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1 The CLAS12 Detector and its Science Program at the
Jefferson Lab Upgrade

1.1 Introduction

A brief overview of the CLAS12 detector is presented and a brief synopsis of the initial
physics program after the energy-doubling of the Jefferson Lab electron accelerator. Con-
struction of the 12 GeV upgrade project started in October 2008. A broad program has
been developed to map the nucleon’s 3-dimensional spin and flavor content through the
measurement of deeply exclusive and semi-inclusive processes. Other programs include
measurements of the forward distribution function to large xB ≤ 0.85 and the quark and
gluon polarized distribution functions, and nucleon ground state and transition form fac-
tors at high Q2. The 12 GeV electron beam and the large acceptance of CLAS12 are also
well suited to explore hadronization properties using the nucleus as a laboratory.

1.2 Science Summary

The challenge of understanding nucleon electromagnetic structure still continues after more
than five decades of experimental scrutiny. From the initial measurements of elastic form
factors to the accurate determination of parton distributions through deep inelastic scat-
tering (DIS), the experiments have increased in statistical and systematic accuracy. It was
realized in recent years that the parton distribution functions represent special cases of a
more general and much more powerful way of characterizing the structure of the nucleon,
the generalized parton distributions (GPDs).

The GPDs describe the simultaneous distribution of particles with respect to both
position and momentum. In addition to providing information about the spatial density
(form factors) and momentum density (parton distributions), these functions reveal the
correlation of the spatial and momentum distributions, i.e. how the spatial shape of the
nucleon changes when probing quarks of different wavelengths.

The concept of GPDs has led to completely new methods of “spatial imaging” of the
nucleon, either in the form of two-dimensional tomographic images, or in the form of
genuine three-dimensional images. GPDs also allow us to quantify how the orbital motion
of quarks in the nucleon contributes to the nucleon spin – a question of crucial importance
for our understanding of the “mechanics” underlying nucleon structure. The spatial view
of the nucleon enabled by the GPDs provides us with new ways to test dynamical models
of nucleon structure.

The mapping of the nucleon GPDs, and a detailed understanding of the spatial quark
and gluon structure of the nucleon, have been widely recognized as the key objectives of
nuclear physics of the next decade. This requires a comprehensive program, combining
results of measurements of a variety of processes in electron–nucleon scattering with struc-
tural information obtained from theoretical studies, as well as with expected results from
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future lattice QCD simulations.
While GPDs, and also the more recently introduced transverse momentum-dependent

distribution functions (TMDs), open up new avenues of research, the traditional means of
studying nucleon structure through electromagnetic elastic and transition form factors, and
through flavor- and spin-dependent parton distributions, must also be employed with high
precision to extract physics on the nucleon structure in the transition from the regime of
quark confinement to the domain of asymptotic freedom. These avenues of research can be
explored using the 12 GeV cw beam of the JLab upgrade with much higher precision than
has been achieved before, and can help reveal some of the remaining secrets of QCD. Also,
the high luminosity available will allow researchers to explore the regime of extreme quark
momentum, where a single quark carries 80% or more of the proton’s total momentum.
This domain of QCD has been hardly explored and provides challenges to the detection
systems in term of kinematic coverage and high luminosity operation.

A large portion of the science program is dedicated to the measurement of exclusive
processes, such as deeply virtual Compton scattering ep → epγ or deeply virtual meson
production, e.g. ep→ epρ0 or ep→ eπ+n, which require the detection of 3 or 4 particles in
the final state. Another part of the program is based on the measurement of semi-inclusive
processes, e.g. ep → eπ+X or ep → eπ0X, where a high momentum charged or neutral
pion must be detected in addition to the scattered electron.

Other programs require measurement of the full cm angular distribution of a more
complex final state such as ep → epπ+π− to be able to identify the spin-parity of an
intermediate baryon resonance.

The CLAS12 science program currently covers GDPs, hard-exclusive processes, semi-
inclusive deep inelastic processes, single-spin asymmetry measurements, deep inelastic
structure functions of the nucleon, experiments using the nucleus as a laboratory and
hadron spectroscopy. It includes a broad program using polarized beams, longitudinally
and transversely polarized targets, and measurements of outgoing recoil baryon polariza-
tion.

1.3 From CLAS to CLAS12

The CLAS detector was designed and built in the 1990s and became fully operational in
1998. It has been in operation since. CLAS has been operated with electron and photon
beams with luminosities up to L = 1034 sec−1cm−2. The driving motivation for CLAS
was the nucleon resonance program, with emphasis on the study of resonance transition
form factors and the search for missing resonances. Figure 1 shows two schematic views
of CLAS. At the core of CLAS is a toroidal magnet consisting of six superconducting
coils symmetrically arranged around the beam line. Each of the sectors is instrumented
as an independent spectrometer with 34 layers of tracking chambers, allowing for the full
reconstruction of the charged particle 3-momentum vectors. Charged hadron identification
is accomplished by combining momentum and time-of-flight with the measured path length
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from the target to the scintillation counters which surround the tracking detectors. The
forward angular range from 10◦ to 50◦ is instrumented with gas Cerenkov counters for the
identification of electrons.

The CLAS data acquisition system was designed to read out 35,000 drift chamber sense
wires and over 2,500 channels of photomultiplier tubes.

Drift Chambers
Region 1
Region 2
Region 3

TOF Counters Cerenkov Counters

Large-angle Calorimeter
Electromagnetic Calorimeter

1 m

Drift Chambers
Region 1
Region 2
Region 3

TOF Counters

Main Torus Coils

Mini-torus Coils
1 m

Figure 1: Two views of the CLAS detector system. Left panel: Longitudinal cut along
the beam line showing the three different regions of drift chambers, the Cerenkov counters
at forward angles, the time-of-flight (TOF) system, and the electromagnetic calorimeters.
The simulated event shows an electron (upper) and a positively charged hadron. Right
panel: Transverse cut through CLAS. The six superconducting coils provide a six sector
structure with independent detectors.

1.4 The CLAS12 Detector

To meet the requirements of high statistics measurements for exclusive processes, the equip-
ment at JLab will undergo major upgrades. In particular it will include the CLAS12 Large
Acceptance Spectrometer [1]. A 3-dimensional rendition is shown in Fig. 2. CLAS12 has
two major parts with different functions, the Forward Detector (FD) and the Central De-
tector (CD). The FD retains the 6-sector symmetric design of CLAS, which is based on
a toroidal magnet with six superconducting coils that are symmetrically arranged around
the beam axis. The main new features of CLAS12 include operation with a luminosity
of 1035 cm−2sec−1, an order of magnitude increase over CLAS [2], and improved accep-
tance and particle detection capabilities at forward angles. In this section we present short
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descriptions of the detector system.

1.4.1 The Forward Detector

The doubling of the beam energy from 6 GeV to 12 GeV requires improved electron-pion
separation at higher momentum. This is achieved with a threshold gas Cerenkov counter
with a pion momentum threshold of about 5 GeV. The new high threshold Cerenkov
counter (HTCC) is positioned in front of the superconducting toroidal magnet, and has to
present as little material to the charged particles as practical to limit the multiple scattering
contributing to the vertex resolution. This requires use of low mass composite material for
the mirror system.

The HTCC is followed by a toroidal magnet for the momentum analysis of tracks with
scattering angles from 5◦ to 40◦. Similar to CLAS, the new toroidal magnet has six su-
perconducting coils symmetrically arranged around the beam line, and provides six sectors
for charged particle detection. Each sector has its own tracking and particle identification
detectors. Tracking is accomplished with a set of 3 regions of drift chambers with 12 layers
of hexagoal drift cells arranged at stereo angles of ±6◦. This arrangement provides good
angular resolution both in polar and in azimuthal angles. The drift chamber system will
provide up to 36 measurements for a single charged track and has sufficient redundancy
for pattern recognition and track reconstruction.

The torus magnet and the drift chamber system are followed by the low-threshold
Cerenkov counter (LTCC) that provides charged pion identification for momenta greater
than 3 GeV. Following the LTCC are two arrays of plastic scintillators for charged particle
identification. The first layer is 6 cm thick and has 6 cm wide bars. It provides timing
information of δT < 100 psec. The second layer contains 23 bars of 5 cm thick and 15
cm wide scintillator and provides timing information of 120 to 180 psec, depending on
the length of the bars. A combined average resolution of 80 psec is expected. For equal
pion, kaon, and proton yields, this will enable a 4σ π/K separation up to 3 GeV, and a
K/p separation up to 4.5 GeV from time-of-flight measurements alone. A future upgrade
of the particle identification system is under consideration. One or more of the LTCC
sectors would be replaced with RICH detectors, allowing for a significant improvement
in the identification of pions, kaons and protons at high momentum where time-of-flight
measurements are less effective.

Large parts of the physics program require the identification of single high energy
photons and separation from π0 → γγ up to 9 GeV. The granularity of the existing elec-
tromagnetic calorimeter (EC) will be improved by adding a preshower calorimeter (PCAL)
of 5-6 radiation lengths in front of the EC. The PCAL is expected to provide a factor of 2.5
improvement in spatial resolution and two-photon separation up to 10 GeV momenta. At
forward angles, below 6◦, a lead-tungstate inner calorimeter (IC) consisting of 420 crystals
with an average cross section of 15 mm x 15 mm and 22 rad. length thick, provides photon
and π◦ identification for momenta up to 10 GeV.
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A quasi-real photon forward tagging system (FT) will measure electrons at scatter-
ing angles from 2◦ - 4◦ using the IC for energy measurements, a segmented scintillator
hodoscope for triggering, and micromegas tracking chambers.

1.4.2 The Central Detector

The Central Detector (CD) is based on a compact solenoid magnet with maximum central
magnetic field of 5 Tesla. The solenoid magnet provides momentum analysis for polar
angles greater than 35◦, protection of the tracking detectors from background electrons, and
acts as a polarizing field for dynamically polarized solid state targets. All three functions
require high magnetic field. The overall size of the solenoid is restricted to 2000 mm in
diameter, which allows a maximum warm bore for the placement of detectors of 780 mm.
To obtain sufficient momentum resolution in the limited space available requires high field
and excellent position resolution of the tracking detectors. The central field in the target
region must also be very uniform at ∆B/B < 10−4 to allow the operation of a dynamically
polarized target. To achieve a sustained high polarization for polarized ammonia targets
requires magnetic fields in excess of 3 T. Magnetic fields of 5 T have been most recently used
for such targets with polarization of 80% - 90% for hydrogen. In addition, the solenoidal
field provides the ideal guiding field for keeping the copiously produced Möller electrons
away from the sensitive detectors and guide them to downstream locations where they can
be passively absorbed in high-Z material. The production target is centered in the solenoid
magnet. A forward micromegas tracker (FMT) consisting of 6 stereo layers is located just
downstream of the production target and in front of the HTCC. The FMT aids the track
reconstruction in the FD and covers the polar angle range of 5◦ to 35◦ and improves vertex
and momentum resolution of high momentum tracks.

Tracking in the CD is provided by a silicon vertex tracker (SVT) and a barrel mi-
cromegas tracker (BMT). Each of the two detectors provide 3 space points for the tracks
in the angle range of the CD. The combined SVT and BMT cover polar angles from 35◦

to 125◦.
The central time-of-flight scintillator barrel (CTOF) consists of 48 bars of fast plastic

scintillator equipped with 96 photomultiplier tubes that provide 2-sided light read-out.
The scintillator light is brought to an area of reduced magnetic field where fast PMTs
with dynamical shielding arrangement can be employed. A timing resolution of less than
60 psec has been achieved for this system in prototype tests. The very short flight path
available in the CD allows for particle identification in a restricted momentum range of up
to 1.2 GeV and 0.65 GeV for pion-proton and pion-kaon separation, respectively.

Also under development by a French-Italian collaboration is an additional detector that
will add neutral particle detection capabilities. This detector will fill the gap between the
CTOF and the solenoid cryostat.

With these upgrades CLAS12, will be the workhorse for exclusive and semi-inclusive
electro-production experiments in the deep inelastic kinematics.
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1.5 Data Acquisition and Trigger

CLAS12 will typically operate at design luminosities of 1035 cm−2sec−1 on liquid hydrogen
or on polarized targets. Most experiments require the presence of an electron track at
scattering angles greater than 5◦ with momentum above 1.5 GeV. The event trigger will
be provided by the HTCC and the combination of clustered energy deposited in the PCAL
and the EC to select scattered electrons with high enough energy. The estimated rate for
this trigger selection is approximately 5 kHz, with average event sizes of 7 kB, or a data
rate of 35 MB/sec, which is comfortably below the DAQ design capabilities of 10 kHz
and 100 MB/sec. For measurements where the forward tagger is used, hadronic energy is
required in the forward and central detector to record the event. The rate of this type of
event is very high and will be pre-scaled to remain below the acceptable acquisition rate.

The base detector system will be instrumented with a total of 4,336 photomultiplier
tubes, read-out with pipeline TDCs and flash ADCs. The number of read-out channels in
the drift chamber system is 24,000. The SVT has a total of 30,000 read-out strips, and
the micromegas gas detectors add another 20,000 channels, resulting in a total of 78,336
channels.
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Figure 2: 3D view of the CLAS12 detector. The beam comes from the left. The target is
located inside the superconducting solenoid magnet.
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1.6 Calibration and Commissioning of CLAS12

The CLAS collaboration has established a four member team to organize the calibration
and commissioning effort of all CLAS12 detector components and the CLAS12 system as
a whole. Procedures, requirements and plans have been developed in conjunction with the
respective detector groups. The second draft document (V 2.2) is available [3]. Here we give
a brief summary of this work. The document covers all aspects of the detector construction,
from quality assurance measures of procured components, to detector checkout during
construction, to the testing of the fully assembled detectors with cosmic rays, to final tests
after initiallization with cosmic rays, to final calibration and commissioning plans with
beam.

