
Physics 309 Final

I pledge that I have given nor received unauthorized assistance during the completion of this
work.

Name Signature

Questions (3 pts. apiece) Answer questions in complete, well-written sentences WITHIN the
spaces provided.

1. The CO molecule can be represented by quantum numbers n, l, and m. Describe in
words the meaning of each quantum number.

2. In our study of the CO molecule we used the quantum number ` to terminate the
series for the rotational (θ) part of the CO eigenfunctions. What physical quantity is
` related to and how did we connect it to that quantity?

3. What is a solid angle?

4. What is the quantum program?

Do not write below this line.
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5. Cite at least two experimental measurements that required quantum mechanics to
explain.

6. The eigenfunctions and eigenvalues of the particle in a box are

|φ〉 =

√
2

a
sin

nπx

a
En = n2 h̄

2π2

2ma2

for 0 < x < a. The eigenfunctions are zero outside the box. Consider the following
sequence of measurements of a particle in a box.

(a) The energy of the particle is measured. A value E1 is obtained.

(b) The position of the particle is measured and a value x2 is obtained.

(c) The energy of the particle is measured again.

What possible values of the energy can you obtain in step 6.c? Explain.

7. Why does the Sun shine? Your answer should be descriptive and qualitative - not
quantitative.

8. Why do we express the wave function in terms of energy eigenstates?

Do not write below this line.
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9. Consider the potential barrier shown below. How would you use the transfer-matrix
approach to connect the wave function ψ0∼ in region 0 to the wave function ψ4∼ in region
4? Give your answer in the appropriate notation used in class for problems like this
one. What is the form of the wave number ki in each region?

V

V

1

2
V 3

V

x
0 1 2 3 4

VV0 0

10. A proton and electron are each trapped in their own infinite square well which covers
the same range 0 < x < a. Both particles are in the ground state. At the center of
the well is the probability density of the proton greater than, less than, or equal to the
probability density of the electron? Explain.

Problems. Clearly show all work for full credit on a separate piece of paper.

1. (10 pts.) The work function of zinc is Φ = 3.6 eV . What is the energy of the most energetic
photoelectron emitted by ultraviolet light of wavelength λ = 2500 Å?

2. (10 pts.) Recall the vibration-rotation spectrum of carbon monoxide shown in the figure.
The peaks are separated by constant energy except at the center of the spec-
trum where the separation is larger (the ‘hole’). The energy levels of the carbon
monoxide are the sum of the harmonic oscillator energies En and the rotational
ones E`. Starting from the expression for the energy levels in CO calculate an
expression for the size of the hole.

Carbon−Monoxide Spectrum

A
b

so
rp

ti
o

n

Energy (eV)
0.26500.26000.2550 0.2700 0.2750
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3. (10 pts.) Legendre’s differential equation determines Θ the solution of the polar angle part
θ of the CO rotator Schoedinger equation

(1− z2)d
2Θ

dz2
− 2z

dΘ

dz
+

(
A− m2

1− z2

)
Θ = 0

where m is an integer, A is the separation constant, and z = cos θ. For the case
m = 0 what is the recursion relationship for the series solution to Legendre’s
differential equation? In other words, let Θ =

∑
akz

k, set m = 0, and show that
Legendre’s differential equation leads to a relationship between the coefficients in
the sum. What must the constant A equal if we want to terminate the series at
some arbitrary value of k = l?

4. (10 pts.) A hypernucleus is an atomic nucleus which contains hyperons, particles that
contain a strange quark replacing one of the u or d quarks in a nucleon. Suppose
a hyperon is confined in a nucleus of diameter a and has the following initial wave
function.

ψ(x, 0) =

√
2

a
sin

4πx

a
0 ≤ x ≤ a

= 0 otherwise

Treat the system as a one dimensional infinite rectangular well. The eigenfunc-
tions and eigenvalues are

En =
n2h̄2π2

2ma2
φn =

√
2

a
sin
(nπx

a

)
0 ≤ x ≤ a

= 0 x < 0 and x > a .

The mass of the hyperon in energy units is mhc
2 = 1405 MeV .

