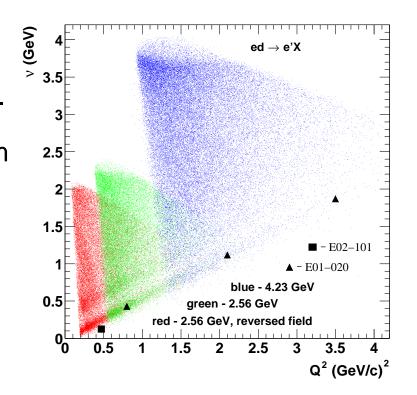
Radiative Corrections for E5

 $\mbox{Jerry}\ {\rm Gilfoyle}^1$ and $\mbox{Andrei}\ {\rm Afanasev}^2$

¹University of Richmond ²Jefferson Lab

1. Introduction

2. Radiative Corrections for Exclusive Reactions

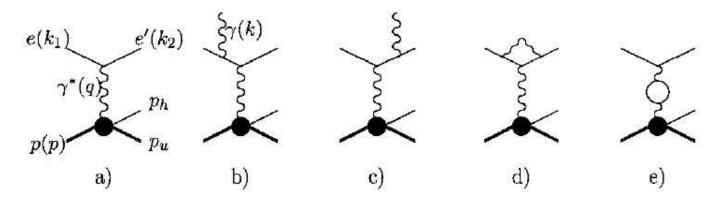

3. Modifying EXCLURAD for E5

4. Tests and Comparisons

5. Conclusions

The E5 Data Set

- 2.3 billion electron triggers in the range $Q^2 = 0.2 5.0 \ (GeV/c)^2$.
- Collected data under several running conditions.
 - 4.23 GeV, normal torus polarity.
 - 2.58 GeV, normal torus polarity.
 - 2.58 GeV, reversed torus polarity.
- Dual target cell containing deuterium (primary target) and hydrogen (for calibrations).
- Ongoing analyses of G_M^n , A_{LT}^\prime , and others.



Radiative Corrections for Exclusive Reactions

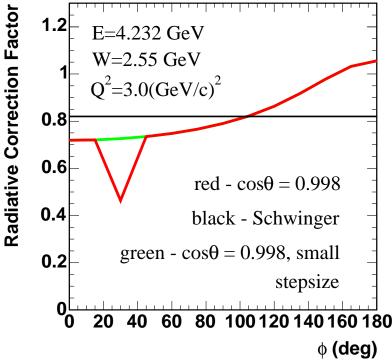
- Radiative corrections (RC) are required for exclusive measurements of G_M^n and out-of-plane structure functions A'_{LT} using the E5 data set.
- The classical approach of Schwinger or Mo and Tsai cannot be directly applied here.
 - Detection of the ejected hadron alters the phase space allowed for the final radiated photon.
 - More structure functions contribute in these measurements.
 - Splitting of radiated photon phase space into hard and soft regions to avoid the infrared divergence.
- Recent work done by A.Afanasev, et al. to handle the exclusive case.

EXCLURAD

- Method used by A.Afanasev, *et al.* for pion electroproduction on the proton in the program EXCLURAD (A.Afanasev, I.Akushevich, V.Burkert, K.Joo, Phys. Rev. D 66, 074004 (2002)).
- Diagrams used here.
 - QED processes for undetected, radiated photon (b and c).
 - Vacuum polarization.
 - Lepton-photon vertex corrections.

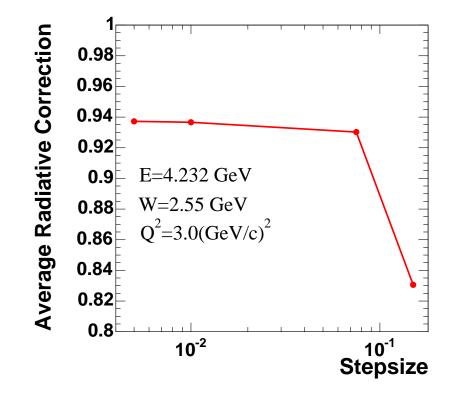
• Generates the ratio of the cross section at a given Q^2 , W, $\cos \theta_{pq}$, ϕ_{pq} to the PWIA result.