Figure 3: Communication between detector groups and the CALCOM team proceeds
through two contact persons who act as liaisons for each detector system.

The calibration and commissioning plan:

• should address all detector systems with a coherent plan from the construction and
installation phase to in-beam commissioning;

• should include hardware, software and manpower requirements;

• should ensure all necessary data for the checkout and calibration of the CLAS12
spectrometer are collected in an efficient and timely manner.

Much of the commissioning includes specialized calibration procedures that require the
collaboration to
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• develop and test procedures for each detector system;

• define input data (data type and statistics) for the calibration algorithms;

• develop and test the necessary software tools;

• evaluate manpower and computing resource needs;

• provide all relevant parameters to perform full reconstruction and to evaluate the
detector performance.

An important mechanism in this process is the CLAS12 Service Work Committee to which
all collaborating institutions provide manpower resources: graduate student, postdocs, and
senior researchers who pledge to devote part of their time in general support of the collab-
oration’s goals through software or hardware contributions. The CALCOM group receives
requests from the detector groups via two liaison persons for support with calibration, com-
missioning, and maintenance activities. The CALCOM group can then request resources
from the Service Work Committee to assign the necessary resources to support a specific
detector group. Figure 3 illustrates schematically the relationship between the detector
groups and the CALCOM committee. The detector groups develop their own software
needed for the calibration and commissioning tasks, much of which will be re-used after
the detector installation in CLAS12, including during beam operation. Representative
figures of the PCAL calibration procedure during cosmic ray testing are shown in Fig. 4.
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PCAL	  Checkout	  and	  Calibra4on	  
Full	  checkout/calibra0on	  of	  first	  
sector	  module	  with	  cosmic	  rays	  
•  PMT	  gain	  matching	  
•  Light	  a>enua0on	  
•  Light	  Yield	  (in	  progress)	  
Full	  detector	  calibra0on	  

Figure 4: Calibration procedures during the cosmic ray testing of one of the six pre-shower
calorimeter modules. The PMT signals are analyzed with the online software to determine
the attenuation length of each scintillator stack and for gain matching. The ADC spectra
show the fully calibrated and gain-matched detector response.
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2 The CLAS12 Offline Software

2.1 Introduction

Modern high energy and nuclear physics experiments require significant computing power
to keep up with large experimental data volumes. To achieve quality physics data anal-
ysis, intellectual input from diverse groups within a large collaboration must be brought
together.

Experimental physics data analysis in a collaborative environment has historically in-
volved a computing model based on self-contained, monolithic software applications run-
ning in batch-processing mode. This model, if not organized properly, can result in inef-
ficiencies in terms of deployment, maintenance, response to program errors, update prop-
agation, scalability and fault-tolerance. We have experienced such problems during the
fifteen years of operation of the CLAS on- and off-line software. Even though these chal-
lenges are common to all physics data processing (PDP) applications, the small size of the
CLAS offline group magnified their effect. Experimental configurations have become more
complex and compute capacity has expanded at a rate consistent with Moore’s Law. As a
consequence, these compute applications have become much more complex, with significant
interaction between diverse program components. This has led to computing systems so
complex and intertwined that the programs have become difficult to maintain and extend.

In large experimental physics collaborations it is difficult to enforce policies on computer
hardware. For example, some groups might use whatever computing resources they have
at their home institutions. In turn, these resources evolve as new hardware is added.
Additional software and organizational effort must often be put in place to provide the
maintenance needed to update and rebuild software applications for proper functionality
in specific hardware or OS environments.

In order to improve productivity, it is essential to provide location-independent ac-
cess to data, as well as flexibility of the design, operation, maintenance and extension of
physics data processing applications. Physics data processing applications have a very
long lifetime, and the ability to upgrade technologies is therefore essential. Thus, software
applications must be organized in a way that easily permits the discarding of aged com-
ponents and the inclusion of new ones without having to redesign entire software packages
at each change. The addition of new modules and removal of unsatisfactory ones is a
natural process of the evolution of applications over time. Experience shows that software
evolution and diversification is important, and results in more efficient and robust applica-
tions. New generations of young physicists doing data analysis may or may not have the
programming skills required for extending/modifying applications that were written using
older technologies. For example, JAVA is the main educational programming language in
many universities today, but most of the data production software applications are written
in C++ and some even in FORTRAN.

The offline software of the CLAS12 project aims at providing tools to the collaboration
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that allow design, simulation, and data analysis to proceed in an efficient, repeatable,
and understandable way. The process should be designed to minimize errors and to allow
cross-checks of results. As much as possible, software-engineering-related details should be
hidden from collaborators, allowing them to concentrate on the physics.

2.2 Ways to Increase Productivity

There are well-known practices leading to improved software productivity and quality.
These include software modularity, minimized coupling and dependencies between mod-
ules, simplicity and operational specialization of modules, technology abstraction (including
high level programming languages), and most importantly, rapid prototyping, deployment
and testing cycles. It is also important to take into account the qualifications of soft-
ware contributors: the physicist best understands the physics process and algorithms, and
the computer scientist/programmer has advanced skills in software programming. An en-
vironment that encourages collaboration, with code development responsibilities clearly
separated and established, can increase the quality and number of physics data analysis
contributions. The CLAS12 software group has studied different PDP frameworks and has
searched for contemporary approaches and computing architectures best suited to achieve
these goals. The CLAS12 framework design was inspired to a great extent by the GAUDI
framework [4] which was adopted by the LHCb experiment. The CLAS12 framework
includes design concepts based on the GAUDI framework’s data centricity, its clear sep-
aration between data and algorithms, and its data classifications. However, the GAUDI
framework is based on an Object Oriented Architecture (OOA), requiring compilation in
a self-contained, monolithic application that can only be scaled in batch or grid systems.
This approach usually requires that a relatively large software group be involved in the
development, maintenance and system operation.

2.3 Choice of Computing Model and Architecture

We have researched among the most advanced emerging computing trends and our at-
tention was caught by the cloud-computing model. This model promises to address our
computing challenges. It has reached its maturity level and many scientific organizations,
including CERN, are moving in its direction. The cloud computing model is based on a
Service Oriented Architecture (SOA). SOA is a way of designing, developing, deploying and
managing software systems characterized by coarse-grained services that represent reusable
functionality. In SOA, service consumers compose applications or systems using the func-
tionality provided by these services through a standard interface. SOA is not a technology
and is more like a blueprint for designing and developing computational environments. Ser-
vices usually are loosely coupled, depending on each other minimally. Services encapsulate
and hide technologies, as well as the functional contexts used inside a service.
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2.4 ClaRA: CLAS12 Reconstruction and Analysis Framework

The goal of the ClaRA project [5] is to develop a framework which can be applied to a
wide range of physics data processing applications written for the CLAS12 experiments.
The framework shall cover all stages of the physics data processing, including physics and
detector simulations, high-level software triggers, reconstruction, analysis and visualization
applications.

Building a physics data processing application is a collaborative process that involves
the development of a framework and basic software components by computer scientists
and the implementation by physicists of specific algorithms for simulation, calibration,
reconstruction and physics analysis purposes. The quality and productivity of physics
results depends on the efficiency of data processing and the ability to perform detailed
checks at each processing stage. The unprecedented scale and complexity of the physics
computing environment requires substantial software engineering skills from the end user,
resulting in a reduction in the number of qualified data processing physicists, and therefore
poorer physics outcome.

The CLAS12 computing environment must keep up with fast growing computing tech-
nologies. Our evaluation of the CLAS12 research and software design requirements led us
to conclude that an SOA would provide a computing environment capable of addressing our
requirements to allow for high, efficient and quality physics data processing outcomes. This
choice of architecture involves technology abstraction, and includes multilingual support,
the lack thereof would alienate many potential contributors. The CLAS12 reconstruction
and analysis framework was developed to support both traditional and cloud computing
models by providing single process or distributed deployment choices. These deployment
choices do not require any additional programming effort, which is a very important ad-
vantage of this framework.

ClaRA identifies the entire data processing application as a composite application.
A composite application is both assembled and orchestrated. Assembling is the process
of combining many different pieces into a workable unit. The orchestration consists of
insuring that all the assembled pieces work together collaboratively to solve a given prob-
lem within a specific scenario. Composite applications have been established to be more
efficient, robust and flexible. The composites of a software application, called software
services are specialized, easily maintainable, replaceable and modifiable. Hence, software
applications which are composed of services are extremely flexible, robust and adaptable
to address different data processing needs. The SOA provides the foundation of creating,
deploying, maintaining and governing the software services. The ClaRA framework is an
implementation of an SOA.

2.4.1 The Attributes of ClaRA Services

The ClaRA software modules or services contain special data processing algorithms. Within
an application, services communicate data through a pub-sub messaging system (for dis-
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tributed deployment) and/or through shared memory (for single process deployment). Fig-
ure 5 is a block diagram illustrating a CLAS12 event reconstruction application which uses
two data communication channels.

Figure 5: CLAS12 event reconstruction application.

Services are self-contained with no visible dependencies on other services. ClaRA ser-
vices have temporal continuity. They are deployed once and are always available. The
re-deployment of a service is not an expensive process and can be performed at runtime.
For an application user or a designer the location of a service is transparent.

2.4.2 A New Programming Approach

A PDP application will be designed and composed using the available services from the
ClaRA service inventory pool without requiring the knowledge of their programming de-
tails. The process of composition of a PDP application does not require programming
skills and can be done graphically or by means of a script. During the process of design
and composition, the focus isn’t on the logical algorithmic flow of the application as in
traditional programming, but rather on the data that gets passed between services. In this
programming approach, the application design logic follows the data transformation across
services.
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Figure 6: ClaRA design architecture.

2.4.3 The ClaRA Design Architecture

The ClaRA architecture consists of four layers (see Fig. 6). The first layer is the PDP
service bus. This layer provides an abstraction of the cMsg publish subscribe messaging
system [6]. Services or components from the orchestration or control layers communicate
via this bus which acts as a messaging tunnel between communicating parties. Such an
approach has the advantage of reducing the number of point-to-point connections between
services required to allow services to communicate in the distributed ClaRA platform. By
standardizing communication between services, adapting a PDP system to changes in one
of its components becomes easier and simplifies the data transfer security implementation
(for example by deploying a specialized access control service). The service layer houses
the inventory of services used to build the PDP applications. An administrative registra-
tion service stores information about every registered service in the service layer, including
address, description and operational details. The orchestration of service-based physics
data analysis applications is accomplished with the help of an application controller com-
ponent resident in the orchestration layer of the ClaRA architecture. Components from
the orchestration layer are designed to subscribe and analyze event data in real-time. This
enables immediate insightful responses to changing conditions in the active orchestrated
service-based PDP. An orchestrated layer component can subscribe data from different
(parallel running) services and/or service chains, which can make high-level decisions by
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correlating multiple events (for example particle identification, triggers, etc.).

2.4.4 The ClaRA Distribution Environment

ClaRA can have one or many federated clouds. A ClaRA cloud that is also a ClaRA
platform is a PaaS (Platform as a Service - a category of computing services that provide
a computing platform as a service). Each ClaRA platform itself contains multiple ClaRA
computing nodes as IaaS (Infrastructure as a Service). Each platform has a master node
that runs administrative and registry services. Every cloud node has a master node that
runs administrative and registry services. Every cloud node runs computing node mon-
itoring services as well as local pub-sub servers for data exchange between services and
communication across language barriers. Each ClaRA node has JAVA and C++ service
containers. A container is a Virtual Machine (e.g. JVM for JAVA), which provides a
complete runtime environment for ClaRA SaaS (Software as a Service) services, and allows
several ClaRA services to run concurrently in the same environment (see Fig. 7). The
ClaRA C++ service containers provide a runtime environment for C++ SaaS.

Figure 7: ClaRA cloud organization.

2.4.5 Performance

The track reconstruction application (SOT) services were deployed in ClaRA running on
a 17 node Xeon 2×6 Westmere CPU cluster. The simulated dataset contained events with
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at least one charged track in the CLAS12 detector. Performance measurements were per-
formed as a function of the number of cores. The performance was tested by reconstructing
from 1 up to 12 events at a time in a single ClaRA container utilizing up to 12 cores of
a node. The result, shown in Fig. 8 indicates a linear dependence between the average
processing time and the number of cores. Similarly, Fig. 9 represents the performance
of the SOT application distributed over 17 ClaRA containers and shows that tracking
performance scales linearly with the number of nodes.

Figure 8: Tracking performance in a single node cloud.
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Figure 9: Tracking performance in a 17 node cloud.
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2.5 Services

This section details the various services of the ClaRA framwork.

2.5.1 Detector Geometry

The Geometry service is an example of a detector data service. This is the front-end of the
CLAS12 geometry data, encapsulating data access and data management details from the
service consumers. All the ClaRA algorithm services, including simulation, reconstruction,
alignment, and calibration will access the geometry service using standard service commu-
nication protocols, provided by the framework. Currently geometry information is stored
in a mySQL database and will be part of the calibration database.

2.5.2 Event Display

The single event display in the CLAS12 framework will be both a service consumer (a
client) and a service provider (see Fig. 10). Implementing the event display as a service
consumer provides all the benefits discussed in the section on Service Oriented Architecture.
Additionally it allows us to use the thin client model favored by modern software architects.
Thin clients, sometimes called smart clients, split their application code between data
models and processing, performed as much as possible in a different thread, process or
CPU, and visualization. This shrinks the pure visualization code, allowing it to be deployed
remotely or updated frequently without incurring a huge download penalty. The most
familiar and successful such model is probably Google Earth. A thin client is downloaded
and runs quickly, but complicated imagery processing is performed remotely.

