
Physics 309 Final
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work.
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Questions (3 pts. apiece) Answer questions in complete, well-written sentences WITHIN the
spaces provided. For multiple-choice questions circle the correct answer.

1. Recall the vibration-rotation spectrum of carbon monoxide shown in the figure. There
is a high-energy ‘lobe’ with peaks separated by constant energy h̄2/I and a similar
low-energy lobe. The lobes are separated by a gap at 0.2660 eV . What transitions
create the separate lobes?
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2. Consider the one-dimensional, time-dependent Schroedinger equation (SE) with a po-
tential that depends only on x. What are the steps to solve the SE using the separation
of variables method? Don’t actually perform the steps, but describe them.

3. The Schroedinger equation in spherical coordinates is shown below. What is the oper-
ator form of the square of the angular momentum L2? Explain your reasoning.
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Do not write below this line.
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4. The figure below shows the energy diagram we used to calculate alpha decay. What
would happen to the calculation of the lifetime if the nuclear radius (i.e. R = 1.4A1/3)
is decreased? Explain.
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5. When we solved the particle-in-a-box (infinitely deep potential well, see the figure) we
required the wave function at the potential well’s boundaries to be continuous, e.g.
φ1(x = 0) = φ2(x = 0) and φ2(x = a) = φ3(x = a) where a is the width of the well
and the subscript refers to the different regions labeled in the figure. Why? How did
we justify this requirement?
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6. Why do we express the wave function in terms of energy eigenstates?

7. List one experimental result that led to the development of quantum mechanics. Why
was that result important?

Do not write below this line.
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8. A particle of energy E < V0 is incident on a step potential of height V0 as shown in
the figure. Let k1 =

√
2mE/h̄ and k2 =

√
2m(E − V0)/h̄ where the subscripts refer

to the region labeled in the figure. Circle your choice for the transmission coefficient
from the list below. Explain your choice.

(a) 1 (d) 4k21/(k
2
1 + k22)

(b) 0 (e) k1/k2
(c) k21/k
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9. The Heisenberg Uncertainty Principle in one dimension ∆x∆p ≥ h̄/2 relates uncer-
tainty in momentum ∆p and position ∆x. Why these two quantities?

10. The figure is a simulation of the electrons detected behind two closely spaced slits.
Each bright dot represents one electron. How will this pattern change if the left slit
is closed? Your answers should consider the number of dots on the screen and the
spacing, width, and positions of the fringes.

Problems. Clearly show all work for full credit on a separate piece of paper.

1. (10 pts.) The general solution to the classical harmonic oscillator is x(t) = A sin(ω0t+ δ).
Get an expression for the period of the motion (the time to make one complete
oscillation) in terms of the parameters of the general solution. How is this result
related to the frequency?
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2. (10 pts.) Consider the following functions defined over the interval (−a/2, a/2).

φk =
1√
a
eikx

Show these functions form an orthogonal set in the limit a→∞.

3. (10 pts.) In studying rotational motion, we take advantage of the center-of-mass system to
make life easier. Consider the two-particle system shown in the figure including
the center-of-mass vector Rcm. For convenience we will place our origin at the
center-of-mass of the system (Rcm = 0). Show the classical mechanical energy of
the two-particle system in the center-of-mass frame can be written as

Ecm =
1

2
µv2 + V (r) where µ =

m1m2

m1 +m2

and v =
dr

dt

and r is the relative coordinate between the
two particles as shown in the figure. Notice
that V (r) depends only on the relative coordi-
nate.

4. (10 pts.) Two hundred anyons are in a one-dimensional box with walls at x0 = 0 and
x1 = a. At t = 0, the state of each particle is the following.

ψ(x, 0) = Ax2(x− a) where A =

√
105

a7

The eigenfunctions and eigenvalues are

En =
n2h̄2π2

2ma2
φn =

√
2

a
sin
(nπx

a

)
0 ≤ x ≤ a

= 0 x < 0 and x > a .

How many particles have energy E2 at t = 0?
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5. (15 pts.) Consider Legendre’s associated differential equation shown below.

(1− z2)d
2Θ

dz2
− 2z

dΘ

dz
+

(
A− m2

1− z2

)
Θ = 0

For the case m = 0 what is the recursion relationship for the series solution to
this differential equation? In other words, let Θ =

∑
akz

k and set m = 0. Clearly
justify all your reasoning.

6. (15 pts.) A particle beam has a continuous wave function that can be described by

ψ(x, t) = ei(k0x−ωt) .

