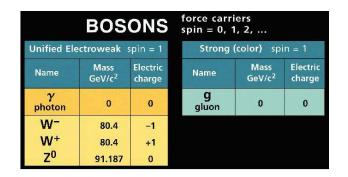

What's Inside the Neutron?

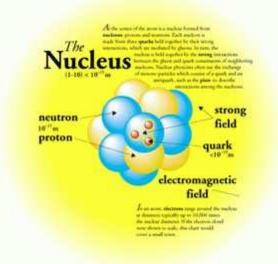
Jerry Gilfoyle, University of Richmond

"The Periodic Table"


The Periodic Chart

NIST Physics Laboratory Holdings by Element

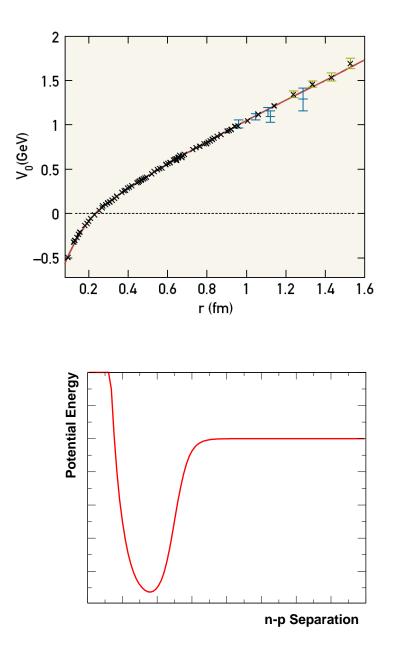
1				Solid													2
Н														He			
3	4			Sas 5 6 7 8 9 1										10			
Li	Be													Ne			
11	12				Disabled - no holdings 13 14 15 16 17 18									18			
Na	Mg		Instructions Databases Information									Ar					
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
К	Са	Sc	Ti	V	Cr	Mn	Fe	C٥	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мο	Тс	Ru	Rh	Ρd	Ag	Cd	In	Sn	Sb	Те	I	Xe
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	<u>.</u>	Hf	Та	W	Re	0s	lr	Pt	Au	Hg	דו	Pb	Bi	Po	At	Rn
87	88	Ň,	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq		Uuh		
				E O	ΓO	60	61	62	00	C 4	e -	00	~ 7	<u>co</u>	<u>co</u>	70	74
			57						63	64 Ca	65 Th	66 Dv	67	68	69	70 Vah	71
		5	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
			89						95	96	97	98	99	100	101	102	103
			Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr


What Do We Know?

 The Universe is made of quarks and leptons and the force carriers.

- The atomic nucleus is made of protons and neutrons bound by the strong force.
- The quarks are confined inside the protons and neutrons.
- Protons and neutrons are NOT confined.

	ERMI	ONS	matter constituents spin = 1/2, 3/2, 5/2,					
Leptor	15 spin	= 1/2	Quarks spin = 1/2					
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge			
Ve electron neutrino e electron	<1×10 ⁻⁸	0	U up d down	0.003	2/3 -1/3			
v_{μ} muon neutrino	<0.0002	0	C charm	1.3	2/3			
μ muon	0.106	-1	S strange	0.1	-1/3			
$ u_{\tau}^{\text{tau}}_{\text{neutrino}}$	< 0.02	0	t top	175	2/3			
au tau	1.7771	-1	b bottom	4.3	-1/3			

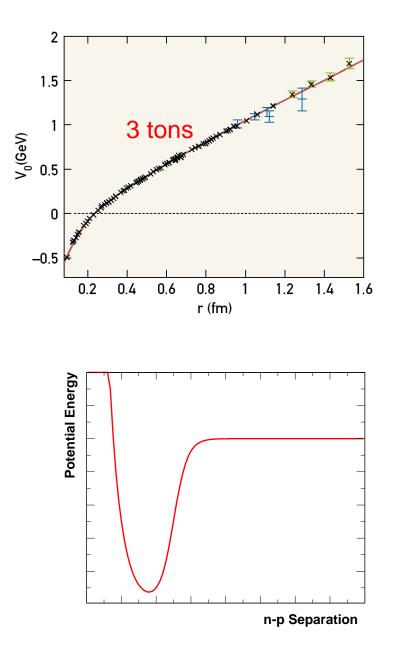


What is the Force?