An SOA is one way to implement thin clients. A visualization process such as acquiring
detector geometry, is performed by a service and the thin client obtains the geometry by
sending a request.

In the case of event display, the client uses a variety of services such as geometry,
magnetic field, event streaming, file system access, running metadata, and analysis. A
display service provides pictures of random on-line events that will be used by remote
users for diagnostic purposes. Another more sophisticated service will be to answer a
request for an image of a specific event viewed in a specified view (for example a zoomed
view of region one in sector three of the drift chamber).

Another feature of the event display is that it employs a plug-in architecture based on
the reflection capabilities of the JAVA language. This will provide a simple yet powerful
extendibility feature for users who would like to use the event display to visualize and debug
their new analysis and simulation code. Reflection allows JAVA applications to examine
all the classes in their path. The event display looks for all classes that inherit from a
specific abstract base class. Once found, the application creates an object from that class
and then provides a set of services for the object, such as notifying it that a new event has
arrived.

22



Figure 10: The event display consumes a number of CLAS12 services. It will also provide
a display service.
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In this scheme, no recompilation or restart of the event display is required. The devel-
oper extending the event display creates the class, drops it into the path, and the class will
be automatically plugged into the application. If a particular plug-in proves of general use,
it can be placed in the path of the shared event display (e.g., a run in the counting house)
so that all users can access it. On the other hand a class file that posseses undersirable or
buggy features can simply be deleted. Adding and removing features will occur with no
change to the code or recompilation of the base event display.

2.5.3 Data and Algorithm Services

The CLAS12 software design separates data and algorithm services. An algorithm service,
in general, will accept and process an output data object from a data service and will then
produce a new data object.

Data objects are resident on the disk, whereas data services manipulate the data objects
in memory. The algorithm services should be independent of the technology used for data
object persistency. This will allow the future replacement of persistency technology without
affecting the user-produced algorithm services. The separation of persistent and transient
data services is aimed at achieving a higher level of optimization by targeting inherently
different optimization criteria for persistent and transient data storages. For example, the
optimization should target I/O performance, data size, avoid multiple I/O requests, etc.,
for data objects on the disk, and execution performance, API and usage simplicity, etc.,
for transient data in memory.

We foresee three major categories of data objects:

• Event data, such as raw, simulated, or reconstructed data.

• Detector data, describing a detector apparatus needed to interpret the event data.
Examples of detector data are geometry, calibration, alignment, and slow control
data.

• Statistical data, such as histograms, and n-tuples.

Specific data services are provided for each of these categories (see Fig. 11).

2.5.4 Calibration Services

Calibration services are currently being written for the FTOF, EC and PCAL detectors.
The calibration services for the EC and PCAL will be based on existing legacy code

that utilizes cosmic muon data for online calibration and physics data for offline calibration
monitoring and final adjustments1. The present intention is to perform energy-weighted

1It is observed that minimum ionizing muons for instance have an energy deposition profile that is
uniform and localizable as opposed to electromagnetic showers that have a non-uniform energy deposition
function.
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Figure 11: The data services of the ClaRA framework. Algorithm services deal with
transient data services only.

cluster finding in the EC/PCAL trigger front-end electronics, which will require determina-
tion of constants for the trigger firmware, consistency of calibrations of the EC and PCAL,
and the online monitoring of the constants. The use of cosmic muons runs prior to beam
turn-on, which do not require sophisticated hit reconstruction or pre-existing calibrations,
will allow hardware gain-matching of PMTs and determination of attenuation corrections
needed for uniformity of trigger response. The online live monitoring of cosmic events will
permit quick diagnosis of miscalibrated or malfunctioning PMTs. While refinements of
the online muon calibration are possible offline, it has been shown adequate to meet basis
physics analysis requirements.

Offline monitoring of PMT gains and adjustments of the energy calibration will make
use of all physics data: MIP pions with p > 0.6 GeV/c, two-photon events for π0 invariant
mass, run-by-run PMT gain monitoring using electron E/p and cross-checks of the online
cosmic muon calibrations. The EC calibration algorithms have been used for 15 years with
good results and are currently being further developed using cosmic testing of the PCAL
modules as they are built. Their future developments include a possible rewrite of the
algorithms in JAVA and integration into the new calibration database and slow controls
services. All calibration services are developed to be multi-threaded and fully integrated
within the ClaRA framework.

The FTOF calibration suite currently reads data in EVIO format and performs auto-
mated calibrations on ADC pedestals and TDC offsets. This provides read-back histograms
and editable tables of constants; the calibration tables and monitoring histograms are then
saved to disk.

The primary purpose of the FTOF is to provide the necessary timing ingredients for
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particle identification in the forward detector. The raw output data provided by the FTOF
will be recorded as channels from ADC and TDC for PMTs attached to the scintillator
bars. This means that before basic particle identification can be achieved, an intermediate
bank of timing information must be combined with tracking information and this timing
bank must provide the time of particle interaction at the paddle along with the paddle
ID/sector. The time of particle interaction at the paddle is calculated simply by taking
the average of the times at the PMTs, adjusted for signal propagation time through the
scintillator material. The coupling of a scintillator paddle hit and the corresponding track
that produced the hit is achieved by “swimming” the track (through a tracking service)
to an FTOF scintillator bar identified through the CLAS12 geometry database. This
intermediate FTOF timing bank is already defined and in use in the Service Oriented
Tracking (SOT) package as well as the simulation package GEMC.

The secondary purpose of the FTOF is to provide energy deposition information cal-
culated from FTOF ADC signals. This particular conversion has yet to be written for
CLAS12 specifically, but will follow the standard procedure that was used in CLAS. (In
fact, the panel-1a scintillator bars will be salvaged directly from the CLAS TOF detector).
It should be noted that the expected energy deposition for a track interacting with an
FTOF scintillator bar is currently simulated in GEMC.

The CLAS12 calibration suite is a JAVA-based calibration program that is being written
as a platform for calibrating the many sub-systems of CLAS12. The design goals are to
produce an agile and modular software system that is fully ClaRA integrated and both
user and programmer friendly. These goals reflect the clear advantages to future users by
having a single unified and well maintained program for calibration of all sub-systems, as
opposed to the common and unfortunate practice of many different subsystem calibration
programs being written by a variety of authors in different software languages and then
often being left unmaintained with the software source hard to find. The program structure
has been kept as simple and lightweight as possible: An orchestrator service acts as a bridge
between the main GUI and the calibration parent-containers. The parent-containers are
modular groups of calibration services that can be written and plugged directly into the
orchestrator with relative ease and minimal changes to the orchestrator or GUI code.

The Calibration Suite accepts EVIO input through the JEvio reader service. The
suite can be run “offline”, analyzing a predetermined data set, or it can be run “online”
continuously accepting data and analyzing it when the user requests. The GUI provides a
histogram readout specific for each calibration type which allows the user to see the quality
of the performed calibrations. To display histograms, our program uses the histogram
libraries from AIDA’s freeHEP project, a JAVA-based and open sourced high energy physics
toolset maintained at SLAC. The output from the calibration routines is also displayed in
an in-GUI table which allows the user to inspect and alter the calibration results. The user
can then push the results to disk in an ASCII format file, or send the results directly to a
calibration database through the CLAS12 database service.

The first set of calibration algorithms has been implemented for the FTOF, allowing
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the Calibration Suite to be bug-tested successfully using real CLAS data. The current
goal for the Calibration Suite is to have complete integration into the ClaRA software
framework. Version 1.0 (non-ClaRA) is now frozen while the ClaRA-ready Version 2.0 is
developed. A set of tools is also being developed to help assist the user in flagging and
managing problematic calibration results.
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2.5.5 The Magnetic Field Service

The magnetic field service is implemented in C++. It makes extensive use of the standard
library’s map construct. The entire field map is divided into individual maps corresponding
to CLAS12 magnets, which comprise the solenoid and main torus. Each of these maps
inherit all capabilities of std::map. In addition, it has methods to get the magnetic field
at a certain point, check for consistency within the map, and interpolate values inside the
defined grid spacing.

Each map is tailored to the field it holds. For instance, the main torus is defined in
cylindrical coordinates, with φ ∈ [0, π6 ]. The class holding the main torus map has an
algorithm to calculate the field at any point φ ∈ [0, 2π]. However, this is only good for
ideal fields. For measured fields, the class can be easily extended to handle a case where the
field is known precisely in the entire region. Furthermore, the dimensions and coordinates
of the map’s position and field need not be same. Inside the solenoid field for instance, the
position is stored in (r, φ) while the magnetic field is stored in (x, y, z).

A separate mother class is responsible for loading in and storing the maps from a
database or file. This class is aware of the volumes of the individual maps and sums the
fields where appropriate.

The final layer on this system is the magnetic field service. This is where the mother
class is initialized and held in memory. Several mother classes can be held; i.e. one for the
ideal fields, one for the measured fields, and one mix of these two. The service registers
itself with the ClaRA system and can provide the various field maps in several formats
depending on the consumer’s preference. As an example, the service can be polled for an
entire map or for an individual position.
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2.6 The CLAS12 Calibration Constants Database

The normal operating procedure for CLAS12 experiments will be a series of short “runs”
which will contain data where the configuration is reasonably constant throughout. For
reconstruction and simulation purposes, there will be several sets of constants kept on
a run-by-run basis including the geometry and calibration parameters. To this end, a
database design was created for the GlueX experiment in Hall D (called “CCDB”) and a
version was implemented for CLAS12. This database is intended to store all constants for
geometry and calibration, and possibly the magnetic field maps as well.

Each set of constants is identified by the combination of run number, variation and
time. The variation is a string name or tag to allow several versions of the same constants
to exists for the same run. The time in this case is the time the constants were added to
the database. A running history of changes made to the database is kept and nothing is
ever deleted. Also, one could substitute the time the data was taken for run number.

Within the ClaRA framework, the CCDB software comes with an interface in C++,
JAVA and Python. Constants are obtained by contacting the appropriate service, ei-
ther geometry or calibration. The geometry service provides the sets of parameters that
are needed by the simulation (GEMC), track reconstruction (SOT) or other calibration
services. These parameters are all derived from a unique set of detector-specific “core”
numbers. The calibration service is similar, though generally no intermediate calculations
are needed and it acts as a simple interface to the numbers in the database.
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3 Simulation

3.1 Introduction

A parametric Monte Carlo and a GEANT3-based model of CLAS12, described below, were
developed in order to validate design decisions for the upgraded detector. At the same time
we started to build a modern simulation package able to support the engineering project
and meant to be used for the whole lifetime of the CLAS12 program. The result of this
effort is an entirely new object-oriented design C++ framework called GEMC.

3.1.1 Parametric Monte Carlo

One of the fundamental algorithmic challenges in the design of CLAS12 is the problem of
track reconstruction in a non-uniform magnetic field. Not only does the torus produce
an inhomogeneous field in the tracking volume, but charged particles emerging from the
solenoid must be tracked as they traverse the fringe field of that magnet. Since no analytic
form for the particle trajectories exist, they must be calculated by ”swimming” the particles
numerically through a map of the magnetic field. Track fitting then becomes very expensive
in terms of CPU time. One way to finesse the problem is to linearize it by parameterizing
the trajectory as small deviations from a reference trajectory. The reference trajectory must
come from a “swim”, but subsequent “trial” trajectories, with different starting parameters
(momentum, direction), can be computed by a simple matrix inversion. Position resolution
is put in at a set of idealized detector planes. It is also possible to incorporate multiple
Coulomb scattering in this model. This technique has already been used to estimate
momentum resolution for CLAS12. Results appear in other sections of this document. The
method cannot give information on some things, such as the effect of accidentals, track
reconstruction efficiency or confusion due to overlapping tracks.

3.1.2 CLAS Software with CLAS12 Geometry

The current CLAS system consists of over a half a million lines of FORTRAN, C and C++
code contained in about 2,500 source code files. It represents a large investment by the
CLAS collaboration over many years. CLAS, with its toroidal magnetic field also presents
the difficulty of tracking in a non-homogeneous field and that problem has been solved
in this body of code. Recently, the geometry of crucial detector elements was changed
to reflect the CLAS12 design, both in simulation and in reconstruction. The resulting
system can now do a full GEANT3-based simulation and reconstruction of CLAS12 events,
in particular charged particle tracking in the forward drift chambers. Studies using this
system have been carried out to verify momentum resolution results from the parametric
Monte Carlo and to estimate the effect of accidental Møller scattering background on track
reconstruction. More of the details of the detector subsystems and beam line components
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of the upgraded configuration are being added to extend the range of these and similar
studies.

3.2 GEANT4 Monte Carlo: GEMC

GEMC is a software framework that interfaces with the GEANT4 libraries. It is driven by
two design principles:

1. Use object oriented design that includes the C++ Standard Template Library. The
GEANT4 solid, logical physical volumes, magnetic fields, sensitivities, etc., are ab-
stracted into general classes that can be built from the database of user choice. For
example, one can use MySQL, GDML or ClaRA to define the geometry.

2. All simulation parameters must be stored in a database external to the code. In other
words, there are no hardcoded numbers in GEMC. In fact GEMC is agnostic on the
detector: choosing what configuration to use is a matter of choosing what database
to use, a choice that can be done trivially at run time.

3.2.1 Main GEMC Features

• The users do not need to know the C++ programming language or the GEANT4
interface to build detectors. A simple API takes care of the database I/O. This allows
users to concentrate on making the geometry as realistic as possible.