This equation describes a wave train moving in the positive x direction. A beam
‘pulse’ of length L is produced by sending the beam through a ‘chopper’ that
opens long enough to let part of the original beam through and then closes again,
cutting off the remainder. The wave function of the pulse at time t = 0 is the
following.

ψ(x, 0) =
1√
L
eik0x |x| ≤ L/2

= 0 |x| > L/2

The free particle eigenfunction is the following.

φ(x) =
1√
2π
eikx

(a) What is the spectral distribution necessary to produce such a wave packet?

(b) Generate an uncertainty principle appropriate for this wave packet.
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Physics 309 Equations and Constants

E = hν = h̄ω vwave = λν I ∝ | ~E|2 λ =
h

p
p = h̄k K =

p2

2m

− h̄2

2m

∂2

∂x2
Ψ(x, t)+V (x)Ψ(x, t) = ih̄

∂

∂t
Ψ(x, t) p̂ x = −ih̄ ∂

∂x
Â |φ〉 = a|φ〉 〈Â 〉 =

∫ ∞
−∞

ψ∗Â ψdx

〈φn′ |φn〉 =

∫ ∞
−∞

φ∗n′φndx = δn′,n 〈φ(k′)|φ(k)〉 =

∫ ∞
−∞

φ∗k′φk dx = δ(k − k′) eiφ = cosφ+ i sinφ

|ψ〉 =
∑

bn|φn〉 → bn = 〈φn|ψ〉 |φ〉 = e±ikx |ψ〉 =

∫
b(k)|φ(k)〉dk → b(k) = 〈φ(k)|ψ〉

|ψ(t)〉 =
∑

bn|φn〉e−iωnt |ψ(t)〉 =

∫
b(k)|φ(k)〉e−iω(k)tdk ∆p∆x ≥ h̄

2
(∆x)2 = 〈x2〉−〈x〉2

The wave function, Ψ(~r, t), contains all we know of a system and its square is the probability of

finding the system in the region ~r to ~r+ d~r. The wave function and its derivative are (1) finite, (2)
continuous, and (3) single-valued (ψ1(a) = ψ2(a) and ψ′1(a) = ψ′2(a)) .
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Speed of light (c) 2.9979× 108 m/s fermi (fm) 10−15 m

Boltzmann constant (kB) 1.381× 10−23 J/K angstrom (Å) 10−10 m

8.62× 10−5 eV/k electron-volt (eV ) 1.6× 10−19 J

Planck constant (h) 6.621× 10−34 J − s MeV 106 eV

4.1357× 10−15 eV − s GeV 109 eV

Planck constant (h̄) 1.0546× 10−34 J − s Electron charge (e) 1.6× 10−19 C

6.5821× 10−16 eV − s e2 h̄c/137

Planck constant (h̄c) 197 MeV − fm Electron mass (me) 9.11× 10−31 kg

1970 eV − Å 0.511 MeV/c2

Proton mass (mp) 1.67× 10−27kg atomic mass unit (u) 1.66× 10−27 kg

938 MeV/c2 931.5 MeV/c2

Neutron mass (mn) 1.68× 10−27 kg

939 MeV/c2

df

du
=
df

dx

du

dx

d

dx
(xn) = nxn−1

d

dx
(sinx) = cosx

d

dx
(cosx) = − sinx

d

dx
(eax) = aeax

d

dx
(ln ax) =

1

x

∫
xndx =

xn+1

n+ 1

∫
eaxdx =

eax

a

∫
1

x
= lnx

∫
1√

x2 + a2
dx = ln

[
x+

√
x2 + a2

]
∫

x√
x2 + a2

dx =
√
x2 + a2

∫
x2√

x2 + a2
dx =

1

2
x
√
x2 + a2 − 1

2
a2 ln

[
x+

√
x2 + a2

]
∫

x3√
x2 + a2

dx =
1

3
(−2a2 + x2)

√
x2 + a2

Hermite polynomials (Hn(ξ))

H0(ξ) =
1√√
π

H3(ξ) =
1√

48
√
π

(8ξ3 − 12ξ)

H1(ξ) =
1√
2
√
π

2ξ H4(ξ) =
1√

384
√
π

(16ξ4 − 48ξ2 + 12)

H2(ξ) =
1√
8
√
π

(4ξ2 − 2) H5(ξ) =
1√

3840
√
π

(32ξ5 − 160ξ3 + 120ξ)
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