
The Postulates

What is a postulate?

1 suggest or assume the existence, fact, or truth of (something) as a
basis for reasoning, discussion, or belief.
”a theory postulated by a respected scientist”
synonyms: suggest, advance, posit, hypothesize, propose, assume

2 (in ecclesiastical law) nominate or elect (someone) to an ecclesiastical
office subject to the sanction of a higher authority.

How do you know it’s correct? DATA!

See here for an example of impeccable logic.
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The Postulates (the Rules of the Game)

1 Each physical, measurable quantity, A, has a corresponding operator, Â , that
satisfies the eigenvalue equation Â φ = aφ and measuring that quantity yields the
eigenvalues of Â . The ‘intensity’ is proportional to |Ψ|2 and is interpreted as a
probability.

2 Measurement of the observable A leaves the system in a state that is an
eigenfunction of Â .

3 The state of a system is represented by a wave function Ψ that is continuous,
differentiable and contains all possible information about the system. The
‘intensity’ is proportional to |Ψ|2 and is interpreted as a probability. The average
value of any observable A is 〈A〉 =

∫
all space

Ψ∗Â Ψd~r .

4 The time and spatial dependence of Ψ(x , t) is determined by the time dependent
Schroedinger equation.

i~ ∂
∂t

Ψ(x , t) = − ~2

2µ

∂2

∂x2
Ψ(x , t) + V (x)Ψ(x , t) µ ≡ reduced mass.
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Interpreting the Quantum ‘Intensity’

Electron diffraction by gold

The square of the magnitude of the wave

function |ψ(x , t)|2 = ψ∗(x , t)ψ(x , t) is the

probability density.
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Apply the Rules: A Particle in a Box

Consider the infinite rectangular well potential shown in the figure below.

What is the time-independent
Schroedinger equation for this
potential?

What is the general solution to
the previous question?

What are the boundary conditions
the solution must satisfy?

What is the particular solution for
this potential?

What is the energy of the
particular solution?

a0
x

V(x)
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The Infinite Rectangular Well Potential - Energy Levels
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Some Math

The solutions of the Schroedinger equation form a Hilbert space.

1 They are linear, i.e. superposition/interference is built in.

If a is a constant and φ(x) is an element of the space, then so is aφ(x).
If φ1(x) and φ2(x) are elements, then so is φ1(x) + φ2(x).

2 An inner product is defined and all elements have a norm.

〈φn|ψ〉 =

∫ ∞
−∞

φ∗nψ dx and 〈φn|φn〉 =

∫ ∞
−∞

φ∗nφndx = 1

3 The solutions are complete.

|ψ〉 =
∞∑
n=0

bn|φn〉

4 The solutions are orthonormal so 〈φn|φn′〉 = δn,n′ .

The operators are Hermitian - their eigenvalues are real.
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Apply the Rules More: A Particle in a Box

Consider the infinite rectangular well potential shown in the figure below
with an initial wave packet defined in the following way.

Ψ(x , 0) = 1√
d

x0 < x < x1 and d = x1 − x0

= 0 otherwise

What possible values are
obtained in an energy
measurement?

What eigenfunctions contribute
to this wave packet and what
are their probabilities?

What will many measurements
of the energy give?

ax x0
10
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V(x)
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L’Hôpital’s Rule

If

lim
x→c

f (x) = lim
x→c

g(x) = 0 or lim
x→c

f (x) = lim
x→c

g(x) = ±∞

and

lim
x→c

f ′(x)

g ′(x)

exists, then

lim
x→c

f (x)

g(x)
= lim

x→c

f ′(x)

g ′(x)
.
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Truncated Fourier Series - 1
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Truncated Fourier Series - 2
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Probabilities of Different Final States
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Probabilities of Different Final States - 2
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Probabilities of Different Final States - 3
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Jerry Gilfoyle The Rules of the Quantum Game 13 / 21



Probabilities of Different Final States - 4

0 20 40 60 80 100
10-5

10-4

0.001

0.010

0.100

1

Energy Level

lo
g
(P

ro
b
a
b
ili

ty
)

Rectangular Wave in a Square Well

Jerry Gilfoyle The Rules of the Quantum Game 14 / 21



Why a page limit?

Nature 129, 312 (27 February 1932)
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Width of a distribution?
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The Quantum Program in One Dimension - So Far

1 Solve the Schroedinger equation to get eigenfunctions and eigenvalues.

− ~2

2m

∂2φ(x)

∂x2
+ Vφ(x) = Enφ(x)

2 For an initial wave packet ψ(x) use the completeness of the eigenfunctions.

|ψ(x)〉 =
∞∑
n=1

bn|φ(x)〉

3 Apply the orthonormality 〈φm|φn〉 = δm,n.

〈φm|ψ〉 = 〈φm|

( ∞∑
n=1

bn|φ〉

)
= bm =

∫ ∞
−∞

φ∗m

( ∞∑
n=1

bn|φ〉

)
dx

4 Get the probability Pn for measuring En from |ψ〉.

Pn = |bn|2

5 Do the free particle solution.

6 Put in the time evolution.
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Nuclear Fusion!

Consider a case of one dimensional nuclear ‘fusion’. A neutron is in the
potential well of a nucleus that we will approximate with an infinite square
well with walls at x = 0 and x = a. The eigenfunctions and eigenvalues are

En =
n2~2π2

2ma2
φn =

√
2

a
sin
(nπx

a

)
0 ≤ x ≤ a

= 0 x < 0 and x > a .

The neutron is in the n = 4 state when it fuses with another nucleus that
is the same size, instantly putting the neutron in a new infinite square well
with walls at x = 0 and x = 2a.

1 What are the new eigenfunctions and eigenvalues of the fused system?

2 What is the spectral distribution?

3 What is the average energy? Use the bn’s.
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Spectral Distribution for One-Dimensional Nuclear Fusion
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Spectral Distribution for One-Dimensional Nuclear Fusion
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Spectral Distribution for One-Dimensional Nuclear Fusion

Only non-zero values

bn=0 for n even, except n=8
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