• Upon database upload (which is an instantaneous MySQL table upload) the geometry
is available to all GEMC users - literally across the globe - without having to recompile
the code or even download files.

• Many additional parameters are selectable at run time: displacements, step size,
magnetic field scaling, physics list, beam luminosity etc. This is done by either
command-line options or a configuration file called “gcard.”

• Rigorous object oriented implementation allows code flexibility and painless, simple
debugging.

3.2.2 GEMC Detector Geometry

The GEANT4 volumes are defined as follows:

• Shapes, dimensions, boolean operations of shapes.

• Material, magnetic field, visual attributes, identity, sensitivity and hit process.

• Placement(s) in space: position, rotation, copy number.
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These parameters are stored in MySQL tables, one table per detector (i.e. HTCC, EC,
DC, etc). Below is an example of the API that loads the parameters into the database:

for(my $n=1; $n<=$NUM_BARS; $n++)

{

# element name, mother, description

$detector{"name"} = "CTOF_Paddle_$pnumber";

$detector{"mother"} = "CTOF" ;

$detector{"description"} = "Central TOF Scintillator $n";

# positioning, rotation, color

$detector{"pos"} = "$x*cm $y*cm $z*cm";

$detector{"rotation"} = "90*deg $theta2*deg 0*deg";

$detector{"color"} = "66bbff";

# Solid type, dimension, materials, style

$detector{"type"} = "Trd";

$detector{"dimensions"} = "$dx1*cm $dx2*cm $dy*cm $dy*cm $dz*cm";

$detector{"material"} = "Scintillator";

$detector{"style"} = 1;

# Magnetic Field

$detector{"mfield"} = "clas12-solenoid";

# Sensitivity: This will associate the volume to the Sensitive Detector

$detector{"sensitivity"} = "CTOF";

# Hit Process: This will associate the volume to the Hit Process routine

$detector{"hit_type"} = "CTOF";

}

At run time, GEMC reads the gcard, an XML file that specifies which detector to
include in the simulation, including possible tilts and displacements from the original po-
sitions. An example of gcard syntax is given below:

<sqltable name="LH2target"/> Includes the Liquid Hidrogen Target

<sqltable name="BST"/> Includes the Barrel Silicon Vertex Tracker

<sqltable name="FST"/> Includes the Forward Silicon Vertex Tracker

<sqltable name="CTOF"/> Includes the Central TOF

<sqltable name="beamline"/> Includes the beamline

<sqltable name="DC"/> Includes the Drift Chambers

<detector name="BST">

<position x="0*cm" y="0.1*cm" z="0*cm" /> Displaces the BST by 1 mm in the Y axis

<rotation x="1*deg" y="0*deg" z="0*deg"/> Tilts the BST by 1 degree around the X axis

</detector>
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3.2.3 CLAS12 Geometry Implementation

Particular attention is paid in implementing the geometry details of each detector with
adequate accuracy. In Fig. 12 the SVT GEMC representation is shown, while in Fig. 13 is
shown the GEMC implementation of the various central detectors. A multiple track event
in the central and forward part of CLAS12 can be seen in Fig. 14.

Figure 12: The Silicon Vertex Tracker in GEANT4. Upper left: the GEMC BST. Upper
right: the CAD model. Lower Left: the complete GEMC implementation of the BST+FST.
Lower right: an FST module. All components (including supports, wirebonds and chips)
and dimensions in GEMC reproduce exactly the design.
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Figure 13: The CLAS12 Central Detector. The target (white) is at the CLAS12 center,
surrounded by the scattering chambers (red). The BST and FST constitute the silicon
vertex tracker. The CTOF paddles (cyan) are connected to light guides (light green) that
wrap around the Solenoid (blue). The Möller shield is also visible (blue).
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Figure 14: The CLAS12 central and forward detectors. In the forward part: the HTCC,
3 regions of drift chambers (DC), the LTCC, three panels of time-of-flight and the two
electro-magnetic calorimeters PCAL and EC. Two simulated tracks produced hits (in red)
in the various detector. Photons are the blue straight tracks.
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3.2.4 Primary Generator

In GEMC there are two ways to define the primary event.

1. GEMC internal generator (command line or gcard): with this method the user
defines the primary particle type, momentum range, vertex range. Example:

BEAM_P="proton, 0.8*GeV, 80*deg, 10*deg" (particle type, momentum, theta and phi)

SPREAD_P="0.2*GeV, 40*deg, 40*deg" (momentum, theta, phi ranges)

BEAM_V="(0.0, 0.0, -10.0)cm" (x,y,z) of the primary vertex

SPREAD_V="(0.1, 2.5)cm" (z, radius ranges) i=for the primary vertex

results in:

Primary Particle: Proton

momentum: 800 +- 200 MeV

theta: 80 +- 40 deg

Phi: 10 +- 40 deg

Vertex: ( +- 1 mm , +- 1mm +- 2.5cm)

2. external input file: with this method the user defines (command line or gcard)
the format of the input file and the file name. Example:

INPUT_GEN_FILE="LUND, dvcs.dat" (LUND file format, filename: dvcs.dat)

The various file formats are registered in GEMC by a factory method that allows the
user to derive new formats from the GEMC C++ pure virtual methods defined for the
input and to choose the desired format at run-time.

3.2.5 Beam(s) Generator

In addition to the primary particles, two additional luminosity beams can be defined to add
realistic background to the simulation in the form of N beam particles per event. The user
defines (command line or gcard) the beam particle type, the number of beam particles per
event and the time structure of the beam. Example:

LUMI_P="e-, 11*GeV, 0, 0" Beam Particles: 11 GeV e- along z-axis

LUMI_V="(0, 0, -10)cm" Beam vertex is at z=-10 cm

LUMI_EVENT="60000, 124*ns, 2*ns" 60,000 particles per event, spread in 124 ns, 2ns per bunch
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3.2.6 Hit Definition

The GEMC hit definition is illustrated in Fig. 15. A Time Window (TW) is associated with
each sensitive detector. In the same detector element, track signals within the TW form
one hit, while tracks separated in time by more than the TW will result in multiple hits.

An energy sharing mechanism is in place as well. For each sensitive detector element
users can decide how much of the energy deposited will be detected in that element. Users
can also decide whether a sensitive element triggers other sensitive elements even if they
are not directly touched by a track, and how much energy is shared between the elements.
A good example of this is the charge sharing mechanism in strips in a silicon detector.

Figure 15: Hit definition illustration: In the picture two different detector elements are
shown in different colors (red and yellos). All tracks within the same TW and the same
cell constitute one hit for that cell. If any track has enough time separation from an existing
hit, it will form another, separate hit.
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3.2.7 Hit Process Factory

Each detector has a user-defined Hit Process Routine (HPR) associated with it, derived
from an abstract class with pure virtual methods. All HPRs are registered and loaded at
run-time by a factory method.

The input to all HPRs is a GEMC hit. This stores, for each step in the hit, the following
information:

• Hit position (global coordinates)

• Hit position (relative to the volume in which the step occurs)

• Deposited energy

• Time of the hit

• Momentum of the track

• Energy of the track

• Primary vertex of the track

• Particle ID

• G4Track ID

• Identity

• Detector hit

• Mother particle ID

• Mother G4Track ID

• Mother primary vertex of the track

• Energy threshold of the sensitive detector

Each HPR processes the GEMC hit and produces Standard Template Library (STL)
vectors of double (raw informations) and integers (digitized informations). Each STL
vector corresponds to a MySQL entry in the bank table corresponding to the HPR.

38



Below are three examples of such database entries.

• A partial list of variables used to store ”raw“ information, usually common to all
detectors:

name index comment

ETot 1 Total Energy Deposited

<x> 2 Average x position

<y> 3 Average y position

<z> 4 Average z position

<t> 8 Average time

pid 9 Particle ID

E 13 Energy of the track at the entrance point

• A partial list of variables used to store DC information:

name index comment

LR 18 Left/Right: -1 (right) if the track is below the wire

doca 19 distance of closest approach

sdoca 20 smeared doca

time1 21 doca / (50 um/ns)

stime1 22 sdoca / (50 um/ns)

sector 23 CLAS12 Sector

superlayer 24 DC Superlayer

layer 25 DC Layer

wire 26 DC Wire

• A partial list of variables used to store BST information:

name index comment

layer 20 BST layer

sector 21 BST sector

strip 22 BST strip

39



3.2.8 Elements Identity

In order to correctly identify and process the correct detector element at run-time, the
class identifier is used. The following scenarios can happen:

1. For detectors where each element corresponds to a unique volume, the identifier is
defined in the geometry. An example is the CTOF:

element identifier

paddle 4 4

paddle 16 16

2. For detectors where each element corresponds to a unique volume that is copied, the
identifier copy number is determined at run-time. An example is the FTOF, where
each sector is copied:

element identifier: sector copy is determined at run time.

paddle 4, sector 3 4, 3

paddle 16, sector 5 16, 5

3. For detectors where different elements exist within the same GEANT4 volume, the
identifier is processed at run-time by the identifier method of the Hit Process Rou-
tines. For example in the drift chambers implementation, the single cells are not
individual GEANT4 volumes but part of layers of gas volumes. At run-time, the cell
is identified by the HPR based on the track position in each layer:

element identifier: sector, wire are determined at run-time

wire 52, layer 3, SL 2, sector 4 52, 3, 2, 4

wire 87, layer 4, SL 5, sector 1 87, 4, 5, 1

4. For detectors where one element will share energy with other elements, the identifier
is processed at run-time by the identifier method of the Hit Process Routines and
will return a vector of elements with the percentage of energy shared in each element.
Example:

element identifier vector with percentage of shared energy

strip 12 12 94 11 3 13 3
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3.2.9 Output

The file formats for the simulation output stream are registered in GEMC by a factory
method. New files types can be derived from the C++ pure virtual methods defined in
GEMC. The main registered formats, selectable at run-time, are:

• txt: readable from any editor or shell. Bank names and variables are printed out.

• EVIO: this is the format used by the CODA system chosen to be the default CLAS12
format for the output stream. Banks and variables are identified by integers (called
tag and num) defined in the MySQL tables.

The EVIO output can be parsed with the utility evio2xml, that outputs event in XML
format. As illustration, an example of an EVIO event dumped with evio2xml:

<event_n> 3 </event_n>

<particle_generator>

<generated_particle_1>

2212 1.0+03 0.0 1.7321e+03 - particle id, 3-momentum

0.0 0.0 0.0 - vertex

</generated_particle_1>

</particle_generator>

<DC> DC has 3 hits, so each variables has 3 entries

<sector> 2 2 2 </sector>

<SuperLayer> 3 3 3 </SuperLayer>

<Layer> 1 2 3 </Layer>

<Wire> 71 70 71 </Wire>

<Edep> 1.4498e-04 1.1808e-03 1.0493e-03 </Edep>

</DC>

3.2.10 Magnetic Fields

The magnetic fields parameters are stored in a MySQL database. They are defined by their
name (unique ID), and contain their definitions (including map file format), symmetry (if
any) and swim method. Example:

name: clas12-torus

data type: mapped txt

symmetry: phi-segmented

filename (if map) clas12_torus_fieldmap.dat

n points, range, units in each dimention: 61 0 30 deg 126 0 500 cm 126 100 600 cm

shift from (0,0,0): 0 0 0 cm

field units: kilogauss

swim method: RungeKutta

description: CLAS12 Torus MAP
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3.2.11 Parameters Factory

In order to avoid hardcoded numbers in the various software components (simulation,
reconstruction, event display, analysis, etc) some “mother numbers” parameters are stored
in a MySQL database. These parameters can be accessed by the GEMC geometry API to
build the GEANT4 volumes via hash map “parameters”:

my $NUM_BARS = $parameters{"ctof_number_of_bars"};

They can also be accessed by the hit-process routines to determine the identifiers and to
perform the digitization via an STL map <string, double> “gpars”:

double ec_tdc_time_to_channel = gpars["EC/ec_tdc_time_to_channel"];

3.2.12 Material Factory

The GEANT4 materials definitions, including optical properties, have been abstracted to
a material factory. At the command line users can decide to load the materials definitions
from the traditional GEANT4 C++ implementation or from a MySQL database. A third
option will allow for GDML definitions. Example of MySQL definition:

BusCable | 1200 | 2 | G4_Cu 24 G4_POLYETHYLENE 76

defines the material BusCable with density 1.2 g/cm3, composed of 2 materials: copper
(24%) and polyethylene (76%).

3.2.13 Geometry Factory

The current implementation of GEMC builds the GEANT4 solids, logical and physical
volumes, and sensitive detectors from a MySQL database. The “detector” class will be
abstracted to a factory to expand its input to:

• Traditional C++ GEANT4 detector construction

• MySQL DB (current implementation)

• ClaRA: a service will provide detector constructions

• GDML Format: a GEANT4 standard XML syntax, extended for sensitivity and
output format.

• HDDS Format: XML syntax, extended for sensitivity and output format.
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3.2.14 Results

GEMC has been used extensively to validate and assist the CLAS12 engineering design.
In Fig. 16 an example of one event at 1/10 of the nominal CLAS12 luminosity in the
central detector is shown. Full luminosity studies have been crucial in maximizing shield
design, minimizing the background radiation dose to the most sensitive detector elements
and in choosing the optimal energy threshold for the various electronics. In Fig. 17 proton
acceptances and threshold rejection factor studies are shown.

