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Overview
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Method to extract neutron detection efficiency (NDE).  

Background Subtraction.

Calculate neutron efficiency for PCAL/ECAL.

NDE Results.

NDE Parameterization.

Data Set used:
Run Group A, inbending and outbending with beam energies 10.6 GeV 
and 10.2 GeV 
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Neutron Detection Efficiency (NDE) 

Determine the neutron detection efficiency (NDE) by using:
𝒆 𝒑 → 𝒆! 𝝅" 𝒏

𝑵𝑫𝑬 = 𝑯 𝒆,𝒆!𝝅"𝒏
𝑯 𝒆,𝒆!𝝅" 𝒏

close-up view

Red panels: ECAL front face

Ø Loop over neutral ECAL hits (neutron candidates):
ü Get intersection of ray with the ECAL face by drawing 

a line from the 𝐞! vertex to the actual neutral ECAL hit.
ü To identify neutrons : 

ü Calculate the direction cosine from the electron vertex to the 
ECAL face for the expected neutron and the neutron candidates.

ü Cut on the difference between the expected neutron direction 
cosine and the neutron candidate (∆Cx ∆Cy )

ü Select the smallest ∆Cx ∆Cy neutron candidate for multiple hits. 

Ø Select 𝒆!𝝅" final state with no other charged particles in CLAS12.
Ø Assume the missing particle is a single neutron and calculate the 

missing momentum of the neutron Pmm and it’s trajectory through 
CLAS12 from the 𝒆! vertex.

Ø Check if the neutron’s path intersects the front face of ECAL 
and is at least 10 cm away from the edge.

Yes define it as an expected neutron

NO                        skip the event
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Electron ID Cut The cut used is based on the RGA analysis note
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𝝅( ID Cut
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The cut used is based on the RGA analysis note
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Missing Mass Distribution of  𝒑 𝒆, 𝒆)𝝅( 𝒏

ApplyFiducial CutsMissing Mass of neutron

Missing Mass of neutron after swimming and 
applying fiducial Cuts

Missing Mass of Expected Neutron

Swimming neutron to the PCAL/ECAL

Neutron can be in CD or FD

Neutron can be in FD only
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Neutral Particles Measured in PCAL/ECAL
Missing Mass of detected neutrons 

that pass ∆Cx ∆Cy cut

Most of the background under the missing 
mass of detected neutron due to photons 

contribution..
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Missing Mass Distribution

𝑯 𝒆, 𝒆&𝝅' 𝒏

Expected Missing Mass of neutron

𝑯 𝒆, 𝒆&𝝅'𝒏

Detected Missing Mass of neutron

Missing mass of expected and detected 
neutron have background events that must 

be subtracted.
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üFit both expected and detected neutrons at different Pmm Using two functions:
1- Gaussian Function  
2- Crystal Ball Function

with Polynomial background

üCrystal Ball Function defined as:

𝝁 = 𝟎, 𝝈 = 𝟏, 𝒏 = 𝟏, 𝒂 = 𝟏𝟎
𝝁 = 𝟎, 𝝈 = 𝟏, 𝒏 = 𝟑, 𝒂 = 𝟏

𝝁 = 𝟎, 𝝈 = 𝟏, 𝒏 = 𝟏, 𝒂 = 𝟏

Where:
a: controls the location of the transition between the Gaussian and power-law parts of the function. 
n: the steepness of the power-law tail. 

Background Subtraction
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Gaussian Function
Background Subtraction
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Gaussian+Poly:
ü Range of the fit is limited to MM < 1.1 GeV For

Pmm < 2 GeV.
ü For Pmm > 2 GeV and then extend this range to 

MM < 1.2 GeV.
ü Couldn’t fit the dip region. 

The high MM tail due to:
ü The radiative effects.
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Crystal Ball Function

SIDIS Simulation

high MM tail 

CB+Poly:
ü CB has high-MM tail to fit the dip region.
ü Range of the fit is extended to MM < 1.2 GeV 

for all Pmm bins.
ü MC shows high-MM tail.  



2- Fit Neutrons peaks using Crystal Ball Function1- Fit Neutrons peaks using Gaussian Function
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1- First fit each detected neutron MM distribution using Gauss+Poly, allowing all parameters 
to vary. Range of the fit is limited to MM < 1.1 GeV For Pmm < 2 GeV where the neutron 
contribution is significant. For Pmm > 2 GeV and then extend this range to MM < 1.2 GeV.
2- Use the same mean and width for each MM bin from step 1 and fit the expected neutron 
MM distribution with the Gaus+Poly function over the same range as step 1.
3- The Gaussian amplitude and the polynomial coefficients are allowed to vary for the 
expected neutron. The mean and width are fixed.

