression to use missing mass to measure the π^0 .

Comparison of Asymmetries Run By Run.

- K. Joo and C. Smith for 1.52 GeV (upper panel).
- This analysis for
 2.6 GeV, reversed
 field (lower panel).
- Our results for A'_{LT} are consistent with K. Joo and C. Smith in sign (the two experiments use different ϵ and Q^2 ranges) and with helicity sign recorded in the elog.