Modifying EXCLURAD for E5


- The reactions of interest are d(e,e'p)n, d(e,e'n)p, and $d(\vec{e},e'p)n$.
- Changed masses of target and detected and undetected hadrons in routine SETCON.
- Installed new physics models for calculating response functions for $d(e,e^\prime p)n.$
 - Using the DEEP program of Van Orden, *et al.* to calculate response functions using the relativistic impulse approximation.
 - Modified DEEP so it could be called as a subroutine.
 - Converted the output to be consistent with formalism used in EXCLURAD.

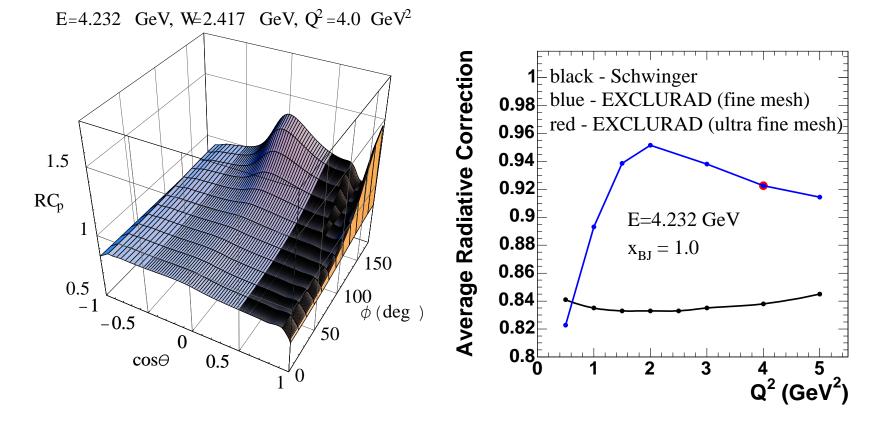
Modifying EXCLURAD for E5 - part 2

- Installed new physics models for calculating response functions for $d(e,e^\prime n)p.$
 - Changed the masses in the routine SETCON so the proton is now the undetected hadron.
 - Modified DEEP to be called as a subroutine.
 - DEEP generates the response functions in the center-of-mass of the struck deuteron so $\theta_{neutron} = \pi \theta_{proton}$.
- These changes work for G_M^n analysis, but DEEP does not include final-state interactions that are the focus of the out-of-plane structure function analysis. Will use code of S.Jeschonnek, *et al.* for that analysis (to be done).


Tests and Comparisons

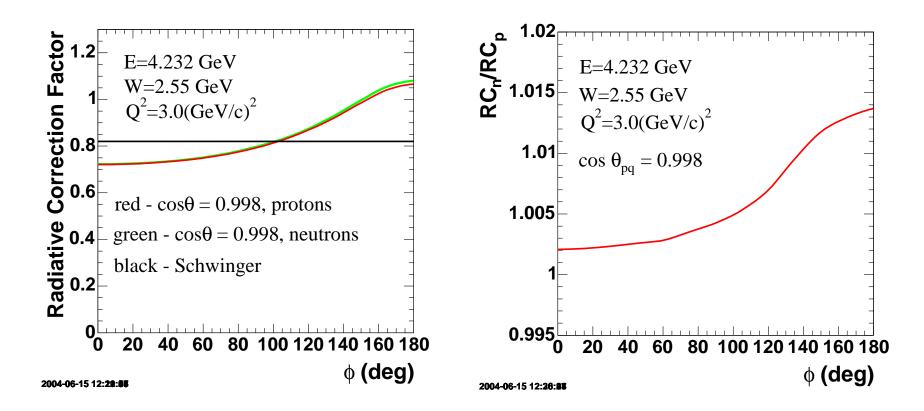
- Running the program.
 - Input: Q^2 , W, $\cos \theta_{pq}$, and ϕ_{pq} .
 - Outputs: Ratio of the cross section with radiation included to the PWIA cross section.
 - EXCLURAD uses an adaptive subdivision strategy to perform a multi-dimensional integration so the compute time for each point can vary widely from less than a minute to 2-3 hours.
 EXCLURAD uses an adaptive subdivision strategy to perform a multi-dimensional integration
 E=4.232 GeV
 W=2.55 GeV
 Q²=3.0(GeV/c)²
- A poor choice of the stepsize of the integration can produce unexpected results.