Figure 16: Left: Background simulation in the central detector. An electron beam corre-
sponding to 1034cm−2s−1 (1/10 of CLAS12 luminosity) is sent to a 5 cm liquid hydrogen
target. Secondary interactions include Möller electrons and photonuclear hadronic produc-
tion. The Möller (red lines) are the main source of background and are aligned by the 5
T solenoid field near the target, but will spread to a “sausage” after the forward tracker.
A carefully designed tungsten shield (in blue in the picture) will contain most of them.
Right: background rates for different targets.
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Figure 17: Left: Proton acceptance calculation in the BST as a function of their momenta
and angles. The generated events are in black; three (four) BST layers required in recon-
struction are in blue (red). Right: the rejection factor as a function of threshold energy
cut. One can see that at about 30 keV most of the e.m. background is kept while at the
same time rejecting only 0.5% of tracks of interest.
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3.2.15 Documentation

The main portal to the GEMC documentation is the JLab website:

http://gemc.jlab.org

Various how-tos, tutorials, quick guides, and step by step installation guides can be found
on the website.

The C++ code is documented with doxygen. Classes and methods are defined with
inline comments and described in detail. The doxygen documentation is generated nightly.
The documentation can be found at:

http://clasweb.jlab.org/clas12/gemc_doxygen

A mailing list

gemc_software@jlab.org

is used as the main channel for news and communication.

3.2.16 Bug Report

GEMC uses Mantis [7], a web-based bug-tracking system. Mantis is written in the PHP
scripting language and works with MySQL. Mantis can be browsed from most computers
and phones. Bugs are tracked, solutions and debugging are logged, and all the conversation
is automatically sent by email to the interested parties. The JLab GEMC Mantis Bug
Report system can be found at:

https://clasweb.jlab.org/mantisbt

Two screenshots of the website can been seen in Fig. 18.
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3.2.17 Project Management, Code Distribution and Validation

The software is released on the subversion repository, and it is maintained and tested across
several platforms:

• Darwin macosx 10.7 i386 gcc 4.2.1

• Darwin macosx 10.6 x86 64 gcc 4.2.1

• Darwin macosx 10.7 x86 64 gcc 4.2.1

• Linux CentOS 5.3 i686 gcc 4.1.2

• Linux CentOS 5.3 x86 64 gcc 4.1.2

• Linux RHEL5 i686 gcc 4.1.2

• Linux RHEL6 i686 gcc 4.4.6

• Linux Fedora15 x86 64-gcc4.6

At JLab, GEMC and its dependencies (CLHEP, XERCESC, QT, GEANT4, MySQL) are
installed and available on the CUE machines (RHEL 5 and 6, CentOS 5) and on the JLab
farm (CeontOS 5). JLab users have been using these distributions since 2008.

M. Ungaro, the author of the code, supervises all aspects of development and has in
place code validation and testing. Cron jobs runs periodically (from as often as 15 minutes
to daily) to check the geometry, parameters and material databases, code compilation, etc.
For example, if a change is introduced that will cause compilation errors for a particular
platform, his pager will alarm. This system will be expanded in the summer of 2012.

Physics events labelled by the GEMC revision are kept on JLab disks. Scripts that test
significant quantities (number of particles and hits on specific detectors) will run nightly
as a code quality check.

3.2.18 Project Timeline

The project timeline uses the Omniplan software. Resources are allocated and projects are
assigned with duration time. The timeline can be found on the GEMC webpage as a PDF
gant chart or a HTML web page:

https://gemc.jlab.org/work/GEMC_Timeline (HTML)

https://gemc.jlab.org/work/GEMC_Timeline.pdf (PDF)

The timeline includes resources management.
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4 Event Reconstruction

The event reconstruction software has been designed and developed within the ClaRA
framework. The reconstruction program must reconstruct, on an event-by-event basis, the
raw data coming from either simulation or the detectors to provide physics analysis output
such as track parameters and particle identification.

4.1 Tracking

Charged particle tracking is separated into the reconstruction of tracks in the central
(“Barrel” Silicon and Micromegas Trackers) and forward (Forward Micromegas Tracker
and Drift Chambers) detectors. The forward region covers the angular range from 5◦ to
40◦, while the central detector covers approximately 40◦ to 135◦. In the central region a
5 T solenoidal magnetic field bends charged tracks into helices, while forward-going tracks
are bent by a ∼ 2 T toroidal magnetic field.

For both systems, the reconstruction includes hit recognition, pattern recognition and
track fitting algorithms. Hit objects, corresponding to the passage of a particle through
a particular detector component, involve a combination of an electronic signal and the
detector sub-system geometry. These objects are then manipulated to form the input to
the pattern recognition algorithms. Hit recognition involves clustering of hits and the de-
termination of the spatial coordinates and corresponding uncertainties for hits and clusters
of hits. At the pattern recognition stage, hits that are consistent with belonging to a tra-
jectory (i.e. track) are identified. This set of hits is then fit to the expected trajectory with
their uncertainties, incorporating the knowledge of the detector material and the detailed
field map.

For central tracking, hit recognition first consists of the determination of the intersection
of clusters of strips in a double layer of the tracker, when projected into the bottom-most
layer. This is defined as a 3-dimentional point with uncertainty estimated from the cluster
error matrix. Since the layers in a double layer are not on the same plane, the location
of this point is trajectory-dependent (it depends upon the crossing angle of the particle
with the BST tile). Hence an iterative algorithm involving the estimate of the tangent
to the track at the intersection plane is implemented in order to improve the hit position
accuracy. The set of central tracker hits is the input to a Hough Transform algorithm.

The Hough Transform is a powerful pattern recognition tool to select groups of hits and
is a proven technique to separate real tracks from background. Groups of points belonging
to the same trajectory, such as a helix, correspond to the intersection of the continuous
distributions (e.g. lines) in Hough space that the discrete points in the original space map
into. The algorithm makes use of an array, called an accumulator, with dimensions equal
to the number of parameters in Hough space. The bin sizes in the array are finite intervals
in Hough parameters, which are called accumulator cells. The cell with the highest count
corresponds to the intersection of the lines. The output of the Hough Transform algorithm
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is a track seed that is the input to a fit.
A cylindrical coordinate system is a natural choice for the central tracker, with the z

coordinate along the detector axis. The fit is done to state vectors in the (z, φ, px, py, pz)
coordinate system, where z is the coordinate in the direction of the beam axis, φ, is the
azimuthal angle (from the origin of the laboratory frame), and px, py, pz are the momentum
components in the laboratory frame. Two track fitting algorithms have been developed to
fit the set of hits that had been identified as a track candidate at the pattern recognition
step. A simple helical track fit method based on a least square regression approach is
employed in the current version of SOT. A Kalman Filter has also been implemented.
The filter starts from the last available measurement (outermost hit) moving towards the
target and stopping at the distance of closest approach to the beam axis. The algorithm
was validated from a comparison of its results with estimates analytically derived from the
Fast Monte Carlo program. Very good agreement was found. The fitting code was also
studied in high background scenarios and the reconstruction involved a small instance of
fake tracks. The inclusion of the CTOF in the reconstruction chain is aimed at further
reducing fake tracks.

Hit recognition for forward tracking is detector-dependent. The Forward Micromegas
strip intersection determination is similar to that used in the central region. The Drift
Chamber (DC) wire hit information is given by the wire geometrical location and the drift
time to the wire. Track-dependent corrections to the hit, such as left-right ambiguity and
time-walk are performed.

Pattern recognition in the DC involves three consecutive steps. First contiguous hits
in the same superlayer and sector are grouped into a cluster. Clusters consistent with a
line are linked into segments. This allows the removal of outliers and yields a solution
to the left-right ambiguity of the corresponding hits. The pruning of hits from a cluster
requires an iterative procedure. At each step of the procedure a fit with a straight line is
performed on the set of hits composing a cluster. The hits on the outer edges of the cluster
are removed and the hits for which the left-right ambiguity is solved are kept. At this time,
four such iterations are required. As for central tracking, the resulting set of hits are sent
to a Kalman filter. In the forward geometry, the measurements are approximately constant
in z, which makes a natural choice of parameters: x and y, the coordinates transverse to
the beam axis, tanθx and tanθy, the track slope in the xz and yz planes, respectively, and
Q/p, the inverse particle momentum. The components of the state vector in this coordinate
system are initialized to the last plane of Region 3 and from an estimate of the track angles
just before and just after the toroidal field. The Kalman filter is run up to the distance of
closest approach to the beam axis, as for central tracking.

In addtion to track fitting in the DC, track matching with the Forward Micromegas
Tracker (FMT) is performed. Track finding in the FMT is done by selecting combinations of
strips producing three almost aligned points in space pointing towards the beam axis. The
track candidates from the FMT are then matched with those from the DC by extrapolating
the output of the Kalman filter on DC candidates to the FMT region and looking for a
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close FMT candidate. We find that requiring that the distance from the extrapolation
to the FMT track be within a 1 cm circle allows for a 98% matching efficiency without
background.

The last task of the tracking program will be a vertex fitting algorithm, thus providing
full event reconstruction. Different outputs (not only the structure, but also the contents)
will be produced, depending on the incoming request.

4.2 Time-of-Flight

The Time-of-Flight reconstruction service implemented in SOT extrapolates the DC tracks
toward the Forward Time-of-Flight (FTOF) detector and attempts to associate each DC
track with a hit on the FTOF.

The FTOF is designed to measure the time-of-flight of charged particles emerging in the
forward direction. Its design parameters were chosen to allow pions and kaons separation
up to 3 GeV, with the most energetic particles produced at small angles. The FTOF
system is comprised of three sets of TOF counters referred to as panels, in each of the six
sectors. Each panel is composed of an array of scintillators with a PMT on each end. Panel
1a and 1b are located at forward angles in the range 5 - 36◦ and panel 2 is at larger angles
from 35 to 45◦. A charged particle exiting the DC when passing through the scintillator
ionizes the material, thereby producing scintillation light which is subsequently detected
by the PMTs. The resulting electronic outputs give ADC and TDC readouts used in the
reconstruction.

The current reconstruction algorithm first searches for FTOF hits associated with each
DC track and calculates the distance from the FTOF to the DC. It finds the distance from
the scintillator to the reference point in the tangent line to the track (assumed to be at the
end of the DC) and associates FTOF hits with such distance less than 2 cm.

The timing information from the associated FTOF hits is used in conjunction with the
path-length and reconstruction momentum from the forward Kalman filter to calculate
particle masses for particle identification.

4.3 Cerenkov Counters

In CLAS12, two sets of threshold, non-imaging Cerenkov counters are used in the for-
ward region to aid in charged-particle identification. The low-threshold Cerenkov Counter
(LTCC), located between the drift chambers and the time-of-flight scintillators, uses the
heavy gas C4F10 (n ∼ 1.0015), with a pion threshold of ∼ 2.5 GeV and a kaon threshold
of ∼ 9 GeV, primarily to reject kaons from pion candidates for momenta above the limit
for time-of-flight based π/K separation. The high-threshold Cerenkov Counter (HTCC),
located between the exit of the central solenoid and the drift chambers, uses CO2 gas
(n ∼ 1.00045) with a pion threshold of 4.9 GeV, primarily to reject negative pions from
electron candidates in both the online trigger system and the offline analysis.
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Figure 19: Number of HTCC hits per event in GEANT4 for 100,000 electrons with uni-
formly distributed momentum (1 ≤ p (GeV) ≤ 11), polar angle (5 ≤ θ(◦) ≤ 35) and
azimuthal angle φ (−π ≤ φ ≤ π).

4.3.1 HTCC

In the HTCC, the Cerenkov emission angle for electrons with β ≈ 1 is 1.7◦. The HTCC
optics design consists of 48 individual mirror segments, arranged in four rings subtending
approximately equal θ-intervals for 5◦ ≤ θ ≤ 35◦, and 12 half-sectors, each subtending a
30◦ interval in φ. The ellipsoidal mirror geometry focuses all the light collected onto a
single PMT, resulting in a one-to-one mapping between a given PMT and the range of θ
and φ covered by its associated mirror segment. The electron path length in CO2 ranges
from 1.3-1.8 m depending on θ.

Owing to the small size of the Cerenkov emission cone in the HTCC, resulting from the
low index of refraction of CO2, the most probable electron signal in the HTCC is a single
PMT hit. Figure 19 shows the distribution of the number of PMT hits in the HTCC for
100,000 generated electrons with flat distributions in momentum from 1-11 GeV, θ from
5-35◦, and φ in 2π. Approximately 55% of electrons cause a single hit in the HTCC, while
another ∼ 40% of events in which electrons pass near the boundary between two mirrors
cause two PMTs to fire. The remaining ∼ 5% of events near the intersection point between
four mirrors cause 3 or 4 PMTs to fire.

Reconstruction of electron hits in the HTCC involves grouping hits from adjacent mir-
rors into clusters to be associated with a single particle track. The simple clustering
algorithm consists of the following procedure:

1. Populate a list of hits in the event that are not yet part of a cluster.

2. Within this “unused hits” list, find the hit with the largest amplitude; i.e., the greatest
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number of photoelectrons, and remove it from the “unused hits” list.

3. Search for nearest-neighbor hits of the maximum in the “unused hits” list. For each
nearest-neighbor hit found, add it to the cluster and remove it from the “unused hits”
list.

4. Repeat step 3 for all hits in the current cluster, allowing the cluster to grow in any
direction, until no more unused nearest-neighbor hits exist to be added to the cluster.
At this point, all hits directly connected to the maximum will have been added to
the cluster seeded by the maximum.

5. Repeat steps 1-4, always starting with the maximum-amplitude unused hit, until no
more hits can be found with which to seed clusters.