 Quantum chromodynamics (QCD) looks like the right way to get the force at high energy (Nobel Prize in 2004).

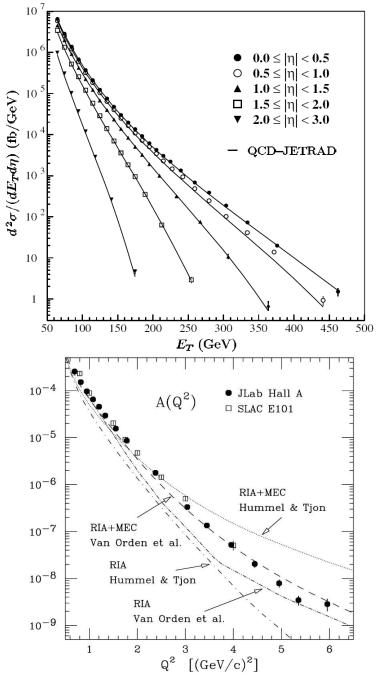
The hadronic model uses

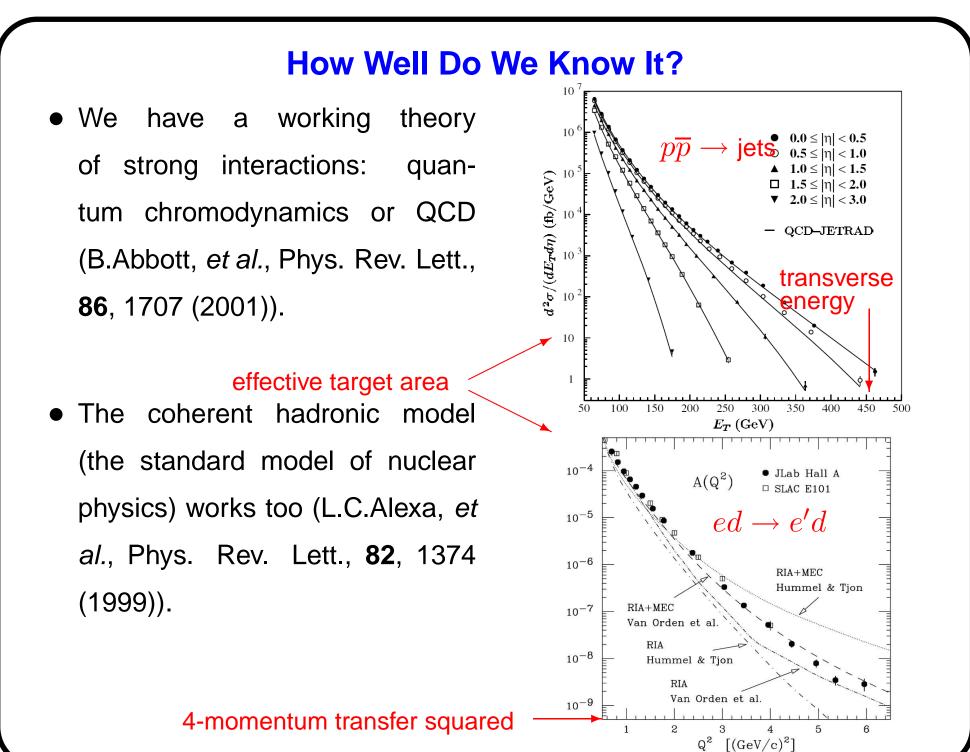
 a phenomenological force
 fitted to data at low en ergy. This 'strong' force is
 the residual force between
 quarks.



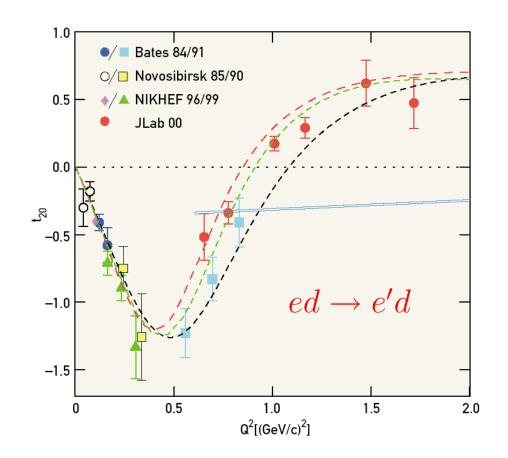
What is the Force?