1. What are the coefficients of the Fourier series describing the initial wave
function?

2. If a = 1.0 fm, what is the probability of the hyperon being in the ground
state (n = 1)? What is the probability of the hyperon being in the third
excited state?
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5. (15 pts.) For a particle-in-a-box (see Prob. 4 for eigenfunctions and eigenvalues) with
initial state

ψ(x, 0) = A1 sin
(πx
a

)
cos

(
3πx

a

)
0 ≤ x ≤ a

= 0 x < 0 and x > a

what are A1, ψ(x, t) and P (En) at t > 0 in terms ofm, a, and any other constants?

6. (15 pts.) Cold emission is a process where electrons are drawn from a metal at room
temperature by an external electric field. The potential of the electrons in the
metal without the external field is shown in the left-hand panel below. The
electrons fill all available energy states (the Fermi sea) up to a maximum value
EF . The potential with with the field E on is shown in the right-hand panel.

V (x) = Φ + EF − eEx

where EF is the Fermi energy, Φ is the work function, E is the applied electric
field, e is the electronic charge, and x is the position. See the figure for more
information. Electrons can ‘tunnel’ through this barrier.

1. Use the WKB approximation to calculate the transmission coefficient

T = exp

[
−2

∫ x2

x1

√
2m(V (x)− E)

h̄2
dx

]

where x1 and x2 are values of the position x where the energy EF equals
V (x) (see the figure). Get your answer in terms of the electron mass m, Φ,
e, E , and any other necessary constants.

2. The electric current inside the metal is described by Jinc = env where n is
the electron density and v is the electron speed in the Fermi sea. Consider
a current coming out of the metal. The most likely electrons to tunnel
through the barrier are the ones at the Fermi energy EF (the top of the
Fermi sea). Calculate an expression for the electric field E needed to reach
a current J0 through the barrier from the Fermi sea in terms of m, e, n,
EF , Φ, and J0.
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Physics 309 Equations

RT (ν) =
Energy

time× area
E = hν = h̄ω vwave = λν I ∝ | ~E|2 λ =

h

p
p = h̄k K =

p2

2m
Kmax = hν−Φ

− h̄2

2m

∂2

∂x2
Ψ(x, t)+V (x)Ψ(x, t) = ih̄

∂

∂t
Ψ(x, t) p̂ x = −ih̄ ∂

∂x
Â |φ〉 = a|φ〉 〈Â 〉 =

∫ ∞
−∞

ψ∗Â ψdx

〈φn′ |φn〉 =

∫ ∞
−∞

φ∗n′φndx = δn′,n 〈φ(k′)|φ(k)〉 =

∫ ∞
−∞

φ∗k′φk dx = δ(k − k′) eiφ = cosφ+ i sinφ

|ψ〉 =
∑

bn|φn〉 → bn = 〈φn|ψ〉 |φ〉 = e±ikx |ψ〉 =

∫
b(k)|φ(k)〉dk → b(k) = 〈φ(k)|ψ〉

|ψ(x, t)〉 =
∑

bn|φn〉e−iωnt |ψ(x, t)〉 =

∫
b(k)|φ(k)〉e−iω(k)tdk ∆p∆x ≥ h̄

2
(∆x)2 = 〈x2〉−〈x〉2

The wave function, Ψ(~r, t), contains all we know of a system and its square is the probability of

finding the system in the region ~r to ~r+ d~r. The wave function and its derivative are (1) finite, (2)
continuous, and (3) single-valued (ψ1(a) = ψ2(a) and ψ′1(a) = ψ′2(a)) .

VHO =
κx2

2
ω = 2πν =

√
κ

m
En = (n+

1

2
)h̄ω0 = h̄ω |φn〉 = e−ξ

2/2Hn(ξ) ξ = βx β2 =
mω0

h̄

ψ1 = tψ3 = d12p2d21p
−1
1 ψ3 T =

1

|t11|2
R+ T = 1

dij =
1

2

(
1 +

kj
ki

1− kj
ki

1− kj
ki

1 +
kj
ki

)
pi =

(
e−iki2a 0

0 eiki2a

)
p−1i =

(
eiki2a 0

0 e−iki2a

)