The behavior of the clustering algorithm is controlled by a series of three thresholds and
a timing cut. The thresholds specify the minimum number of photoelectrons in a clus-
ter, the minimum number of photoelectrons in a hit to be considered a valid maximum
around which to build a cluster, and the minimum number of photoelectrons in a hit to be
considered a valid hit to add to the cluster. The timing cut specifies the maximum time
difference between hits in a cluster. Time offsets for each of the four θ segments are used
to correct for optical photon path length differences between the different mirrors. The
central θ and φ values for each ring/half-sector combination are also specified for rough
scattering angle reconstruction, neglecting the effect of the solenoid field on the forward
electron trajectories.

Figure 20 shows the results of the HTCC clustering algorithm for the same 100,000
simulated electrons shown in Fig. 19. Exactly one cluster is found in virtually all events,
and the number of hits in the cluster equals the number of hits in the event in the over-
whelming majority of events. This indicates that the HTCC reconstruction code works
as intended. Figure 21 shows the number of photoelectrons per cluster in the GEANT4
simulation of HTCC and the efficiency for electrons as a function of threshold assuming
single-photoelectron resolution, showing an efficiency exceeding 99% for thresholds up to
16 photoelectrons.

4.3.2 LTCC

Each of the six LTCC sectors is spanned in θ by 18 segments, and in φ by 2 modules.
The optics of each θ module was designed to focus the light onto the PMT associated with
that module and located in the region obscured by the torus coils. The trajectory of the
light produced by a typical electron passing through the Cerenkov detector is illustrated
in Fig. 22. Since the distance between coils increases approximately linearly with θ, each
of the 18 modules has unique optical design parameters.

In the LTCC reconstruction routines clusters of hits are formed. A LTCC cluster
is defined as a set of contiguous hits that are time-consistent and contain a threshold
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Figure 20: Left: number of clusters found per event for the same simulated electron sample
shown in Fig. 19. Right: correlation between the number of hits per cluster and the number
of hits per event. A small fraction of events have more hits per event than hits per cluster,
reflecting the small additional backgrounds from δ-rays and optical photons reflected by
the PMT windows (∼ 4% probability) onto the mirrors and back into a different PMT
(these “echo” hits are less common and separated in time from the primary electron hits
by an interval much larger than the timing resolution of the PMTs).
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Figure 21: Left: Number of photoelectrons per cluster in the HTCC GEANT4 simulation.
Right: Efficiency for electrons as a function of threshold in photoelectrons, assuming single-
photoelectron resolution, averaged over all p, θ and φ.

53



number of photo-electrons (to be determined based on the PMT quantum efficiency and
simulation studies). Once clusters are determined, a matching algorithm will couple them
with existing tracks, if within certain distance and time parameters. An example is given
in Fig. 22 (right), where the signals in the PMTs are associated with the (electron) track
that generated the Cerenkov light.

Figure 22: Left: Optical arrangement of one of the 216 optical modules of the CLAS Cerenkov detector showing
the optical and light collection components. Note that the Cerenkov PMTs lie in the region obscured by the magnet
coils. Right: Simulation of electron Cerenkov light and its reflections on the LTCC mirrors.

4.4 Calorimeters

The CLAS12 calorimeters will consist of a pre-shower (PCAL) detector which will be built
and installed in front of the current electromagnetic calorimeter (EC). Simulations indi-
cated that the EC alone would not be able to absorb the full energy of the electromagnetic
showers produced by electrons and photons with momenta above 5 GeV/c. The PCAL
was designed with a fine enough granularity in order to allow the reconstruction of high-
energy showering particles and to separate high-energy π0’s from photons. Both the EC
and PCAL will have similar geometries with three stereo read-out planes composed of
scintillator layers segmented into strips and sandwiched between lead sheets.

The calorimeter reconstruction package contains classes to represent the structure of
the calorimeter detectors with sector, layer, view and strip components. At this point the
EC reconstruction is fully functional and integrated into the ClaRA framework as a service.

In the EC detector, each sector has four layers, each layer has three views, and each view
has a list with the strips that were stored in the input file. The EC reconstruction contains
several packages. The event package contains the classes to store the information generated
by the reconstruction algorithm for the event being reconstructed. The reconstruction
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package contains the algorithms to find peaks in each view, then hits in each layer, to
correct the timing and energy of the peaks, and finally to find matches of hits between
layers.

The EC reconstruction algorithm is split into three services. The first service fills the
information of strips using the TDC and ADC data obtained from the input file and the
calibration data. The second service is the main one. It iterates over the layers of the
sector to get the peaks from the strips and then the hits from the peaks. The third service
matches the hits between the layers in the sector. Finally, when all the six sectors have
been evaluated, the orchestrator fill the output file with the calculated values.

In addtion, the EC software contains calibration services which at present get the
calibration constants from the CLAS database.
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4.5 PID for CLAS12

Particle identification (PID) is the procedure of selecting signal events while rejecting
background events, and is a key step in the data analysis for essentially all particle physics
experiments. HEP experiments include various approaches from the Bayesian statistical
and log-likelihood technique [8, 9] to more sophisticated Boosted Decision Trees (BDT)
[10] and Artificial Neural Networks (ANN) [11].

The identification of the scattered lepton is crucial in electroproduction experiments.
The comprehensive research program of CLAS12 comprises both physics with semi-inclusive
and hard exclusive processes, where identification of hadronic particles is also required. The
identification of electrons and hadrons at CLAS12 is based on the detector responses of
the forward (EC) and preshower (PCAL) calorimeters, and the High Threshold Cherenkov
Counter (HTCC). Hadron identification includes the Low Threshold Cerenkov Counter
(LTCC), central (CTOF) and forward (FTOF) time-of-flight counters. Particle identifica-
tion at CLAS12 will be accomplished combining the reconstructed vertex, momentum and
angles from tracking detector (FST, BST, DC) information with responses of the relevant
detector components (HTCC, LTCC, TOF, PCAL, EC). One possible PID scheme for
CLAS12 could be a probability-based procedure, where for each particle type a probability
that the measured detector signal was caused by that particle is calculated by comparing
the signal with parent distributions which are the typical responses of the different particle
types in the detector.

4.5.1 Probability Analysis

The probability analysis is based on the extraction of probabilities that a measured detector
response E was caused by particles of a certain type, Ai. This conditional probability
P (Ai|E) is related through Bayes’s theorem to the conditional probability P (E|Ai) that a
particle of a given type Ai causes a detector response E:

P (Ai|E) =
P (Ai) · P (E|Ai)∑n
k=1 P (Ak) · P (E|Ak)

, (1)

where the sum runs over all particle types Ak and P (Ai) is the probability that the particle
of type Ai is present in the detector.

The conditional probability P (E|Ai) for a given detector D is equivalent to the par-
ent distribution LiD that depends on the particle type, the detector response E, and the
momentum p of the particle:

LiD ≡ LiD(E, p, θ). (2)

The parent distributions are an intrinsic property of a PID detector that can be cal-
culated through normalizing the appropriate particle counts as a function of the detector
response. Eventually the parent distributions will be extracted from the data collected
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during the normal operation of the experiment, as during the time the detector response
may change. In the extraction of the parent distributions, clean samples of certain type of
particles are required, which can be achieved by introducing very tight cuts on the output
given by the PID detectors. Compared to other DIS experiments employing this technique,
CLAS12 benefits from the observation of exclusive processes with well-defined PID for the
decay products. In the design stage we use the parent distributions obtained from the
GEANT4 simulation of the relevant detectors. The parent distributions are normalized to
1 and give the probability for a certain type of particle to give a response E. Some typical
parent distributions for pions and electrons in certain bins of momentum (p = 4 GeV) and
polar angle (θ = 15◦) obtained from the GEANT simulation of CLAS12 [12, 13] are shown
in Fig. 23.

The probability P (Ai) is given by the normalized flux φi which depends on the mo-
mentum p and the scattering angle θ of the particle:

P (Ai) = φi ≡ φi(p, θ). (3)

The conditional probability P i ≡ P (Ai|E) that a certain particle type has been ob-
served can be determined from the detector response using Bayes’s theorem if the parent
distributions and the particle fluxes are known. The parent distributions can be extracted
from collected data or theoretical models.

The probability for a certain particle (e.g. electron) in a detector D is given by:

PeD =
LeD

ΦLhD + LeD
, (4)

where Φ ≡ φh/φe is the flux ratio of hadrons and electrons. In order not to rely on the
determination of individual fluxes, one can use the logarithm of the ratio of the electron
and hadron probabilities for a given detector:

log10
PeD
PhD

= log10
LeD

ΦLhD
= log10

LeD
LhD
− log10Φ. (5)

The final discrimination between the particle types will be accomplished by combining
the probabilities from all relevant PID detectors:

PID = log10(
∏
D

LeD
LhD

) =
∑
D

(log10
LeD
LhD

). (6)

To improve the efficiency of the detection system while retaining good particle separa-
tion, different combinations of PID detectors could be combined in a set of PID observables.
In addition to one-dimensional PID cuts, this will allow two and more dimensional scatter-
plots for the PID variables.
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A similar procedure could be used for hadron identification involving the low threshold
Cherenkov counter (LTCC) and forward TOF for forward tracks and central TOF for large
angle track identification.

Figure 24 shows (on the left-hand side) the distribution of β as a function of the
momentum in the laboratory frame for reconstructed pions, kaons and protons candidates.
These events were generated using the GEMC simulation program and reconstructed with
SOT with the EC and PID services included in the service chain. Clear bands allowing
for particle identification are visible. On the right-hand side of the figure the invariant
mass distributions for the three types of particles reconstructed are shown. The upper plot
indicates the clear separation between e− and π− candidates obtained from the EC.
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Figure 23: Parent distributions for π− and electrons for the high threshold Cherenkov
counter (HTCC), the preshower (PCAL) and the sum of the responses of the preshower and
the forward calorimeter (PCAL+EC). The distributions for electrons (pions) correspond
to histograms with solid (dashed) lines. In the upper left plot, the dotted-line histogram
corresponds to the distribution of 2 GeV pions.
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Figure 24: [left] The distribution of β as a function of the momentum in the laboratory
frame for reconstructed pions, kaons and protons candidates. [right] The invariant mass
distributions for the three types of particles reconstructed.
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5 Software Tools

Various object-oriented programs and libraries developed for particle physics data analysis
are currently in existence and freely available. ROOT, the C++ program library developed
by CERN includes packages for histogramming, curve fitting, matrix algebra, multivari-
ate analysis, four-vector operation and various statistical tools used in data analysis. For
Python developement, SciPy [16] is the scientific data analysis system based on NumPy [17]
classes. Numpy contains a powerful N -dimensional array object, sophisticated (broadcast-
ing) functions, tools for integrating C/C++ and Fortran code, as well as useful linear
algebra, Fourier transform, and random number capabilities. The SciPy library is built
to work with NumPy objects, and provides efficient numerical routines such as numerical
integration and optimization. Together, they run on all popular operating systems, are
easy to install, and are free of charge.

Java-based data analysis systems include JAS (Java Analysis Studio) [18], which is
compliant with AIDA (Abstract Interface for Data Analysis) [19], and jHepWork, whose
framework is based on FreeHep. FreeHEP is an open source Java library designed to make
programming applications easier and to encourage the sharing and reuse of Java code in
High Energy Physics. FreeHEP provides utilities for event display (WIRED), fast detector
simulation (Lelaps) and HEP software. It also provides an implementation for AIDA. The
Colt project is another Open Source set of libraries in Java. This is a partial Java port
of CLHEP. CLHEP (Class Library for High Energy Physics) [20] is a C++ library that
provides utility classes for general numerical programming, vector arithmetic, geometry,
pseudorandom number generation, and linear algebra, specifically targeted for high energy
physics simulation and analysis software.

The toolkits listed above are recognized in the High Energy Physics community as
excellent standards which the CLAS12 software group will support. The CLAS12 software
group also maintains a set of general software tools both in Java and C++, and it is
anticipated that a set of specific tools will also be developed in the future in Python.
The Java package is the so-called jMath package, and includes a wide variety of software
utilities, ranging from graphic and animation tools, relativistic kinematics, matrix algebra,
partial wave analysis, numerical methods, and others. In some cases, similar tools are also
available in C++. In the future, it is anticipated that useful packages in Maple [21] and/or
Mathematica [22] will become a standard part of the CLAS12 software suite.

The CLAS12 simulation package, GEMC, is based on GEANT4, a toolkit for the sim-
ulation of the passage of particles through matter. Geant4 is now a standard not only in
the High Energy community, but wider scientific and industral applications as well.

The CLAS12 collaboration has adopted the Calibration and Conditions database origi-
nally developed for the GlueX collaboration at JLab (see section 2.6). The database needs
of both CLAS12 and GlueX are so similar, it did not seem prudent to develop an entirely
separate and independent system. Excellent collaboration between the two experiments
has guaranteed a good product meeting the specific needs of both groups.
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While a final ’post-processed’ data format has not yet been adopted, there are several
candidates. EVIO is a data format designed by and maintained by the Jefferson Labo-
ratory Data Acquisition Group, and is the data format of the raw data. It may also be
utilized as the post-processed data format. In addition, we are evaluating HDF5, originally
developed by the HDF Group at the National Center for Supercomputing Applications at
the University of Illinois, which has developed this data format over the past twenty years.
The HDF5 serial and parallel I/O library is the result of the collaboration of NCSA with
three DOE laboratories: Lawrence Livermore National Laboratory (LLNL), Sandia Na-
tional Laboratory (SNL) and Los Alamos National Laboratory (LANL). HDF5 is a data
model, library, and file format for storing and managing data. It supports an unlimited
variety of datatypes, and is designed for flexible and efficient I/O and for high volume
and complex data. HDF5 is portable and is extensible, allowing the evolution of the data
format. The HDF5 suite includes a versatile data model that can represent very complex
data objects and a wide variety of metadata. It is a portable file format with no limit on
the number or size of data objects in the collection, and also includes a software library
that runs on a wide range of computational platforms, and implements a high-level API
with C, C++, Fortran 90, and JAVA interfaces. Integrated performance features allow for
access time and storage space optimizations.
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6 Post-Reconstruction Data Access

Due to the distributed nature of the CLAS12 software, a new approach (format) was needed
to store physics data. The data formats used by CLAS collaboration lack some key features
which we need for distributed multi-process cloud computing.

