Progress Report for Analysis of $d(\vec{e}, e'p)n$ for the E5 Run Period

G.P.Gilfoyle, R. Burrell, K. Greenholt, University of Richmond

- 1. Introduction.
- 2. Impact of electron fiducial cuts.
- 3. Generating proton fiducial cuts.
- 4. Effect on fifth structure function asymmetry.

Introduction

- Goal: Measure the imaginary part of the LT interference term of $d(\vec{e}, e'p)n$ to test the hadronic model at low $Q^2 \iff 1 \; (GeV/c)^2$).
- Use the E5 out-of-plane proton production to extract the fifth structure function.
- Cross section:

$$\frac{d^3\sigma}{d\omega d\Omega_e d\Omega_p} = \sigma^{\pm} = \sigma_L + \sigma_T + \sigma_T + \sigma_L + \sigma_$$

 $\sigma_{LT}\cos(\phi_{pq}) + \sigma_{TT}\cos(2\phi_{pq}) + h\sigma'_{LT}\sin(\phi_{pq})$

• Helicity Asymmetry

$$A'_{LT} = \frac{\sigma_{90}^{+} - \sigma_{90}^{-}}{\sigma_{90}^{+} + \sigma_{90}^{-}} \approx \frac{\sigma'_{LT}}{\sigma_{L} + \sigma_{T}} = \langle \sin \phi_{pq} \rangle_{+} - \langle \sin \phi_{pq} \rangle_{-}$$

Subscripts - ϕ_{pq} . Superscripts - beam helicity.

Impact of Electron Fiducial Cuts - 1

• The electron fiducial cuts had a significant effect on A'_{LT} , the fifth-structure function asymmetry for $E = 2.6 \ GeV$, normal polarity running.

 One possible explanation could be a problem with the reconstruction for tracks near the coils.

Impact of Electron Fiducial Cuts - 2

$$N_{diff} = N_{outside} - C \times N_{inside}$$
 (C normalizes the areas)

Normalized Difference

Normalized Difference

Normalized Difference

Normalized Difference

Normalized Difference

Normalized Difference

Impact of Electron Fiducial Cuts - 3

- The effect can be caused by rapid changes in A'_{LT} as a function of Q^2 .
- Restrict the Q^2 range so the distribution changes little when the cuts are turned on $(Q^2 > 1.0 (GeV/c)^2).$
- This seems to work. The structures in A'_{LT} are sensitive to the underlying Q^2 distribution.

• Select e'p events from $d(\vec{e}, e'p)n$ and fit the ϕ_p dependence with a trapezoid (generation 1 fits).

• Unfortunately, the acceptance is not uniform in ϕ_p for $\theta_p \approx 40^\circ - 70^\circ$ due to quasielastic events and the electron acceptance.

• Try excluding quasielastic events using W and coplanarity cuts, but the ϕ_p acceptance is still not uniform and there are few events in the region of interest.

• Exclude events with $W > 1.2 \ GeV$, ep coincidences with $\theta_e < 40^{\circ}$, and include positive pions in the sample. See CLAS-Note 2001-013 (Niyazov and Weinstein).

• Comparison of proton 'edges' with $p + \pi^+$ edges.

Comparison of proton and proton- π^* samples

• Fit the edges with the following (generation 2 fits).

$$\phi_{edge} = \phi_0 \pm b_{l,r} \left(1 - \frac{1}{1 + \frac{\theta - \theta_0}{a_{l,r}}} \right) \qquad \theta < \theta_{l,r}$$
$$= constant \qquad \theta \ge \theta_{l,r}$$

 θ - hadron scattering angle. $\phi_0, a_{l,r}, b_{l,r}, \theta_0, \theta_{l,r}$ - fit parameters.

 \pm - sign of the second term depends on which side of the sector is being fit (CLAS Note 2001-013).

• Fit the momentum dependence of the second generation fit parameters (generation 3 fits).

Impact of Proton Fiducial Cuts - 1

• Cleans up edges of proton acceptance.

Impact of Proton Fiducial Cuts - 2

• Little effect on A'_{LT} .

Conclusions

- Fifth-structure-function asymmetry is sensitive to electron fiducial cuts due to effects on the Q^2 distribution in the event sample. For more details and code see entries 247, 256, 266, and 268 in E5 elog http://clasweb.jlab.org/cgi-bin/ENOTE/enote.pl?nb=e5&action=toc.
- Fiducial cuts for positive hadrons for the $E = 2.6 \ GeV$, normal polarity running conditions were derived from a mixed sample of protons and positive pions. More details and code can be found in the E5 elog in entries 270-273.
- The positive hadron fiducial cuts have little effect on the fifth-structure-function asymmetry.
- We are now generating electron and proton fiducial cuts and momentum corrections for the $E = 2.6 \ GeV$, reversed torus polarity data. The $E = 4.2 \ GeV$, normal torus polarity data are next.

Excluding Events with $\theta_e < 40^\circ$

- Proton and positive pion acceptance for $d(\vec{e}, p)n$ in coincidence with an electron.
- The round shape for $\theta_h \approx 60^\circ$ causes the trapezoid fit to fail. The shape is due to the forward-angle electron acceptance.
- In the top panel electrons with $\theta_e < 40^\circ$ are excluded only for sector 4. Note the hadron acceptance in sector 1.

Summary

- For $d(\vec{e}, e'p)n$ at $E = 2.6 \ GeV$ and normal torus polarity, the fifth-structure function asymmetry A'_{LT} is sensitive to the electron fiducial cuts reflecting the underlying Q^2 distribution in the data. Other tests show no problems with the event reconstruction for events near the coils.
- We have generated fiducial cuts for the proton for $d(\vec{e}, e'p)n$ using a mixed sample of protons and positive pions. The proton fiducial cuts have little effect on A'_{LT} .