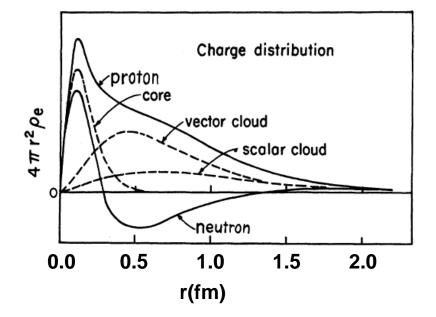
 Quantum chromodynamics (QCD) looks like the right way to get the force at high energy (Nobel Prize in 2004).


The hadronic model uses

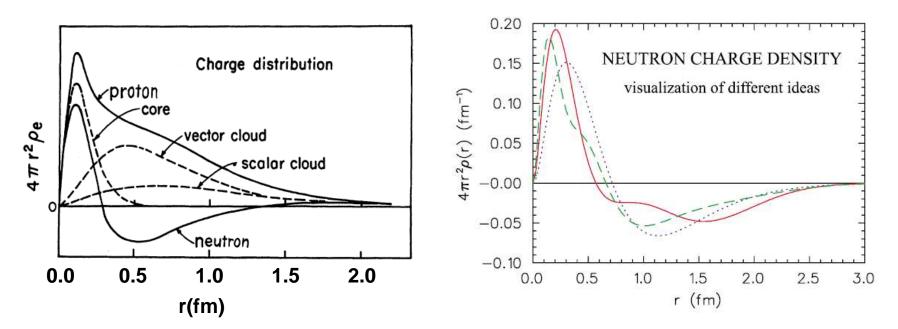

 a phenomenological force
 fitted to data at low en ergy. This 'strong' force is
 the residual force between
 quarks.

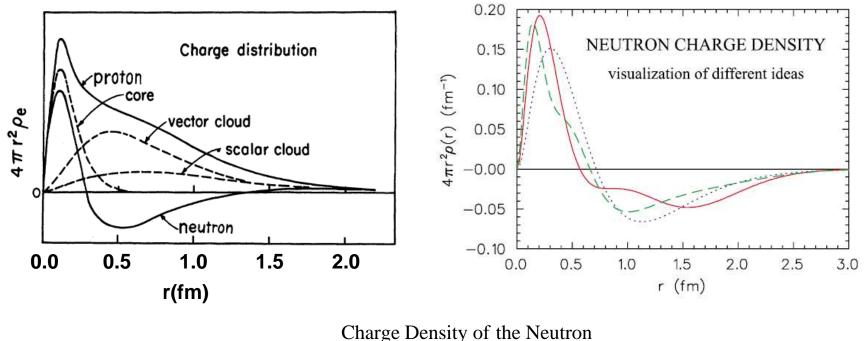
How Well Do We Know It?

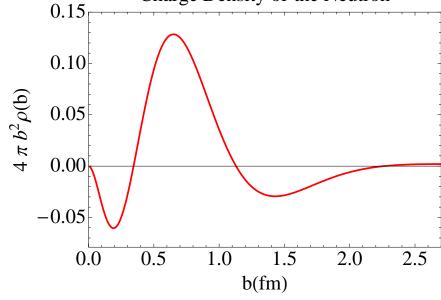

- We have a working theory of strong interactions: quantum chromodynamics or QCD (B.Abbott, *et al.*, Phys. Rev. Lett., 86, 1707 (2001)).
- The coherent hadronic model (the standard model of nuclear physics) works too (L.C.Alexa, *et al.*, Phys. Rev. Lett., **82**, 1374 (1999)).



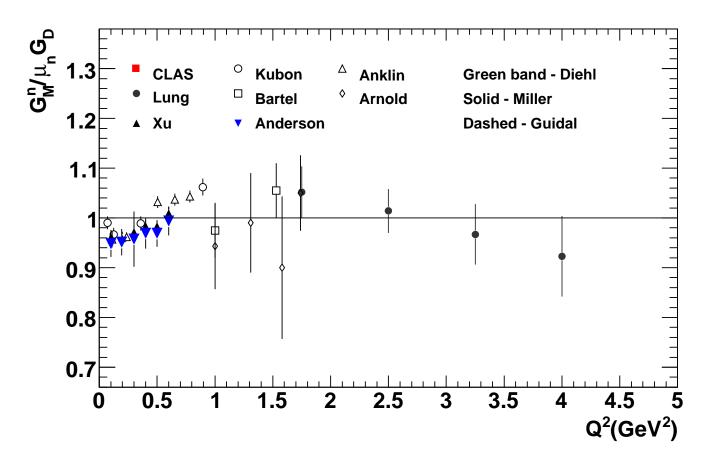
What Don't We Know?