E =
h̄2k2

2m
k =

√
2m(E − V )

h̄2
T =

transmitted flux

incident flux
R =

reflected flux

incident flux
flux = |ψ|2v

V (r) =
Z1Z2e

2

r
E =

1

2
µv2 + V (r) ~Rcm =

∑
imi~ri∑
imi

µ =
m1m2

m1 +m2

ψ(x) =
∞∑
n=1

anx
n 〈K〉 =

3

2
kT n(v) = 4πN

(
m

2πkBT

)3/2

v2e−mv
2/2kBT ~L = ~r × ~p = I~ω

I =
∑
i

mir
2
1 =

∫
r2dm KErot =

L2

2I
E` =

`(`+ 1)h̄2

2I
Vcoul =

Z1Z2e
2

r
ME =

p2r
2µ

+
L2

2µr2
+V (r)

Lz|nlm〉 = mh̄|nlm〉 L2|nlm〉 = `(`+ 1)h̄2|nlm〉

sinA sinB =
1

2
[cos(A−B)− cos(A+B)] cosA cosB =

1

2
[cos(A−B) + cos(A+B)]

sinA cosB =
1

2
[sin(A−B) + sin(A+B)] sinA+ sinB = 2 sin

(
A+B

2

)
cos

(
A−B

2

)
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Constants

Speed of light (c) 2.9979× 108 m/s fermi (fm) 10−15 m

Boltzmann constant (kB) 1.381× 10−23 J/K angstrom (Å) 10−10 m

8.62× 10−5 eV/k electron-volt (eV ) 1.6× 10−19 J

Planck constant (h) 6.621× 10−34 J − s MeV 106 eV

4.1357× 10−15 eV − s GeV 109 eV

Planck constant (h̄) 1.0546× 10−34 J − s Electron charge (e) 1.6× 10−19 C

6.5821× 10−16 eV − s e2 h̄c/137

Planck constant (h̄c) 197 MeV − fm Electron mass (me) 9.11× 10−31 kg

1970 eV − Å 0.511 MeV/c2

Proton mass (mp) 1.67× 10−27kg atomic mass unit (u) 1.66× 10−27 kg

938 MeV/c2 931.5 MeV/c2

Neutron mass (mn) 1.68× 10−27 kg

939 MeV/c2

Integrals and Derivatives

df

du
=
df

dx

du

dx

d

dx
(xn) = nxn−1

d

dx
(sinx) = cosx

d

dx
(cosx) = − sinx

d

dx
(eax) = aeax

d

dx
(ln ax) =

1

x

∫
xndx =

xn+1

n+ 1

∫
eaxdx =

eax

a

∫
1

x
= lnx

∫
1√

x2 + a2
dx = ln

[
x+

√
x2 + a2

]
∫

x√
x2 + a2

dx =
√
x2 + a2

∫
x2√

x2 + a2
dx =

1

2
x
√
x2 + a2 − 1

2
a2 ln

[
x+

√
x2 + a2

]
∫

x3√
x2 + a2

dx =
1

3
(−2a2 + x2)

√
x2 + a2

∫
x2 sin(ax)dx =

2x sin(ax)

a2
−
(
a2x2 − 2

)
cos(ax)

a3∫
x sin(ax)dx =

sin(ax)

a2
− x cos(ax)

a

∫
x3 sin axdx =

3
(
a2x2 − 2

)
sin(ax)

a4
−
x
(
a2x2 − 6

)
cos(ax)

a3

Hermite polynomials (Hn(ξ))

H0(ξ) =
1√√
π

H5(ξ) =
1√

3840
√
π

(32ξ5 − 160ξ3 + 120ξ)

H1(ξ) =
1√
2
√
π

2ξ H6(ξ) =
1√

46080
√
π

(64ξ6 − 480ξ4 + 720ξ2 − 120)

H2(ξ) =
1√
8
√
π

(4ξ2 − 2) H7(ξ) =
1√

645120
√
π

(128ξ7 − 1344ξ5 + 3360ξ3 − 1680ξ)

H3(ξ) =
1√

48
√
π

(8ξ3 − 12ξ) H8(ξ) =
1√

10321920
√
π

(256ξ8 − 3584ξ6 + 13440ξ4 − 13440ξ2 + 1680)

H4(ξ) =
1√

384
√
π

(16ξ4 − 48ξ2 + 12) H9(ξ) =
1√

185794560
√
π

(512ξ9 − 9216ξ7 + 48384ξ5 − 80640ξ3 + 30240ξ)

7



8