A new data format based on HDF5 was developed, where the data is stored in an
indexed tree for random access, and also the structure of the data is stored in a form of a
dictionary.

Each data segment that is read from the file comes with a dictionary defining the data
structure. This flexibility allows the services (that process user data) to have no predefined
data structures, but rather to receive the data structure through run-time dictionaries.
With this approach several users can simultaneously use services with data sets that have
different structures. This format was developed by the Data Mining group at Old Dominion
University2. The Data Mining group created a framework around HDF5 library that
allows flexible dictionary driven data structures to be effectively exchanged between the
services and the storage.

The Data Mining project makes use of the ClaRA framework. The distributed cloud
computing environement of ClaRa is well-suited for data mining as well as for CLAS12
post-reconstruction data access goals.

The data from the CLAS experiment on nuclear targets is stored on ODU NAS disks.
The data is converted from the standard CLAS data format into HDF5 format, and it
is indexed by experiment and run conditions. The user can access specific sets of data
specifying what beam energy, target and beam intensity are required. The ODU computer
cluster is running several services that provide information on what data is available and
which services are available to analyze the data. The newly developed framework allows
multiple processors to cooperate to handle each job, making the data transfer from the
disk the ultimate bottleneck. In the future we plan to distribute the data to several servers
at participating universities, which will significantly increase the data analysis.

2The Data Mining project aims to collect the data from multi-hadron runs from the CLAS detector and
to develop tools for easy access and analysis for participating universities. This framework could also be
extended to include other data sets from Jefferson Lab, which will allow users to analyze the existing data
while the JLab accelerator is shut down for the upgrade.
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7 Online Software

During the actual data-taking periods of CLAS12, it is of course expected that there
will be full reconstruction of a significant fraction of the acquired data. Online event
reconstruction allows data quality monitoring and assessment. It also allows the detailed
monitoring of the individual detectors beyond the information given by hardware readouts
by providing various reconstruction outputs such as wire profiles, ADC spectra, etc. The
capability to study the performance of the CLAS12 detector by examining specific events
and extracting their physics parameters will require full event reconstruction. In addition,
online reconstruction can also act as a Level 3 trigger to filter unwanted events from the
data stream, thus minimizing storage, bandwidth, and other precious resources.

The entire suite of services will be available to the online and data acquisition systems,
either directly as network available resources, or as shared code. It is anticipated that a
modest cluster of multi-processor, multi-core nodes, of the order of 20 nodes, will be able
to keep up with the data rate, based on current timing studies of SOT (SOT was used to
obtain a conservative estimate as the track-reconstruction time dominates the processing
time of an event).
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8 Code Development and Distribution

8.1 Code Management

For CLAS12, we have elected to use the widely adopted and free (Open Source) “sub-
version” revision control system. Subversion is the Open Source software community’s
replacement for cvs. It has many of the same features and employs the same no-lockout
paradigm3 In addition, subversion plugins are available for the popular integrated develop-
ment environments, such as the widely used Eclipse [23]. This allows one to check in, check
out, track changes, and merge differences with mouse-clicks in a development environment
rather than through a command line.

In CLAS12, we have decided to implement a three-tiered code distribution system.
The first level will give access to the subversion repository. Only developers will access
code in this manner. The second level will be for code releases, in the form of archives,
and intelligent build scripts that do not rely on environment variables. In the CLAS12
environment the user will go to a web page and download a specific, tested release. A
third tier of release for limited systems (JLab-supported Linux systems) will be for the
distribution of binaries.

8.2 Code Release

The CLAS12 software release process will be based on the “agile programming ” approach.
Part of agile programming is a rapid release schedule. The exact frequency has not yet
been determined, but the canonical duration is of the order of one month: two weeks of
development and two weeks of testing and bug fixing. So about every month a new version
of all software will be released, typically with modest changes from the previous release.
Functionality is advanced incrementally as opposed to infrequent but massively different
updates.

8.3 Software Tracking

Complicated software development is aided by requirements, tasks, and bug-tracking. Man-
tis [7] is been utilized for bug-tracking. Project management is implemented via Gantt
charts. No release schedule is currently available as there isn’t yet an official release of a
reconstruction suite.

Ultimately, time development will match the code release cycles. For each cycle, the new
tasks and necessary bug fixes will be entered into project management charts. Developers,
in communication with the Project Managers, will enter estimates regarding the time it will
take to complete the tasks and fix the bugs. Project managers will evaluate if the estimated
time fits within the cycle duration and adjust the schedule accordingly by postponing or

3Conflicts are resolved through merging rather than avoided through code locks–the latter is generally
found to be too draconian and a hindrance to productivity.
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adding tasks. Developers will keep a log of the time they spend on a specific task or bug fix,
which will help them fine-tune their task-specific time estimates. The subversion revision
control system can be set up to require that code checked-in have a comment tying it by
ID to a task or to a bug.
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9 Quality Assurance

The Service Oriented Architecture is composed of many integrated services that are loosely
connected. The usual interaction between the consumer of a service and the supplier of the
service is not direct: generally there will be several processes and a network in between.
As a result, during an extended development process, many errors can be introduced in the
code, rendering it either unusable or incorrect. Quality assurance of developing projects
then becomes a major concern.

The standard CLAS12 reconstruction suite of services will be built daily and the re-
construction package tested using a set of standard datasets. A reconstruction validation
package will output a series of indicators of the reconstruction performance and result
consistency.

The software validation studies will be performed on simulated and real data. Monte
Carlo simulations of events produced in fixed target reactions in the CLAS12 detector
(see Section 7) will be run through the full reconstruction suite. Detailed checks for dis-
crepancies between reconstructed and generated values exceeding the range expected from
resolution effects will be performed using these simulated data. In addition, benchmark
datasets recorded by the CLAS12 detector will be used to test the reconstruction software
and track its development.

The reconstruction outputs will be stored in a database and tracked over time to identify
changes in the program performance. In addition, the Subversion code repository (see
Section 8) will allow immediate identification of unanticipated code changes. Subversion
also allows individual code developers to check any version against the standard suite.
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10 Computing Requirements

In this section we present an estimate of the computing resources required by the CLAS
collaboration to acquire, reconstruct, simulate and analyze the CLAS12 data in a timely
fashion. We assume that tasks like reconstruction and simulation will keep pace with
the data acquisition after the start of data taking for CLAS12 in 2015. The computing
enterprise for CLAS12 is divided into stages: data acquisition, calibration, reconstruction,
simulation, reconstruction studies and physics analysis. The first four stages represent
the process of taking the raw data and turning it into 4-momenta and identified particles.
The reconstruction studies are needed to optimize the reconstruction of the data and the
simulation, while the physics analysis stage represents a broad range of activities using the
results of the final event sample (measured and simulated).

We now discuss the computing requirements for the data acquisition and focus on the
number of computing cores, disk space, and tape storage. Table 8 shows the assumptions
that go into our calculations. Using the data in Table 8 we calculate the data rate, the

Event rate 10 kHz Weeks running 35
Event size 10 kBytes 24 hour duty factor 60%

Table 1: Data Acquisition parameters.

number of events collected in a year of running, and the volume of that data.

Data Rate = Event Rate× Event Size = 100 MByte/s (7)

Average 24-hour rate = Data Rate× 24 hour duty factor = 60 MByte/s (8)

Events/year = Event Rate×Weeks Running × 24 hour duty factor (9)
= 1.3× 1011 Events/yr

Data Volume/year = Events/year× Event size = 1270 TByte/yr (10)

These results will be used in the calculations below.
We next consider the resources we will need to calibrate our data and keep pace with

the incoming data in CLAS12. We have determined the CPU-time to reconstruct an event
from previous work with the CLAS12 physics-based simulation GEMC. That result and
other assumptions are in Table 9. Calculations of the necessary CPU time in seconds
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CPU-data-time/event 180 ms Data fraction 5%
Data passes 5

Table 2: Calibration parameters.

(CPU-s) for calibration for one year and the number of cores required to keep pace with
the data flow follow.

CPU time/year = Events/year× CPU-data-time/event× (11)
Data fraction used×Data passes

= 5.7× 109CPU-s/year

Cores =
CPU time/year

Tyr
= 201 cores

The quantity Tyr is the number of seconds in one year multiplied by the efficiency of an
individual core in the JLab computing farm which is close to 90%.

Reconstruction of the CLAS12 data (known as cooking) will be the second-most com-
puter intensive task behind simulation (see below). We have estimated the time required
to reconstruct an event using simulated data from the CLAS12 physics-based simulation
GEMC and the CLAS12 reconstruction code SOCRAT. We have found that 180 ms is long
enough to reconstruct most of the events that CLAS12 will collect. The other parameters
have been estimated based on experience with the CLAS detector and are listed in Table
10. We first estimate the CPU time (in CPU-s) required for the reconstruction to keep

CPU-data-time/event 180 ms Output size/input size 2
Data passes 2 Output fraction on work disk 10%

Table 3: Reconstruction parameters.

pace with the incoming data and use this to determine the number of cores need. We also
estimate the disk and tape storage and the average bandwidth needed to move these data
since these tasks will require considerable resources. The calculation of the bandwidth
includes time for reading in each event and writing out the reconstruction results.

CPU time per year = Events/year× CPU-data-time/event (12)
×Data passes

= 4.6× 1010 CPU-s/year
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Dedicated farm cores =
CPU time per year

Tyr
= 1611 cores (13)

Cooked data to tape = Data Volume/year×Data passes (14)
×Output size/input size

= 5080 TByte/yr

Disk storage =
Cooked data to tape

10
= 508 TByte

Average bandwidth = Event size× (1 + Output size/input size)× (15)
Dedicated farm cores
CPU-data-time/event

= 268 MBytes/s

Simulation of the CLAS12 response will be an essential part of the reconstruction and
analysis because the precision of many experiments will not be limited by statistical un-
certainties, but by systematic ones. Understanding the detector is necessary to distinguish
physics effects from possible experimental artifacts. Table 11 shows the parameters used
in the calculations that follow. The CPU-sim-time/event is the time required to simulate
an event using the CLAS12, physics-based simulation GEMC and to reconstruct it with
SOCRAT (the CLAS12 reconstruction package) on a single core. To estimate the number

CPU-sim-time/event 510 ms Fraction to disk 2%
Sim-events/year 3.2× 1011 Fraction to tape 10%
Output event size 50 kBytes Multiplicity 1.5

Table 4: Simulation parameters.

of simulated events we need in a year we have studied the properties of the planned trigger
in CLAS12 and the backgrounds associated with those events. We find that of the expected
1.3 × 1011 events we expect to collect in one year (see Equation 27) about half will have
a good electron that will be reconstructed. Of that sample we expect about half will be
background, leaving us with about one-fourth of the event rate as good physics events. In
order to adequately simulate the properties of this sample we need about ten times as many
simulated events so the statistical uncertainty on the simulated events will be much less
(about one-third) than the statistical accuracy of the data. This number, Sim-events/year,
is the number of events for a single, high-statistics simulation of the final physics sample
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and is listed in Table 11. The multiplicity factor in Table 11 is included to account for
computer time to optimize the simulation and to study systematic effects, e.g. comparing
high-statistics simulations using different event generators. The results of the calculations
follow.

CPU-time/year = CPU-sim-time/event× Sim-events/year×Multiplicity (16)
= 2.4× 1011 CPU-s/year

Dedicated farm cores =
CPU-time/year

Tyr
= 8, 558 cores (17)

The simulation of the CLAS12 is resource intensive so we also considered the volume of
disk and tape storage required and the bandwidth necessary for transporting the data.

Work disk = Sim-events/year×Output event size× (18)
Fraction to disk

= 318 TBytes

Tape storage = Events/year×Output event size× (19)
Fraction to tape

= 1588 TBytes/year

Average bandwidth =
Output event size×Dedicated farm cores

CPU-sim-time/event
(20)

= 839 MByte/s

We also expect that in addition to cooking considerable computing resources will be
devoting to optimizing the reconstruction of the physics data and the simulated events
for particular analysis projects. This task may require studying the reconstruction for a
subset of the data (i.e., skim files). The assumptions we make for this part of the CLAS12
computing are shown in Table 12. The calculations of the number of cores necessary to keep

CPU-data-time/event 180 ms Fraction of desired events 5%
Data passes 10

Table 5: Reconstruction studies parameters.

pace with the CLAS12 data acquisition follow. The disk storage and average bandwidth
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were calculated in the same manner as the previous ones and we found requirements of 508
TBytes for disk and 78 MByte/s for bandwidth.

CPU time per year = Fraction desired× (Events/year + Sim-events/year)× (21)
Data passes× CPU-data-time/event

= 4.0× 1010 CPU-s/year

Dedicated farm cores =
CPU time per year

Tyr
= 1410 cores (22)

Once the reconstruction has been optimized for a particular analysis project, we expect
there will be considerable computing resources devoted to analyzing the results. These data
will not require a full reconstruction so the compute time per event will drop considerably,
but the full data set will usually be studied. The assumptions we make for this part of the
CLAS12 computing enterprise are shown in Table 13. The calculations of the number of

CPU-analysis-time/event 9 ms Fraction of desired events 50%
Data passes 10

Table 6: Physics Analysis parameters.

cores necessary to keep pace with the CLAS12 data acquisition follow. The disk storage
and average bandwidth were calculated in the same manner as the previous ones and we
found requirements of 889 TBytes for disk and 279 MByte/s for bandwidth.