- We can't get QCD and the hadronic model to line up.
 D. Abbott, *et al.*, Phys. Rev Lett. **84**, 5053 (2000).
- 2. NEED TO FIGURE OUT QCD AT THE ENERGIES OF NUCLEI!!

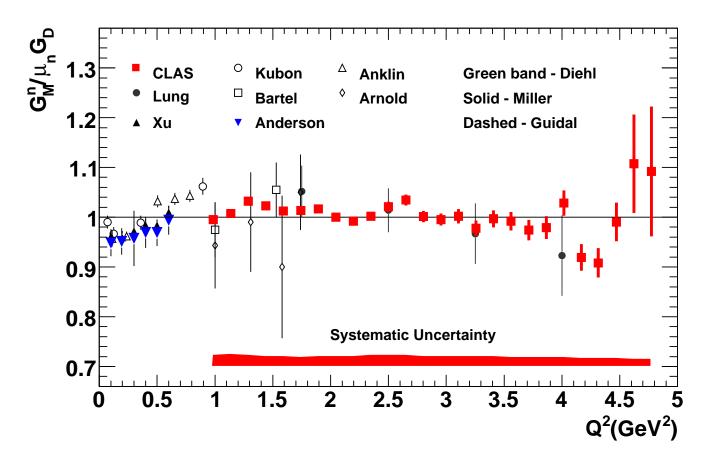

What We Knew and Now Know About the Neutron.



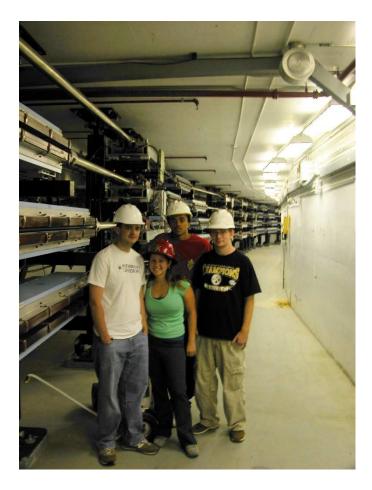
What We Knew and Now Know About the Neutron.

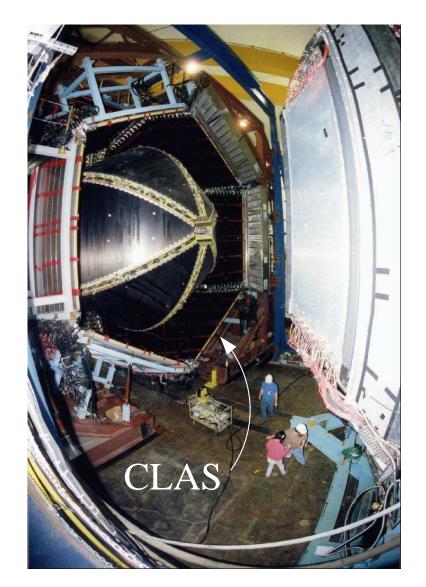


What We Knew and Now Know About the Neutron.



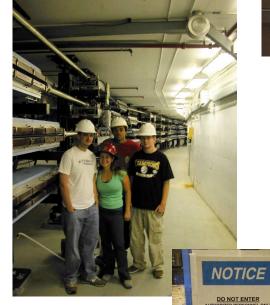
Results - Comparison with Existing Data and Theory


Results - Comparison with Existing Data and Theory


Experiments at Jefferson Lab



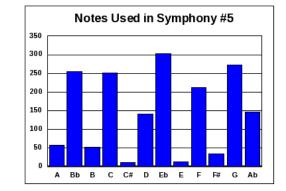
The CEBAF Large Acceptance Spectrometer (CLAS)


Life on the Frontiers of Knowledge

More Life on the Frontier - the Large Hadron Collider

- 1. The Large Hadron Collider (LHC) is the largest and highest-energy particle accelerator, colliding opposing beams of protons at 99.99999% of the speed of light.
- 2. Will test various predictions of high-energy physics, including the existence of the Higgs boson and other new particles.
- 27 kilometres around, beneath the Franco-Swiss border, built by over 10,000 scientists and engineers from over 100 countries and hundreds of universities and laboratories.
- On 10 September 2008, the proton beams were successfully circulated in the main ring of the LHC for the first time.