1- For each Pmm bin, use the same mean and width that were extracted from the 
detected neutron Gaussian fitting described in the left hand side.
2- The parameters of the CB, high-MM tail for both expected and detected 
neutrons are fixed at the same values that give the lowest chi2. Range of the fit is 
extended to MM < 1.2 GeV for all Pmm bins.
3- CB amplitude and the polynomial coefficients are allowed to vary for the 
expected neutron. The CB mean, width, and tail parameters are fixed.

Gaussian Function: Crystal Ball Function (CB):
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2- Fit Neutrons peaks using Crystal Ball Function

Detected 
neutrons

Detected 
neutrons

Detected 
neutrons

Detected 
neutrons

Expected 
neutrons

Expected 
neutrons

Expected 
neutrons

Expected 
neutrons

Detected 
neutrons

Expected 
neutrons

Detected 
neutrons

Expected 
neutrons

Detected 
neutrons

Expected 
neutrons

Detected 
neutrons

Expected 
neutrons

1- Fit Neutrons peaks using Gaussian Function
12
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Parameters Fit Results

Crystal Ball Function

Gaussian Function

Crystal Ball Function

Gaussian Function
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Ø Use the same width for both expected and 
detected neutron  for each Pmm bin.

Ø Use the same width for all 3 data sets.
Ø 𝝈 vary smoothly with Pmm .

Ø Use the same mean for both expected and 
detected neutron for each Pmm bin.

Ø Neutron peak looks ok for inbending 10.6 GeV 
and 10.2 GeV but is shifted for outbending
10.6 GeV.



Crystal Ball FunctionGaussian Function

Detected neutrons

Expected neutrons
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Parameters Fit Results

Ø The fit quality is similar for 
Gauss and CB for detected 
neutrons. 
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Detected neutrons

Expected neutrons

Ø For expected neutron, the 
Gaussian function shows a better 
fit quality with a lower average 

𝝌𝟐value.



NDE Results
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ü NDE results show that below 2 GeV, the Gauss function is slightly 
higher compared to the CB function. However, above 2 GeV, the 
two functions provide consistent results within the uncertainty.

ü Residual plot show the difference between Gauss and CB  < 3%
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NDE Results

CLAS12 results show all three data sets consistent to each other.
NDE ~ 0.79 at the plateau (Pmm > 3.5 GeV) for outbending and inbending electrons.
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Gaussian FunctionCrystal Ball Function

Efficiency Efficiency



Parameterized NDE
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Fit the neutron detection efficiency (NDE) with:

The uncertainty on the fit can be calculate from the 
error matrix:

𝛈 𝑷𝒎𝒎 = 𝒂𝟎 + 𝒂𝟏𝑷𝒎𝒎 + 𝒂𝟐𝑷𝒎𝒎𝟐 + 𝒂𝟑𝑷𝒎𝒎𝟑

= 𝒂𝟒 𝟏 −
𝟏

𝟏 + 𝒆
𝑷𝒎𝒎(𝒂𝟓

𝒂𝟔

for      𝑷𝒎𝒎 < 𝒑𝒕

for      𝑷𝒎𝒎 > 𝒑𝒕

To use NDE results in the 𝑮𝑴𝒏 analysis, we need a function that can 
describe it.
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Same as plot above with uncertainty 
band on top.
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Summary 
n NDE is necessary for 𝐺$% measurements in Run Group B and to other 

analyses/run groups.
n CLAS12 results show all three data sets are consistent to each other. 
n NDE ~ 0.79 at the plateau (Pmm > 3.5 GeV) for outbending and inbending

electrons.
n NDE results using Gauss function are slightly higher than Crystal Ball 

function below 2 GeV while above this value they are in agreement within 
the uncertainty. 
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Thank you !!
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Parametrized NDE
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𝝅( ID Cut
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The cut used is based on the RGA analysis note
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Data Set Function Gauss CB

Inb. 10.6 GeV expected neutron 2.63 4.82

Detected neutrons 2.42 2.83

Outb. 10.6 GeV expected neutron 7.49 12.68

Detected neutrons 4.22 5.43

Inb. 10.2 GeV expected neutron 5.94 5.98

Detected neutrons 2.31 2.59
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https://clasweb.jlab.org/wiki/index.php/CLAS12_Momentum_corrections:via_exclus
ive_channels:corrections_study#tab=ep_Channel

https://clasweb.jlab.org/wiki/index.php/CLAS12_Momentum_corrections:via_exclusive_channels:corrections_study
https://clasweb.jlab.org/wiki/index.php/CLAS12_Momentum_corrections:via_exclusive_channels:corrections_study
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Outbending 10.6 GeV
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