Tests and Comparisons - Part 2


• Convergence behavior for equidistant bins in $\cos \theta_{pq}$.

 To be sure a particular calculation has converged we can either vary the stepsize (very time consuming) or calculate an angular distribution (probably had to do this anyway).

Tests and Comparisons - Part 3


• Investigate the systematic behavior of $\langle RC \rangle$.

 Significant difference between the Schwinger* calculation and EXCLURAD can be attributed to the behavior of the response functions.
 * K.Aniol, J.Cornejo, http://www.calstatela.edu/academic/nuclear_physics/ schwin12_extbrems.html

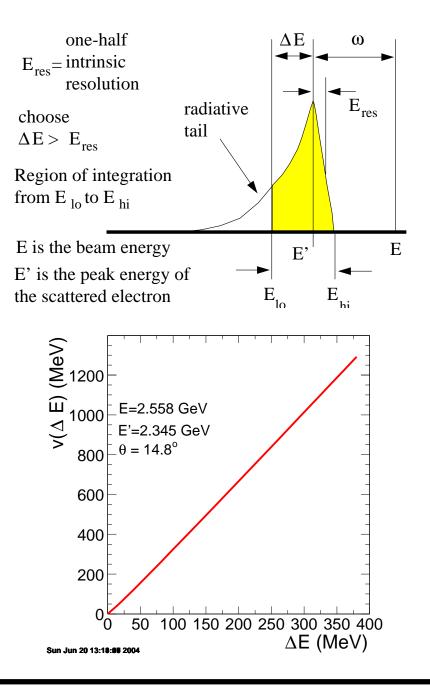
Tests and Comparisons - Part 4

• Comparison of RC for d(e, e'p)n and d(e, e'n)p for G_m^n measurement.

• The effect of the radiative corrections on the n/p ratio is small.

Running E5 EXCLURAD

- The radiative corrections surface shown above required several hundred hours of CPU time to be calculated.
- Need a computing cluster to perform calculations in a reasonable time.
- Richmond cluster consists of 53 dual-CPU linux machines with about 4.5 TByte of space.
 It is available for use by CLAS collaborators.


• Documentation, examples of scripts, etc. are available at

www.richmond.edu/~ggilfoyl/research/spiderwulf/cluster_home.html
www.richmond.edu/~ggilfoyl/research/RC/wvo.html

Running E5 EXCLURAD - Part 2

• Traditional radiative corrections require an integration interval ΔE .

• The code uses a parameter vdefined as $v = \Lambda^2 - m_u^2$ where m_u is undetected hadron mass and Λ is the fourmomentum of the undetected particle.

Conclusions

- We have successfully developed versions of EXCLURAD (originally written for pion electroproduction) for the d(e, e'p)n and d(e, e'n)p reactions.
- Effect of radiative corrections on the G_M^n measurements is small.
- Still need to develop a version that includes final-state interactions.
- Documentation and the codes are available at the following locations.

www.richmond.edu/~ggilfoyl/research/RC/wvo.html
www.richmond.edu/~ggilfoyl/research/spiderwulf/cluster_home.html

- Richmond cluster is available for calculating RC surfaces.
- Just starting to apply these calculations to E5 results.