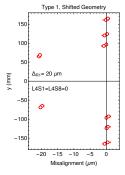

SVT Track-Based Alignment

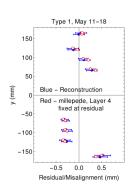
- Goal: Align the SVT to reach the resolution design specification of \approx 65 μm .
- ② Build accurate and complete representation of the SVT geometry and materials as part of the CLAS12 Common Tools.
- Provide the geometry for the gemc simulation and the CLAS12 reconstruction from a common set of parameters.
- Develop algorithms to measure and correct misalignments in the SVT.
- Ocument it.

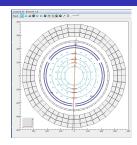
SVT Track-Based Alignment

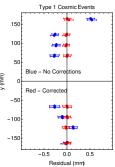
- Track-based alignment of SVT requires fitting many parameters up to 792 here.
- Program millepede does linear least squares with many parameters.
 - Matrix form of least squares method.
 - Global parameters the geometry misalignments. Same in all events.
 - Local individual track fit parameters. Change event-to-event.
 - Requires first partial derivatives of residuals with respect to the local (fit) parameters and global parameters (geometry misalignments).
- Analysis chain: red boxes Java; green boxes C⁺⁺.

Full chain has been tested and validated using gemc simulation and cosmic data for simplified case (Type 1 events).

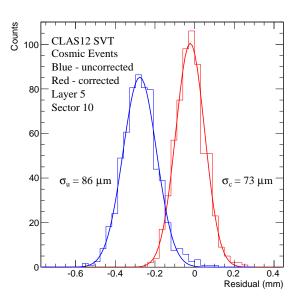

Running millepede

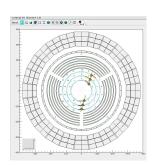

- mille
 - Code svtMille14.cc reads text file containing index, ID (layer,sector), data (residuals), derivatives (local and global), and χ^2 of fit.
 - Use C⁺⁺ function mille to generate binary input file for pede which does the actual fitting.
 - Use tools/readMilleBinary.py to check mille output.
- pede
 - Does the actual fitting reads binary data file from mille.
 - Built with root libraries.
 - Requires steering and constraint files. /work/halld/home/mstaib/millepede/pede mp2strSVT9.txt
 - output files:

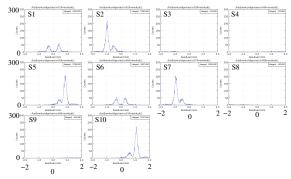

File	Purpose
millepede.log	records output
millepede.end	exit message
millepede.his	histograms
millepede.res	fit results


Type-1 Results

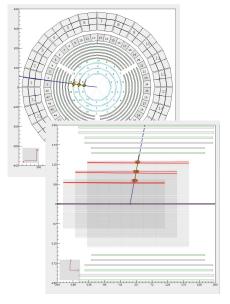
- millepede applied to simulated and measured
 Type 1 cosmics (see ced figure).
- Works on gemc cosmics with shifted regions (left-hand plot below).
- Works on real cosmic rays collected last summer - middle and right-hand plots below.



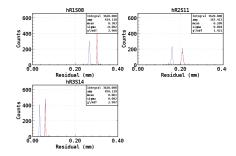



Effect on Type-1 Residuals

Type-2 Events - non-Type-1 cosmics

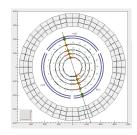


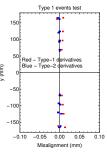
Type-2 event



Type-2, Single-strip, layer-1 residuals!!

Type-3 Events - Come from target


- ① Use particle gun to simulate a set of events all with exact, same initial direction ($\theta = 78.0377^{\circ}$, $\phi = 7.967^{\circ}$).
- 2 Track hits layers 1-2, sector 8, layers 3-4, sector 11, and layers 5-6, sector 14.
- Should hit strip 128 of layer 5, sector 14 (it does as seen in reconstruction).
- Why double peaks?



MIllepede Status

Status:

- Type 2 events selected. Algorithm for Type 2's tested on Type-1 events.
- Comparison of Type-1 events analyzed with Type-2 code useful for identifying bugs, picking signs of derivatives, etc.
- gemc version 4a.1.0 in use, Java/Groovy scripts at coatjava 4a.5.5.