The LHC - What It's Really About.

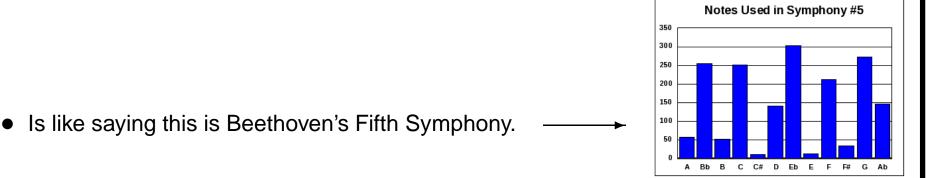

• Saying this is nuclear and particle physics.

F	ERMI	ONS	ļ	matter constituents spin = 1/2, 3/2, 5/2,					
Leptor	15 spin	= 1/2		Quarks spin = 1/2					
Flavor	Mass GeV/c ²	Electric charge		Flavor	Approx. Mass GeV/c ²	Electric charge			
ve electron neutrino	<1×10 ⁻⁸	0		U up	0.003	2/3			
e electron	0.000511	-1		d down	0.006	-1/3			
ν_{μ} muon neutrino	<0.0002	0		C charm	1.3	2/3			
μ muon	0.106	-1		S strange	0.1	-1/3			
$v_{\tau}^{tau}_{neutrino}$	<0.02	0		t top	175	2/3			
au tau	1.7771	-1		b bottom	4.3	-1/3			

The LHC - What It's Really About.

• Saying this is nuclear and particle physics.

matter constituent FERMIONS spin = 1/2, 3/2, 5/2, Leptons spin = 1/2 Quarks spin = 1/2 Mass GeV/c² Electri lavo lavo charge e electron <1×10-8 0 U up 0.003 2/3 neutrin 0.000511 -1 d down 0.006 -1/3 electron muon < 0.0002 0 C charm 1.3 2/3 µ neutrin 0.106 -1 S strange 0.1 -1/3 u muon tau < 0.02 0 t top 175 2/3 neutrin 1.7771 -1 **b** botton 4.3 -1/3



• Is like saying this is Beethoven's Fifth Symphony.

The LHC - What It's Really About.

• Saying this is nuclear and particle physics.

F	ERMI	ONS	matter constituents spin = 1/2, 3/2, 5/2,					
Leptor	15 spin	= 1/2	Quarks spin = 1/2					
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge			
v_e electron neutrino	<1×10 ⁻⁸	0	U up	0.003	2/3			
e electron	0.000511	-1	d down	0.006	-1/3			
ν_{μ} muon neutrino	<0.0002	0	C charm	1.3	2/3			
μ muon	0.106	-1	S strange	0.1	-1/3			
v_{τ} tau neutrino	<0.02	0	t top	175	2/3			
au tau	1.7771	-1	b bottom	4.3	-1/3			

• The Standard Model of particle physics has been superbly successful, but is now looking a bit frayed around the edges. Asking 'What is the LHC for?' will give you different answers from different people.

The LHC - It Won't Eat You!

 No danger of creating a black hole that will suck in the Earth despite what some people say.

• It may be responsible for other surprising effects.

The LHC - Why should YOU pay for it?

- 1. Over the last 100 years, at least 50% of the growth in our standard of living is due to technological change.
- 2. Technological spinoffs: NMR \rightarrow MRI, WWW, transistors, computers, ...
- 3. Production of trained scientists, engineers, technicians.

The LHC - Why should YOU pay for it?

- 1. Over the last 100 years, at least 50% of the growth in our standard of living is due to technological change.
- 2. Technological spinoffs: NMR \rightarrow MRI, WWW, transistors, computers, ...
- 3. Production of trained scientists, engineers, technicians.

In Paris in 1783 Benjamin Franklin watched with amazement one of the first hot-air balloon flights. The following exchange was said to occur.

Ben Franklin's answer:

Unknown questioner to Franklin: Sir, what's the use of flying in the air?

Sir, what's the use of a newborn baby?

The LHC - It Won't Eat You!

It may be responsible for other surprising effects.

http://www.comedycentral.com/colbertreport/full-episodes/index.jhtml?episodeId=209851

http://www.youtube.com/watch?v=j50ZssEojtM