CPU time per year = Fraction desired× (Events/year + Sim-events/year)×Data passes×
(23)

Data passes× CPU-analysis-time/event
= 2.0× 1010 CPU-s/year

Dedicated farm cores =
CPU time per year

Tyr
= 705 cores (24)

To summarize our estimates we present Table 14. It lists the number of cores, disk,
and tape storage required for the different stages of the CLAS12 computing enterprise
plus totals for each item. This is our estimate of the computing resources necessary for
the CLAS collaboration to analyze the data from CLAS12 in a timely and productive
manner. Note the number of cores required for simulation is more than the number for
reconstruction, post-reconstruction analysis, and physics analysis combined.
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Cores Disk (TByte) Tape (TByte/yr)
DAQ - - 1,270
Calibration 201 - -
Reconstruction 1,611 508 5,080
Simulation 8,558 318 1,558
Reconstruction Studies 1,410 508 -
Physics Analysis 705 889 -
Sum 12,485 2,223 7,938

Table 7: Requirements summary.
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11 Computing Requirements

In this section we present an estimate of the computing resources required by the CLAS
Collaboration to acquire, reconstruct, simulate and analyze the CLAS12 data in a timely
fashion. We assume that tasks like reconstruction and simulation will keep pace with
the data acquisition after the start of data taking for CLAS12 in 2015. The computing
enterprise for CLAS12 is divided into stages: data acquisition, calibration, reconstruction,
simulation, reconstruction studies and physics analysis. The first four stages represent
the process of taking the raw data and turning it into 4-momenta and identified particles.
The reconstruction studies are needed to optimize the reconstruction of the data and the
simulation while the physics analysis stage represents a broad range of activities using the
results of the final event sample (measured and simulated).

We now discuss the computing requirements for the data acquisition and focus on the
number of computing cores, disk space, and tape storage. Table 8 shows the assumptions
that go into our calculations. Using the data in Table 8 we calculate the data rate, the

Event rate 10 kHz Weeks running 35
Event size 10 kBytes 24 hour duty factor 60%

Table 8: Data Acquisition parameters.

number of events collected in a year of running, and the volume of that data.

Data Rate = Event Rate× Event Size = 100 MByte/s (25)

Average 24-hour rate = Data Rate× 24 hour duty factor = 60 MByte/s (26)

Events/year = Event Rate×Weeks Running × 24 hour duty factor (27)
= 1.3× 1011 Events/yr

Data Volume/year = Events/year× Event size = 1270 TByte/yr (28)

These results will be used in the calculations below.
We next consider the resources we will need to calibrate our data and keep pace with

the incoming data in CLAS12. We have determined the CPU-time to reconstruct an event
from previous work with the CLAS12 physics-based simulation GEMC and the CLAS12
reconstruction code SOT. We found that 155 ms is long enough to reconstruct most of
the events that CLAS12 will collect. That result and other assumptions are in Table 9.
Calculations of the necessary CPU time in seconds (CPU-s) for calibration for one year
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CPU-data-time/event 155 ms Data fraction 5%
Data passes 5

Table 9: Calibration parameters.

and the number of cores required to keep pace with the data flow follow.

CPU time/year = Events/year× CPU-data-time/event× (29)
Data fraction used×Data passes

= 4.9× 109CPU-s/year

Cores =
CPU time/year

Tyr
= 173 cores

The quantity Tyr is the number of seconds in one year multiplied by the efficiency of an
individual core in the JLab computing farm which is close to 90%.

Reconstruction of the CLAS12 data (known as cooking) will be the second-most com-
puter intensive task behind simulation (see below). The time required to reconstruct an
event using the CLAS12 reconstruction code SOT is mentioned above. The other param-
eters have been estimated based on experience with the CLAS detector and are listed in
Table 10. We first estimate the CPU time (in CPU-s) required for the reconstruction to

CPU-data-time/event 155 ms Output size/input size 2
Data passes 2 Output fraction on work disk 10%

Table 10: Reconstruction parameters.

keep pace with the incoming data and use this to determine the number of cores needed. We
also estimate the disk and tape storage and the average bandwidth needed to move these
data since these tasks will require considerable resources. The calculation of the bandwidth
includes time for reading in each event and writing out the reconstruction results.

CPU time per year = Events/year× CPU-data-time/event (30)
×Data passes

= 3.9× 1010 CPU-s/year

Dedicated farm cores =
CPU time per year

Tyr
= 1387 cores (31)
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Cooked data to tape = Data Volume/year×Data passes (32)
×Output size/input size

= 5080 TByte/yr

Disk storage =
Cooked data to tape

10
= 508 TByte

Average bandwidth = Event size× (1 + Output size/input size)× (33)
Dedicated farm cores
CPU-data-time/event

= 268 MBytes/s

Simulation of the CLAS12 response will be an essential part of the reconstruction and
analysis because the precision of many experiments will not be limited by statistical un-
certainties, but by systematic ones. Understanding the detector is necessary to distinguish
physics effects from possible experimental artifacts. Table 11 shows the parameters used
in the calculations that follow. The CPU-sim-time/event is the time required to simulate
an event using the CLAS12, physics-based simulation GEMC and to reconstruct it with
the CLAS12 reconstruction package SOT on a single core. To estimate the number of

CPU-sim-time/event 485 ms Fraction to disk 2%
Sim-events/year 3.2× 1011 Fraction to tape 10%
Output event size 50 kBytes Multiplicity 1.5

Table 11: Simulation parameters.

simulated events we need in a year we have studied the properties of the planned trigger in
CLAS12 and the backgrounds associated with those events. We find that of the 1.3× 1011

events we expect to collect in one year with CLAS12 (see Equation 27) about half will
have a good electron that will be reconstructed. Of that sample we expect about half
will be background leaving us with about one-fourth of the event rate as good physics
events. In order to adequately simulate the properties of this sample we need about ten
times as many simulated events so the statistical uncertainty on the simulated events will
be much less (about one-third) than the statistical uncertainty of the data. This number,
Sim-events/year, is the number of events for a single, high-statistics simulation of the final
physics sample and is listed in Table 11. The multiplicity factor in Table 11 is included to
account for computer time to optimize the simulation and to study systematic effects, e.g.
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comparing high-statistics simulations using different event generators. The results of the
calculations follow.

CPU-time/year = CPU-sim-time/event× Sim-events/year×Multiplicity (34)
= 2.3× 1011 CPU-s/year

Dedicated farm cores =
CPU-time/year

Tyr
= 8, 139 cores (35)

The simulation of the CLAS12 is resource intensive so we also considered the volume of
disk and tape storage required and the bandwidth necessary for transporting the data.

Work disk = Sim-events/year×Output event size× (36)
Fraction to disk

= 318 TBytes

Tape storage = Events/year×Output event size× (37)
Fraction to tape

= 1, 588 TBytes/year

Average bandwidth =
Output event size×Dedicated farm cores

CPU-sim-time/event
(38)

= 839 MByte/s

We also expect that in addition to reconstruction and simulation considerable com-
puting resources will be devoted to optimizing the reconstruction of the physics data and
the simulated events for particular analysis projects. This task may require studying the
reconstruction for a subset of the data (i.e., skim files). The assumptions we make for this
part of the CLAS12 computing are shown in Table 12. The calculations of the number of

CPU-data-time/event 155 ms Fraction of desired events 5%
Data passes 10

Table 12: Reconstruction studies parameters.

cores necessary to keep pace with the CLAS12 data acquisition follow. The disk storage
and average bandwidth were calculated in the same manner as the previous ones and we
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found requirements of 508 TBytes for disk and 78 MByte/s for bandwidth. The amount
of data archived to tape we expect to be small compared to our other requirements.

CPU time per year = Fraction desired× (Events/year + Sim-events/year)× (39)
Data passes× CPU-data-time/event

= 3.4× 1010 CPU-s/year

Dedicated farm cores =
CPU time per year

Tyr
= 1214 cores (40)

Once the reconstruction has been optimized for a particular analysis project, we expect
there will be considerable computing resources devoted to analyzing the results. These data
will not require a full reconstruction so the compute time per event will drop considerably,
but most of the data set will usually be studied. The assumptions we make for this part of
the CLAS12 computing enterprise are shown in Table 13. The calculations of the number

CPU-analysis-time/event 8 ms Fraction of desired events 50%
Data passes 10

Table 13: Physics Analysis parameters.

of cores necessary to keep pace with the CLAS12 data acquisition follow. The disk storage
and average bandwidth were calculated in the same manner as the previous ones and we
found requirements of 889 TBytes for disk and 279 MByte/s for bandwidth. We expect
the amount of data archived to tape to be small.

CPU time per year = Fraction desired× (Events/year + Sim-events/year)×Data passes×
(41)

Data passes× CPU-analysis-time/event
= 1.7× 1010 CPU-s/year

Dedicated farm cores =
CPU time per year

Tyr
= 607 cores (42)

To summarize our estimates we present Table 14. It lists the number of cores, disk,
and tape storage required for the different stages of the CLAS12 computing enterprise
plus totals for each item. This is our estimate of the computing resources necessary for
the CLAS Collaboration to analyze the data from CLAS12 in a timely and productive
manner. Note the number of cores required for simulation is more than the number for
reconstruction, reconstruction studies, and physics analysis combined.
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Cores Disk (TByte) Tape (TByte/yr)
DAQ - - 1,270
Calibration 173 - -
Reconstruction 1,387 508 5,080
Simulation 8,139 318 1,558
Reconstruction Studies 1,214 508 -
Physics Analysis 607 889 -
Sum 11,520 2,223 7,938

Table 14: Requirements summary.
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11.1 JLab Responsibilities and Institution Responsibilities

The CLAS12 hardware project is part of the DOE-funded 12 GeV Upgrade project at
JLab. The development of analysis software is, however, not included in the CLAS12 up-
grade project and no CLAS12-related staff is assigned towards the development of specific
CLAS12 related software. The development of the software architecture and software tools
has to make use of the resources assigned to the operation and analysis of ongoing ex-
perimental programs in Hall B and the involvement of users from Universities and foreign
institutions. Figure 25 shows the JLab/Hall B staff currently working part time on the
software development for CLAS12.
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Jefferson	  Lab	  Staff	  involved	  in	  CLAS12	  So6ware	  development	  2012-‐2016	  

Personnel	   So*ware	  Func0on	   FTE	  *	  yrs	   Specific	  work	  assignments	  

D.	  Weygand	  (senior	  staff)	   CLAS12	  So*ware	  architect	   2.5	   Oversee	  and	  direct	  So*ware	  	  Development	  	  

V.	  Gyurjyan	  (senior	  staff)	   CLARA	  Developer	   1.5	   Service	  oriented	  architecture	  	  

M.	  Mestayer	  (senior	  staff)	   Advisor	   0.5	   Advise	  	  junior	  personnel	  on	  tracking	  code	  

M.	  Ungaro	  (staff)	   GEMC	  Developer	   1.25	   Geometry/material	  DB	  Digi0za0on	  of	  	  signals	  

V.	  Ziegler	  (staff)	   Event	  reconstruc0on	   1.25	   Develop	  version	  3	  of	  tracking	  code	  

A.	  PuckeY	  (staff)	   LTCC	  &	  HTCC	  reconstruc0on	   1.25	   PaYern	  recogni0on/hit	  reconstruc0on	  

University	  and	  Research	  InsCtuCons	  involved	  in	  CLAS12	  so6ware	  development	  2012-‐2015	  

Group	  Leader	  	   	  So*ware	  Func0on	   MOU	   Sr.	  Res.	  
Faculty	  (FTE*yrs)	  

Postdocs	  &	  
Grad.	  Stud.	  

Specific	  work	  assignments	  

K.	  Hicks,	  Ohio	  U,	   Project	  management	   ✓	   1.25	   2.5	   So*ware	  management	  	  
CLAS12	  Data	  base	  	  

G.	  Gilfoyle,	  U.	  Rich	   CLARA	  services	   ✓	   1.75	   4.7	   So*ware	  development	  	  
team	  	  

D.	  Heddle,	  CNU	   CLARA	  services	   in	  process	   1.25	   clas12	  event	  display	  (ced)	  

M.	  Wood,	  Canisius	  
College	  

CLARA	  services	   ✓	  	  	   1.25	   2.5	   PCAL	  reconstruc0on	  
so*ware	  

D.	  Ireland,	  Glasgow	  
Univ.	  

Slow	  Control	  	   in	  process	   3.5	   3.65	   Head	  of	  Hall	  B	  EPICS,	  
simula0on,	  reconstruc0on	  	  

J.	  Ball,	  Saclay/IRFU	   Tracking	   in	  process	   tbd	   tbd	   Charged	  par0cle	  tracking	  	  

M.	  BaYaglieri,	  	  R.	  De	  
Vita,	  INFN/Genova	  

Head	  of	  CLAS12	  
Commissioning	  team	  

	  in	  process	  	   3.0	   4.0	   Forward	  tagger	  calibra0on	  
&	  commissioning	  so*ware	  

W.	  Brooks,	  
	  USM,	  Chile	  

Calorimeter	  analysis	  	   in	  prepara0on	   tbd	   tbd	   PaYern	  recogni0on,	  	  
reconstruc0on	  in	  PCAL/EC	  

Figure 25: Human resources available for the CLAS12 software development, showing both
JLab staff personnel (top) and resources from non-JLab institutions through MOUs.
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